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We revisit the notion on almost automorphic functions on time scales given by Lizama and Mesquita (2013). Then we present the
notion of almost automorphic functions of order 𝑛. Finally, we apply this notion to study the existence and uniqueness and the
global stability of almost automorphic solution of first order to a dynamical equation with finite time varying delay.

1. Introduction

The concept of time scales was initiated in 1988 by Hilger in
his outstanding Ph.D. thesis [1]. The purpose of such theory
was to unify both continuous and discrete analysis. Conse-
quently, using time scales in studying dynamic systems prev-
ents from proving results separately for differential equations
and difference equations. Since then, several papers were
devoted to dynamical systems on time scales [2–8]. We refer
also readers to the excellent book by Bohner and Peterson
[9] and their edited book [10] which contains high quality
contributions to the theory.

It was natural to study almost periodic time scales as well
as almost periodic differential equations on almost periodic
time scales [3]. Our initial motivation for the current study
comes from [4] where the authors studied the existence and
exponential stability of almost periodic solutions of a neutral-
type BAM neural network with delays on time scales, using
exponential dichotomy of linear dynamical systems.

Recently Lizama and Mesquita introduced the notion of
almost automorphic functions on time scales in their work
[11]. The purpose of this paper is twofold. First we would like
to revisit Lizama andMesquita’s paper in light of the following
remarks.

Let T be a time scale. It is said to be invariant under
translations if

Π = {𝜏 ∈ R : 𝑡 ∓ 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (1)

We prove in Lemma 25 that Π ⊂ T ⇔ 0 ∈ T .
However, we observe that the inclusion may be strict.

Indeed, let us consider the time scale 𝑃
𝑎,𝑏

= ⋃
∞

𝑘=−∞
[𝑘(𝑎 +

𝑏), 𝑘(𝑎 + 𝑏) + 𝑎], where 0 < 𝑎 < 𝑏; it is obviously invariant
under translations, and it contains 0 and 𝑎 but not −𝑎. Then
𝑎 ∉ Π. This also proves that the invariant under translations
time scales 𝑃

𝑎,𝑏
is not symmetric.

For this reason, several results in [11] hold only if the time
scale is symmetric.

Secondlywewould like to study the existence and stability
of almost automorphic solutions of the following linear dyna-
mic system with finite delay:

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡) ,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑖
(𝑠) = 𝜑 (𝑠) , 𝑠 ∈ [−𝜃, 0]T , 𝑖 = 1, 2, . . . , 𝑚,

(2)
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where T is an appropriate time scale, 𝑚 ≥ 2 is the number
of neurons in the network, 𝑥

𝑖
(𝑡) denote the activation of the

𝑖th neuron at time 𝑡, and 𝑎
𝑖
represents the rate with which

the 𝑖th neurons will rest their potential to the resting state in
isolation when they are disconnected from the network and
the external inputs at time 𝑡. The𝑚×𝑚matrix 𝐵(𝑡) = (𝑏

𝑖𝑗
(𝑡))

represents the connection strengths between neurons at time
𝑡; 𝑏

𝑖𝑗
is an element of feedback templates at time 𝑡; 𝑓

𝑗
is the

activation function. 𝜏
𝑖𝑗
is the transmission delay at time 𝑡 and

satisfies 𝑡 − 𝜏
𝑖𝑗
∈ T ; 𝐼

𝑖
(𝑡) denote the bias of the 𝑖th neuron at

time 𝑡, 𝜃 = max
(𝑖,𝑗)

sup
𝑡∈T𝜏𝑖𝑗(𝑡) and [𝑎, 𝑏]T = {𝑡 | 𝑡 ∈ [𝑎, 𝑏]∩T}.

We organized our paper as follows. In Section 2, we recall
some definitions and recent results on time scales. In Sec-
tion 3, we present properties of almost automorphic functions
on symmetric time scales along with a composition theorem.
In Section 4, we introduce and present elementary properties
of almost automorphic functions on time scales of order 𝑛
and study differentiation and integration of such functions
in Section 5 and superposition of operators on the space of
such functions in Section 6. Finally in Section 7, we study the
existence, uniqueness, and global stability of system (2).

2. Preliminaries

In this section we recall some definitions and recent results
on time scales.

Definition 1. A time scale is an arbitrary nonempty closed
subset of real numbers.

Definition 2. Let T be a time scale.The forward and backward
jump operators 𝜎, 𝜌 : T → T and the graininess 𝜇 : T →

[0, +∞) are defined, respectively, by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(3)

In Definition 5, we put inf 0 = sup T and sup 0 = inf T .

Definition 3. Let T be time scales.

(i) A point 𝑡 ∈ T is called right-dense if 𝑡 < sup T and
𝜎(𝑡) = 𝑡.

(ii) A point 𝑡 ∈ T is called left-dense if 𝑡 > inf T and
𝜌(𝑡) = 𝑡.

Definition 4 (see [9]). A function 𝑓 : T → R is called reg-
ulated provided its right-sided limits exist (finite) at all right-
dense points in T and its left-sided limits exist (finite) at all
left-dense points in T .

Definition 5 (see [9]). A function 𝑓 : T → R is called rd-
continuous provided it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points in
T .

We will denote the set of rd-continuous function 𝑓 : T →

R by 𝐶rd = 𝐶rd(T ,R). From now on, we define the set T𝑘 by

T
𝑘

= {

T \ [𝜌 (sup T) , sup T] if sup T < ∞

T if sup T = ∞.

(4)

Definition 6 (see [9]). Let𝑓 : T → R be a function and 𝑡 ∈ T𝑘.
We define𝑓Δ(𝑡) to be the number (provided it exists) with the
property that, given any 𝜖 > 0, there exists a neighborhood𝑈
of 𝑡 such that






𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ

(𝑡) [𝜎 (𝑡) − 𝑠]






≤ 𝜖 |𝜎 (𝑡) − 𝑠|

∀𝑠 ∈ 𝑈.

(5)

We call 𝑓Δ(𝑡) the delta (or Hilger) derivative of 𝑓 at 𝑡.
Moreover, we say that 𝑓 is delta (or Hilger) differentiable

(or in short differentiable) on T𝑘 provided 𝑓Δ(𝑡) exists for all
𝑡 ∈ T𝑘.The function𝑓Δ : T𝑘 → R is called the (delta) deriva-
tive of 𝑓 on T𝑘.

Next we recall some easy and useful relationships con-
cerning the delta derivative.

Theorem 7 (see [9]). Assume 𝑓 : T → R is a function and let
𝑡 ∈ T𝑘. Then one has the following.

(i) If 𝑓 is differentiable at 𝑡, then 𝑓 is continuous at 𝑡.
(ii) If 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered, then 𝑓 is

differentiable at 𝑡 with

𝑓
Δ

(𝑡) =

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜇 (𝑡)

. (6)

(iii) If 𝑡 is right-dense, then𝑓 is differentiable at 𝑡 if and only
if the limit

lim
𝑠→𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠

(7)

exists as a finite number. In this case

𝑓
Δ

(𝑡) = lim
𝑠→𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠

. (8)

(iv) If 𝑓 is differentiable at 𝑡, then

𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓
Δ

(𝑡) . (9)

Theorem 8 (see [9]). Assume 𝑓, 𝑔 : T → R are differentiable
at 𝑡 ∈ T𝑘. Then

(i) the sum 𝑓 + 𝑔 : T → R is differentiable at 𝑡 with

(𝑓 + 𝑔)
Δ

(𝑡) = 𝑓
Δ

(𝑡) + 𝑔
Δ

(𝑡) ; (10)

(ii) for any constant 𝛼, 𝛼𝑓 : T → R is differentiable at 𝑡
with

(𝛼𝑓)
Δ

(𝑡) = 𝛼𝑓
Δ

(𝑡) ; (11)
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(iii) the product 𝑓𝑔 : T → R is differentiable at 𝑡 with

(𝑓𝑔)
Δ

(𝑡) = 𝑓
Δ

(𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔
Δ

(𝑡)

= 𝑓 (𝑡) 𝑔
Δ

(𝑡) + 𝑓
Δ

(𝑡) 𝑔 (𝜎 (𝑡)) .

(12)

We define higher order derivatives of a function on time
scale in the usual way.

Definition 9 (see [9]). For a function 𝑓 : T → R one will talk
about the second derivative𝑓ΔΔ provided 𝑓Δ is differentiable
on T𝑘

2

:= (T𝑘)
𝑘 with derivative 𝑓ΔΔ := (𝑓

Δ

)
Δ

: T𝑘
2

→ R.
Similarly one defines higher order derivatives 𝑓Δ

𝑛

: T𝑘
𝑛

→

R. Finally, for 𝑡 ∈ T , one denotes 𝜎2(𝑡) := 𝜎(𝜎(𝑡)) and
𝜌
2

(𝑡) := 𝜌(𝜌(𝑡)), and 𝜎𝑛(𝑡) and 𝜌𝑛(𝑡) are defined accordingly.
For convenience one also puts 𝜌0(𝑡) = 𝜎

0

(𝑡) = 𝑡 and T𝑘
0

= T .

Theorem 10 (see [9] (Leibniz formula)). Let 𝑆(𝑛)
𝑘

be the set
consisting of all possible strings of length 𝑛, containing exactly
𝑘 times 𝜎 and 𝑛 − 𝑘 times Δ. If 𝑓Λ exists for all Λ ∈ 𝑆

(𝑛)

𝑘
, then

(𝑓𝑔)
Δ
𝑛

=

𝑛

∑

𝑘=0

( ∑

Λ∈𝑆
(𝑛)

𝑘

𝑓
Λ

)𝑔
Δ
𝑘

(13)

holds for all 𝑛 ∈ N.

The following results on chain rule can be found in [9].

Theorem 11 (chain rule). Let 𝑓 : R → R be continuously dif-
ferentiable and suppose 𝑔 : T → R is delta differentiable on
T𝑘. Then 𝑓 ∘ 𝑔 : T → R is delta differentiable and the formula

(𝑓 ∘ 𝑔)
Δ

(𝑡) = [∫

1

0

𝑓


(𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔
Δ

(𝑡)) 𝑑ℎ] × 𝑔
Δ

(𝑡)

(14)

holds for all 𝑡 ∈ T𝑘.

Theorem 12 (chain rule). Assume that ] : T → R is strictly
increasing and T̃ = ](T) is a time scale. Let 𝜔 : T̃ → X, where
X is a Banach space. If ]Δ(𝑡) and 𝜔̃

Δ

(𝑡) exist for 𝑡 ∈ T𝑘, then

(𝜔 ∘ ])Δ = ]Δ ⋅ 𝜔̃
Δ

∘ ], (15)

where ̃
Δ denote the Δ in T̃𝑘.

Definition 13. If 𝑎 ∈ T , sup T = +∞, and 𝑓 is a 𝐶rd function
on [𝑎, +∞), then the improper integral of 𝑓 is defined by

∫

∞

𝑎

𝑓 (𝑡) Δ𝑡 = lim
𝑏→+∞

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 (16)

provided this limit exists. In this case, the improper integral
is said to converge.

Lemma 14 (see [4]). Let 𝑎 ∈ T𝑘, 𝑏 ∈ T , and assume that
𝑓 : T × T𝑘 → R is continuous at (𝑡, 𝑡), where 𝑡 ∈ T𝑘 with

𝑡 > 𝑎. Assume also that 𝑓Δ(𝑡, ⋅) is rd-continuous on [𝑎, 𝜎(𝑡)].
Suppose that, for each 𝜖 > 0, there exists a neighborhood 𝑈 of
𝜏 ∈ [𝑎, 𝜎(𝑡)] such that





𝑓 (𝜎 (𝑡) , 𝜏) − 𝑓 (𝑠, 𝜏) − 𝑓

Δ

(𝑡, 𝜏) [𝜎 (𝑡) − 𝑠]






≤ 𝜖 |𝜎 (𝑡) − 𝑠|

∀𝑠 ∈ 𝑈,

(17)

where 𝑓Δ denotes the derivative of 𝑓 with respect to the first
variable. Then

𝑔 (𝑡) = ∫

𝑡

𝑎

𝑓 (𝑡, 𝜏) Δ𝜏 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑔
Δ

(𝑡) = ∫

𝑡

𝑎

𝑓
Δ

(𝑡, 𝜏) Δ𝜏 + 𝑓 (𝜎 (𝑡) , 𝑡) .

(18)

We now present some definitions and results useful for
the study of some dynamical systems.

Definition 15 (see [9]). One says that a function 𝑝 : T → R is
regressive provided

1 + 𝜇 (𝑡) 𝑝 (𝑡) ̸= 0, ∀𝑡 ∈ T
𝑘

. (19)

The set of all regressive functions will be denoted byR =

R(T ,R).

Definition 16. One defines the setR+ of all positively regres-
sive elements ofR by

R
+

= R
+

(T ,R)

= {𝑝 ∈ R : 1 + 𝜇 (𝑡) 𝑝 (𝑡) > 0 ∀𝑡 ∈ T} .
(20)

Definition 17 (see [9]). If 𝑝 ∈ R, then one defines the
generalized exponential function by

𝑒
𝑝
(𝑡, 𝑠) = exp(∫

𝑡

𝑠

𝜉
𝜇(𝜏)

(𝑝 (𝜏)) Δ𝜏) for 𝑡, 𝑠 ∈ T , (21)

where the cylinder transformation 𝜉
ℎ
: C

ℎ
→ Z

ℎ
is given by

𝜉
ℎ
((𝑧)) =

1

ℎ

log (1 + 𝑧ℎ) , (22)

where log is the principal logarithm function. For ℎ = 0, we
define 𝜉

0
(𝑧) = 𝑧 for all 𝑧 ∈ C.

The generalized exponential functions have the following
properties.

Lemma 18 (see [9]). Assume that 𝑝, 𝑞 : T → R are two regre-
ssive functions. Then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(ii) 𝑒
𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡) = 𝑒

⊖𝑝
(𝑠, 𝑡);

(iii) 𝑒
𝑝
(𝑡, 𝑠)𝑒

𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(iv) [𝑒
𝑝
(𝑡, 𝑠)]

Δ

= 𝑝(𝑡)𝑒
𝑝
(𝑡, 𝑠).
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Lemma 19 (see [9]). Assume that 𝑝 ∈ R+. Then

(i) 𝑒
𝑝
(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ T ;

(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒
𝑝
(𝑡, 𝑠) ≤

𝑒
𝑞
(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Lemma 20 (see [9]). If 𝑝 ∈ R and 𝑎, 𝑏, 𝑐 ∈ T , then

(i) [𝑒
𝑝
(𝑐, ⋅)]

Δ

= −𝑝[𝑒
𝑝
(𝑐, ⋅)]

𝜎,

(ii) ∫𝑏
𝑎

𝑝(𝑡)𝑒
𝑝
(𝑐, 𝜎(𝑡))Δ𝑡 = 𝑒

𝑝
(𝑐, 𝑎) − 𝑒

𝑝
(𝑐, 𝑏) for all 𝑡 ≥ 𝑠.

Proposition 21 (see [9]). Let 𝑝 : T → R be rd-continuous
and regressive, 𝑡

0
∈ T , and 𝑦

0
∈ R. Then the unique solution of

the initial value problem

𝑦
Δ

(𝑡) = 𝑝 (𝑡) 𝑦 (𝑡) + ℎ (𝑡) , 𝑦 (𝑡
0
) = 𝑦

0
(23)

is given by

𝑦 (𝑡) = 𝑒
𝑝
(𝑡, 𝑡

0
) + ∫

𝑡

𝑡
0

𝑒
𝑝
(𝑡, 𝜎 (𝑠)) ℎ (𝑠) Δ𝑠. (24)

We now present some definitions about matrix-valued
functions on T .

Definition 22. Let 𝐴 be an𝑚 × 𝑚matrix-valued function on
T . One says that 𝐴 is rd-continuous on T if each entry of 𝐴 is
rd-continuous on T . One denotes by Crd(T ,R

𝑚×𝑚

) the class
of all rd-continuous𝑚 × 𝑚matrix-valued functions on T .

We say that 𝐴 is delta differentiable on T if each entry of
𝐴 is delta differentiable on T . And in this case, we have

𝐴 (𝜎 (𝑡)) = 𝐴 (𝑡) + 𝜇 (𝑡) 𝐴
Δ

(𝑡) . (25)

Definition 23. An 𝑚 × 𝑚 matrix-valued function 𝐴 is called
regressive if

𝐼 + 𝜇 (𝑡) 𝐴 (𝑡) is invertible ∀𝑡 ∈ T
𝑘

. (26)

The class of all such regressive rd-continuous functions is
denoted by

R (T ,R
𝑚×𝑚

) . (27)

3. Almost Automorphic Functions of Order 𝑛
on Time Scales

From now on, (X, ‖ ⋅ ‖) is a (real or complex) Banach space.

Definition 24 (see [11]). A time scale T is called invariant
under translations if

Π = {𝜏 ∈ R : 𝑡 ∓ 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (28)

Lemma 25. Let T be an invariant under translations time
scale. Then one has

(i) Π ⊂ T ⇔ 0 ∈ T ;
(ii) Π ∩ T = 0 ⇔ 0 ∉ T .

Proof

(i) In view of the definition ofΠ, if 0 ∈ T , then for all 𝜏 ∈
Π we have 𝜏 ∈ T . Thus, Π ⊂ T . Conversely, assume
thatΠ ⊂ T .Then, for any 𝜏 ∈ Π, we have 0 = 𝜏−𝜏 ∈ T .
Thus 0 ∈ T .

(ii) It is clear that if Π ∩ T = 0 then 0 ∉ T . Now assume
that 0 ∉ T . If 𝜏 ∈ Π∩T , then we have 𝑡−𝜏 ∈ T for any
𝑡 ∈ T ; particularly, for 𝑡 = 𝜏, we have 𝜏 − 𝜏 = 0 ∈ T .
This contradicts the fact that 0 ∉ T . Thus Π ∩ T = 0.

We have the following properties of the points in T , for-
ward jump operator, and the graininess function when the
time scales are invariant under translations.

Lemma 26 (see [2]). Let T be an invariant under translation
time scale. If 𝑡 is right-dense (resp., right-scattered), then for
every ℎ ∈ Π, 𝑡 + ℎ is right-dense (resp., right-scattered).

Lemma 27 (see [2]). Let T be an invariant under translations
time scale and ℎ ∈ Π. Then

(i) 𝜎(𝑡 + ℎ) = 𝜎(𝑡) + ℎ and 𝜎(𝑡 − ℎ) = 𝜎(𝑡) − ℎ, for every
𝑡 ∈ T ;

(ii) 𝜇(𝑡 + ℎ) = 𝜇(𝑡) = 𝜇(𝑡 − ℎ), for every 𝑡 ∈ T .

Remark 28. As we pointed out in Section 1 time scales invari-
ant under translations are not automatically symmetric. Since
almost automorphic functions are defined on symmetric
domains, some definitions and results in [11] on these func-
tions will be given with additional assumption on the time
scale. More precisely we will assume that the time scale is
symmetric and invariant under translations.

Definition 29. Let X be Banach space and let T be a sym-
metric time scale which is invariant under translations. Then
the rd-continuous function 𝑓 : T → X is called almost
automorphic on T if for every sequence (𝑠

𝑛
) onΠ, there exists

a subsequence (𝜏
𝑛
) ⊂ (𝑠

𝑛
) such that

𝑓 (𝑡) = lim
𝑛→∞

𝑓 (𝑡 + 𝜏
𝑛
) (29)

is well defined for each 𝑡 ∈ T and

lim
𝑛→∞

𝑓 (𝑡 − 𝜏
𝑛
) = 𝑓 (𝑡) (30)

for each 𝑡 ∈ T .

We denote by 𝐴𝐴T (X) the space of all almost automor-
phic functions on time scales 𝑓 : T → X.

Remark 30. In view of Lemma 27, if T is a symmetric time
scale which is invariant under translations then the graininess
function 𝜇 : T → R

+
is an almost automorphic function.

We have the following properties.

Theorem 31. Let T be a symmetric time scale which is invari-
ant under translation. Assume that the rd-continuous functions
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𝑓, 𝑔 : T → X are almost automorphic on T . Then the following
assertions hold:

(i) 𝑓 + 𝑔 is almost automorphic on time scales;
(ii) 𝜆𝑓 is almost automorphic on T for every scalar 𝜆;
(iii) for each 𝑙 ∈ Π, the function 𝑓

𝑙
: T → X defined by

𝑓
𝑙
(𝑡) = 𝑓(𝑡 + 𝑙) is almost automorphic on time scales;

(iv) ̂
𝑓 : T → X defined by ̂

𝑓(𝑡) = 𝑓(−𝑡) is almost automo-
rphic on time scales;

(v) sup
𝑡∈T‖𝑓(𝑡)‖ < ∞; that is, 𝑓 is a bounded function;

(vi) sup
𝑡∈T‖𝑓(𝑡)‖ = sup

𝑡∈T‖𝑓(𝑡)‖, where

𝑓 (𝑡) = lim
𝑛→∞

𝑓 (𝑡 + 𝜏
𝑛
) , lim

𝑛→∞

𝑓 (𝑡 − 𝜏
𝑛
) = 𝑓 (𝑡) . (31)

Proof. See [11].

We have the following remark on the property given in
[11].

Remark 32. Notice that

(i) in order to give a sense to (iii), we consider 𝑙 as an
element of Π instead of 𝑙 ∈ T as in [11];

(ii) we need the symmetry of the time scale T to obtain
that −𝑡 ∈ T if 𝑡 ∈ T , that is, to give a sense to the defin-
ition of ̂𝑓 in (iv).

Remark 33. The space 𝐴𝐴T (X) equipped with the norm
sup

𝑡∈T‖𝑓(𝑡)‖ is a Banach space (see [11] pp. 2280).

Lemma 34. If 𝑓 ∈ 𝐴𝐴T (X), the range 𝑅𝑓 = {𝑓(𝑡) : 𝑡 ∈ T} is
relatively compact inX.

Proof. Let 𝑎 ∈ T be fixed and let (𝑥
𝑛
)
𝑛
be a sequence in 𝑅

𝑓
.

Then, for any 𝑛 ∈ N, there is 𝑡
𝑛
∈ T such that 𝑥

𝑛
= 𝑓(𝑡



𝑛
).

By invariance under translations of T , for each 𝑛 ∈ N, we can
find 𝛼

𝑛
∈ Π such that 𝑡

𝑛
= 𝑎 + 𝛼



𝑛
. Hence, for all 𝑛 ∈ N, we

have 𝑥
𝑛
= 𝑓(𝑎 + 𝛼



𝑛
). Since 𝑓 is almost automorphic on time

scale, there exists a subsequence (𝛼
𝑛
)
𝑛
of (𝛼

𝑛
)
𝑛
such that

lim
𝑛→∞

𝑓 (𝑎 + 𝛼
𝑛
) = 𝑓 (𝑎) . (32)

Thus, the subsequence (𝑥
𝑛
= 𝑓(𝑎 + 𝛼

𝑛
)) converges to 𝑓(𝑎).

Therefore, 𝑅
𝑓
is relatively compact inX.

Theorem 35 (see [11]). Let T be a symmetric time scale which
is invariant under translations. Let also 𝑢 : T → C and 𝑓 :

T → X be two almost automorphic functions on time scales.
Then the function 𝑢𝑓 : T → X defined by (𝑢𝑓)(𝑡) = 𝑢(𝑡)𝑓(𝑡)

is almost automorphic on time scales.

Theorem 36 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let (𝑓

𝑛
) be a sequence of

almost automorphic functions such that lim
𝑛→+∞

𝑓
𝑛
(𝑡) = 𝑓(𝑡)

converges uniformly for each 𝑡 ∈ T . Then, 𝑓 is an almost
automorphic function.

Theorem 37 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let X and Y be Banach
spaces. Suppose 𝑓 : T → X is an almost automorphic function
on time scales and 𝜙 : X → Y is a continuous function; then
the composite function 𝜙 ∘ 𝑓 : T → Y is almost automorphic
on time scales.

Definition 38 (see [11]). Let X be a (real or complex) Banach
space and let T be a symmetric time scale which is invariant
under translations. Then a rd-continuous function 𝑓 : T ×

X → X is called almost automorphic on 𝑡 ∈ T for each 𝑥 ∈ X

if for every sequence (𝑠
𝑛
) on Π, there exists a subsequence

(𝜏
𝑛
) ⊂ (𝑠

𝑛
) such that

𝑓 (𝑡, 𝑥) = lim
𝑛→∞

𝑓 (𝑡 + 𝜏
𝑛
, 𝑥) (33)

is well defined for each 𝑡 ∈ T , 𝑥 ∈ X and

lim
𝑛→∞

𝑓 (𝑡 − 𝜏
𝑛
, 𝑥) = 𝑓 (𝑡, 𝑥) (34)

for each 𝑡 ∈ T and 𝑥 ∈ X.

Theorem 39 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let 𝑓, 𝑔 : T × X → X be
almost automorphic functions on time scale in 𝑡 for each 𝑥 in
X. Then the following assertions hold:

(i) 𝑓 + 𝑔 is almost automorphic on time scale in 𝑡 for each
𝑥 inX;

(ii) 𝜆𝑓 is almost automorphic function on time scale in 𝑡 for
each 𝑥 inX, where 𝜆 is an arbitrary scalar;

(iii) sup
𝑡∈T‖𝑓(𝑡, 𝑥)‖ = 𝑀

𝑥
< ∞, for each 𝑥 ∈ X;

(iv) sup
𝑡∈T‖𝑓(𝑡, 𝑥)‖ = 𝑁

𝑥
< ∞, for each 𝑥 ∈ X, where 𝑓 is

the function in Definition 38.

Theorem 40. Let T be a symmetric time scale which is invari-
ant under translations and let 𝑓 : T × X → X be almost
automorphic functions on time scale in 𝑡 for each 𝑥 in X and
satisfy Lipschitz condition in 𝑥 uniformly in 𝑡; that is,





𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)





≤ 𝐿





𝑥 − 𝑦





, (35)

for all 𝑥, 𝑦 ∈ X. Assume that 𝜙 : T → X almost automorphic
on time scale. Then the function 𝑈 : T → X defined by 𝑈(𝑡) =
𝑓(𝑡, 𝜙(𝑡)) is almost automorphic on time scale.

We can now introduce the notion of almost automorphic
functions of order 𝑛 on time scales.

4. Almost Automorphic Functions of Order 𝑛
on Time Scales

We denote by 𝐶
𝑛

rd(T ,X) the linear space of all functions
𝑓 : T → X that are 𝑛th differentiable on T and 𝑓

Δ
𝑛

is rd-continuous. We denote by 𝐵
𝑛

rd(T ,X) the subspace of
𝐶
𝑛

rd(T ,X) consisting of such function 𝑓 : T → X for which

sup
𝑡∈T

(

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

(𝑡)








) < +∞, (36)
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where𝑓Δ
𝑖

denotes the 𝑖th derivative of𝑓, 𝑖 = 1, 2, . . . , 𝑛,𝑓Δ
0

=

𝑓, and 𝑓
Δ
1

= 𝑓
Δ. In the space 𝐵𝑛rd(T ,X) we introduce the

norm





𝑓



𝑛
= sup

𝑡∈T

(

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

(𝑡)








) , for 𝑓 ∈ 𝐵
𝑛

rd (T ,X) . (37)

Then we have the following.

Proposition 41. 𝐵𝑛rd(T ,X) equipped with the norm defined
above is a Banach space.

Proof. It’s clear that 𝐵𝑛rd(T ,X) is a linear space and that (37)
is a norm on 𝐵𝑛rd(X). Now, let (𝑓𝑗)𝑗 be a Cauchy sequence in
𝐵
𝑛

rd(T ,X). Then for any 𝜖 > 0, there exists 𝑁 ∈ N such that,
for all 𝑗 ∈ N, 𝑗 > 𝑁, we have






𝑓
𝑗+𝑝

− 𝑓
𝑗





𝑛
= sup

𝑡∈T

(

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

𝑝+𝑗
(𝑡) − 𝑓

Δ
𝑖

𝑗
(𝑡)








) ≤ 𝜖

∀𝑝 ∈ N.

(38)

In other words, given 𝜖 > 0, there is𝑁 ∈ N such that, for all
𝑗 ∈ N, 𝑗 > 𝑁,

sup
𝑝∈N






𝑓
𝑗+𝑝

− 𝑓
𝑗





𝑛
= sup

𝑝∈N
𝑡∈T

(

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

𝑝+𝑗
(𝑡) − 𝑓

Δ
𝑖

𝑗
(𝑡)








) ≤ 𝜖. (39)

In particular, for all 𝑡 ∈ T , (𝑓Δ
𝑖

𝑗
(𝑡)), 𝑖 = 0, 1, . . . , 𝑛, are Cauchy

sequences inXwhich is a Banach space.Thus if we denote by
𝑓 the limit of 𝑓Δ

0

𝑗
(𝑡), we have that

𝑓
Δ
𝑖

𝑗
(𝑡) → 𝑓

Δ
𝑖

(𝑡) , 𝑖 = 0, 1, . . . , 𝑛. (40)

Since for 𝑖 = 0, 1, . . . , 𝑛,







𝑓
Δ
𝑖

𝑝+𝑗
(𝑡) − 𝑓

Δ
𝑖

𝑗
(𝑡)








≤ 𝜖, ∀𝑗, 𝑝 ∈ N, ∀𝑡 ∈ T , (41)

passing to the limit in these above 𝑛+1 relations as 𝑝 → +∞,
we obtain for 𝑖 = 0, 1, . . . , 𝑛,








𝑓
Δ
𝑖

𝑗
(𝑡) − 𝑓

Δ
𝑖

(𝑡)








≤ 𝜖, ∀𝑗 ∈ N, ∀𝑡 ∈ T . (42)

This means that, for all 𝑗 ∈ N,






𝑓
𝑗
− 𝑓





𝑛
≤ sup

𝑡∈T

(

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

𝑗
(𝑡) − 𝑓

Δ
𝑖

(𝑡)








) ≤ 𝜖 (43)

which on the one hand proves that 𝑓 ∈ 𝐵
𝑛

rd(T ,X) since for
any 𝑗 ∈ N,

𝑛

∑

𝑖=0








𝑓
Δ
𝑖

(𝑡)








≤






𝑓
𝑗
− 𝑓





𝑛
+






𝑓
𝑗





𝑛
, ∀𝑡 ∈ T , (44)

and on the other hand shows that

𝑓
𝑗
→ 𝑓 as 𝑗 → +∞. (45)

Definition 42. LetX be a (real or complex) Banach space and
let T be a symmetric time scale which is invariant under tran-
slations. Then a rd-continuous function 𝑓 : T × X → X is
called almost automorphic if 𝑓(𝑡, 𝑥) is almost automorphic
in 𝑡 ∈ T uniformly for each 𝑥 ∈ 𝐵, where 𝐵 is any bounded
subset ofX.

We denote by 𝐴𝐴(T × X,X) the space of all almost
automorphic functions on time scales 𝑓 : T ×X → X.

Definition 43. A function 𝑓 ∈ 𝐶
𝑛

rd(T ,X) is said to be 𝐶𝑛

rd-
almost automorphic (briefly 𝐶

𝑛

rd-a.a.), if 𝑓, 𝑓
Δ
𝑖

belong to
𝐴𝐴T (X) for all 𝑖 = 1, . . . , 𝑛.

Denote by 𝐴𝐴(𝑛)

T (X) the set ofC𝑛-a.a. functions.
Directly from the above definitions it follows that

𝐴𝐴
(𝑛+1)

T (X) ⊂ 𝐴𝐴
(𝑛)

T (X). Moreover, putting 𝑛 = 0, we have
𝐴𝐴

(0)

T (X) = 𝐴𝐴T (X).

Lemma 44. We have 𝐴𝐴(𝑛)

T (X) ⊂ 𝐵
𝑛

rd(T ,X).

Proof. It is straightforward from the definition of an almost
automorphic function on time scales (see Theorem 31).

Proposition 45. A linear combination of 𝐶𝑛

rd-a.a. functions is
a𝐶𝑛

rd-a.a. function. Moreover, letX be a Banach space over the
field K (K = R or C). Let 𝑓, 𝑔 ∈ 𝐴𝐴

(𝑛)

T (X), ] ∈ 𝐴𝐴
(𝑛)

T (K),
and 𝜆 ∈ K. Assume that ]Λ exists for all Λ ∈ 𝑆

(𝑛)

𝑘
and is almost

automorphic on time scale. Then the following functions are
also in 𝐴𝐴(𝑛)

T (X):

(i) 𝑓 + 𝑔,

(ii) 𝜆𝑓,

(iii) ]𝑓,

(iv) 𝑓
𝑎
(𝑡) := 𝑓(𝑡 + 𝑎), where 𝑎 ∈ Π is fixed.

Proof. For the proof of (i) and (ii), one proceeds as in [11].
To prove (iii), we use the Leibnitz formula on time scales,
the definition, and the properties of an almost automorphic
function; we get the result easily.

Now, let us prove (iv). For any 𝑎 ∈ Π, if we consider
the function V : T → R defined by V(𝑡) = 𝑎 + 𝑡, then we
have 𝑓

𝑎
(𝑡) = (𝑓 ∘ V)(𝑡), for all 𝑡 in T . It is clear that V is

strictly increasing, V(T) = T , and VΔ(𝑡) = 1, for all 𝑡 ∈ T .
Using Theorem 12, we obtain (𝑓

𝑎
)
Δ

(𝑡) = VΔ(𝑡) ⋅ (𝑓Δ ∘ V)(𝑡) =
𝑓
Δ

(V(𝑡)) = 𝑓
Δ

(𝑎 + 𝑡) = 𝑓
Δ

𝑎
(𝑡) for each 𝑡 ∈ T . Hence, for 𝑓Δ

being an almost automorphic function on time scale, we ded-
uce that (𝑓

𝑎
)
Δ

= 𝑓
Δ

𝑎
is almost also automorphic on time scale.

Similarly, we prove that (𝑓
𝑎
)
Δ
𝑖

is almost automorphic for 𝑖 =
1, 2, . . . , 𝑛. Thus, 𝑓

𝑎
∈ 𝐴𝐴

𝑛

T (X).

Theorem 46. If a sequence (𝑓
𝑝
)
𝑝∈N of 𝐶𝑛

rd-a.a. functions is
such that ‖𝑓

𝑝
− 𝑓‖

𝑛
→ 0 as 𝑘 → +∞, then 𝑓 is 𝐶𝑛

rd-a.a.
function.
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Proof. From the assumption, it is clear that 𝑓 ∈ 𝐵
𝑛

rd(T ,X).
Moreover, 𝑓Δ

𝑖

𝑝
→ 𝑓

Δ
𝑖

uniformly on T for each 𝑖 = 0, . . . , 𝑛.
ThusTheorem 36 allows us to say that𝑓 is a𝐶𝑛

rd-a.a. function.

Corollary 47. 𝐴𝐴(𝑛)

T (X) considered with norm (37) turns out
to be a Banach space.

Proof. In viewof Proposition 45 andLemma44,𝐴𝐴(𝑛)

T (X) is a
linear subspace of 𝐵𝑛rd(T ,X). Let (𝑓𝑝), 𝑓𝑝 ∈ 𝐴𝐴

(𝑛)

T (X), 𝑝 ∈ N,
be a Cauchy sequence. Then there exists 𝑓 ∈ 𝐵

𝑛

rd(T ,X) such
that lim

𝑘→∞
‖𝑓

𝑝
−𝑓‖

𝑛
= 0. ByTheorem 46, 𝑓 ∈ 𝐴𝐴

(𝑛)

T (X), so
it is a Banach space.

5. Differentiation and Integration

The first result in this section gives a sufficient condition
which guarantees that the derivative of a function 𝑓 ∈

𝐴𝐴
(𝑛)

T (X) is also a 𝐶𝑛

rd-a.a. function.

Theorem 48. Let T be a symmetric time scale which is
invariant under translations. Let alsoX be a Banach space and
𝑓 : T → X an almost automorphic function on T . Assume that
𝑓 isΔ-differentiable onT and𝑓Δ is uniformly continuous.Then
𝑓
Δ is also almost automorphic on time scales.

Proof. Assume that the points of T are right-dense. Then for
T being invariant under translations, we obtain T = R. Hence
𝑓
Δ

= 𝑓
 and since𝑓Δ is uniformly continuous, it follows from

Theorem 2.4.1 in [12] that 𝑓Δ is almost automorphic on time
scale.

Now, let us suppose that T has at least a right-scattered
point 𝑡

0
; then we have

𝑓
Δ

(𝑡
0
) =

𝑓 (𝜎 (𝑡
0
)) − 𝑓 (𝑡

0
)

𝜇 (𝑡
0
)

. (46)

Given a sequence (𝛼
𝑛
) ∈ Π, since 𝑓 is almost automorphic,

there is a subsequence (𝛼
𝑛
)
𝑛
such that

lim
𝑛→∞

𝑓
Δ

(𝑡
0
+ 𝛼

𝑛
) = lim

𝑛→∞

𝑓 (𝜎 (𝑡
0
+ 𝛼

𝑛
)) − 𝑓 (𝑡

0
+ 𝛼

𝑛
)

𝜇 (𝑡
0
+ 𝛼

𝑛
)

= lim
𝑛→∞

𝑓 (𝜎 (𝑡
0
) + 𝛼

𝑛
) − 𝑓 (𝑡

0
+ 𝛼

𝑛
)

𝜇 (𝑡
0
)

=

𝑓 (𝜎 (𝑡
0
)) − 𝑓 (𝑡

0
)

𝜇 (𝑡
0
)

= 𝑔 (𝑡
0
)

(47)

since Lemma 27 holds. On the other hand, we have

lim
𝑛→∞

𝑔 (𝑡
0
− 𝛼

𝑛
) = lim

𝑛→∞

𝑓 (𝜎 (𝑡
0
+ 𝛼

𝑛
)) − 𝑓 (𝑡

0
+ 𝛼

𝑛
)

𝜇 (𝑡
0
+ 𝛼

𝑛
)

= lim
𝑛→∞

𝑓 (𝜎 (𝑡
0
) + 𝛼

𝑛
) − 𝑓 (𝑡

0
+ 𝛼

𝑛
)

𝜇 (𝑡
0
)

=

𝑓 (𝜎 (𝑡
0
)) − 𝑓 (𝑡

0
)

𝜇 (𝑡
0
)

= 𝑓
Δ

(𝑡
0
) .

(48)

The proof is completed.

Theorem 49. If 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X) and 𝑓Δ
𝑛+1

is uniformly contin-
uous, then 𝑓Δ ∈ 𝐴𝐴(𝑛)

T (X).

Proof. In view of Theorem 48, we have 𝑓Δ
𝑛+1

∈ 𝐴𝐴T (X).
This means that 𝑓 is in 𝐴𝐴(𝑛+1)

T (X). Then it follows that 𝑓Δ ∈
𝐴𝐴

(𝑛)

T (X).

Similarly as in [12], we introduce some useful notations
in order to facilitate the proof.

Notation 1. Let T be a symmetric time scale which is invariant
under translations. If 𝑓 : T → X is a function and a sequence
𝛼 = (𝛼

𝑛
) ⊂ Π is such that

lim
𝑛→∞

𝑓 (𝑡 + 𝛼
𝑛
) = 𝑔 (𝑡) pointwise on T , (49)

we will write 𝑇
𝑠
𝑓 = 𝑔.

Remark 50 (see [12]). Consider the following.

(i) 𝑇
𝑠
is a linear operator.

Given a fixed sequence 𝛼 = (𝛼
𝑛
) ⊂ Π, the domain

of 𝑇
𝑠
is 𝐷(𝑇

𝑠
) = {𝑓 : T → X such that 𝑇

𝑠
𝑓 exists}.

𝐷(𝑇
𝑠
) is a linear set.

(ii) Let us write −𝑠 = (−𝛼
𝑛
) and suppose that 𝑓 ∈ 𝐷(𝑇

𝑠
)

and𝑇
𝑠
𝑓 ∈ 𝐷(𝑇

−𝑠
).The product operator𝐴

𝑠
= 𝑇

−𝑠
𝑇
𝑠
𝑓

is well defined. It is also a linear operator.
(iii) 𝐴

𝑠
maps bounded functions into bounded functions,

and for an almost authorphic function on time scale
𝑓, we get 𝐴

𝑠
𝑓 = 𝑓.

Now we are ready to enunciate and prove Bohl-Bohr’s
type theorem known from the literature for almost automor-
phic functions on time scale. The proof is inspired by the
proof of Theorem 2.4.4 in [12].

Theorem 51. Let T be a symmetric time scale containing zero
and invariant under translations. Let also 𝑓 ∈ 𝐴𝐴T (X). One
considers the function 𝐹 : T → X defined by 𝐹(𝑡) = ∫

𝑡

0

𝑓(𝑠)Δ𝑠.
Then 𝐹 ∈ 𝐴𝐴T (X) if and only if 𝑅𝐹 is relatively compact inX.

Proof. In view of Lemma 34, it suffices to prove that 𝐹 ∈

𝐴𝐴T (X) if 𝑅𝐹 is relatively compact inX.
Assume that 𝑅

𝐹
is relatively compact in X and let (𝑠

𝑛
) ⊂

Π. Then there exists a subsequence (𝑠
𝑛
) of (𝑠

𝑛
) such that

lim
𝑛→∞

𝑓 (𝑡 + 𝑠


𝑛
) = 𝑔 (𝑡) ,

lim
𝑛→∞

𝑔 (𝑡 − 𝑠


𝑛
) = 𝑓 (𝑡) ,

(50)
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pointwise on T , and

lim
𝑛→∞

𝐹 (𝑠


𝑛
) = 𝛼

1
, (51)

for some 𝛼
1
∈ X.

We get, for every 𝑡 ∈ T ,

𝐹 (𝑡 + 𝑠


𝑛
) = ∫

𝑡+𝑠


𝑛

0

𝑓 (𝑟) Δ𝑟

= ∫

𝑠


𝑛

0

𝑓 (𝑟) Δ𝑟 + ∫

𝑡+𝑠


𝑛

𝑠


𝑛

𝑓 (𝑟) Δ𝑟

= 𝐹 (𝑠


𝑛
) + ∫

𝑡+𝑠


𝑛

𝑠


𝑛

𝑓 (𝑟) Δ𝑟.

(52)

Making the change of variable 𝛿 = 𝑟 − 𝑠


𝑛
, we obtain

𝐹 (𝑡 + 𝑠


𝑛
) = 𝐹 (𝑠



𝑛
) + ∫

𝑡

0

𝑓 (𝛿 + 𝑠


𝑛
) Δ𝛿. (53)

If we apply the Lebesgue dominated theorem to this latter
identity, we get

lim
𝑛→∞

𝐹 (𝑡 + 𝑠


𝑛
) = 𝛼

1
+ ∫

𝑡

0

𝑔 (𝜎) Δ𝜎, (54)

for each 𝑡 ∈ T . Let us observe that the range of the function
𝐺(𝑡) = 𝛼

1
+ ∫

𝑡

0

𝑔(𝑟)Δ𝑟 is also relatively compact and

sup
𝑡∈T

‖(𝐺 (𝑡))‖ ≤ sup
𝑡∈T

‖𝐹 (𝑡)‖ (55)

so that we can extract a subsequence (𝑠
𝑛
) of (𝑠

𝑛
) such that

lim
𝑛→∞

𝐺 (−𝑠
𝑛
) = 𝛼

2
, (56)

for some 𝛼
2
∈ X. Now we can write

𝐺 (𝑡 − 𝑠
𝑛
) = 𝐺 (−𝑠

𝑛
) + ∫

𝑡

0

𝑔 (𝑟 − 𝑠
𝑛
) Δ𝑟 (57)

so that

lim
𝑛→∞

𝐺 (𝑡 − 𝑠
𝑛
) = 𝛼

2
+ ∫

𝑡

0

𝑓 (𝑟) Δ𝑟 = 𝛼
2
+ 𝐹 (𝑡) . (58)

Let us prove now that 𝛼
2
= 0. Using Notation 1 we get

𝐴
𝑠
𝐹 = 𝛼

2
+ 𝐹, (59)

where 𝑠 = (𝑠
𝑛
). Now it is easy to observe that 𝐹 and 𝛼

2
belong

to the domain of 𝐴
𝑠
; therefore 𝐴

𝑠
𝐹 is also in the domain of

𝐴
𝑠
and we deduce the equation

𝐴
2

𝑠
𝐹 = 𝐴

𝑠
𝛼
2
+ 𝐴

𝑠
𝐹 = 𝛼

2
+ 𝛼

2
+ 𝐹 = 2𝛼

2
+ 𝐹. (60)

We can continue indefinitely the process to get

𝐴
𝑛

𝑠
𝐹 = 𝑛𝛼

2
+ 𝐹, ∀𝑛 = 1, 2, . . . . (61)

But we have

sup
𝑡∈T





𝐴
𝑛

𝑠
𝐹 (𝑡)





≤ sup

𝑡∈T

‖𝐹 (𝑡)‖ (62)

and 𝐹(𝑡) is a bounded function.
This leads to contradiction if 𝛼

2
̸= 0. Hence, 𝛼

2
= 0,

and using Remark 50, we have 𝐴
𝑠
𝐹 = 𝐹, so 𝐹 is almost

automorphic. The proof is complete.

Theorem 52. If 𝑓 ∈ 𝐴𝐴T (X) and the range 𝑅
𝐹
is relatively

compact, then 𝐹 ∈ 𝐴𝐴
(1)

T (X).

Proof. If 𝑓 ∈ 𝐴𝐴T (X) and the range 𝑅𝐹 is relatively compact,
then in view of Theorem 51, 𝐹 ∈ 𝐴𝐴T (X). Since 𝐹(𝑡) =

∫

𝑡

0

𝑓(𝑠)Δ𝑠, 𝐹Δ(𝑡) = 𝑓(𝑡), for 𝑡 ∈ T . Thus 𝐹Δ ∈ 𝐴𝐴T (X) and,
consequently, 𝐹 ∈ 𝐴𝐴

(1)

T (X).

Theorem 52 is a special case of the following.

Theorem 53. If 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X) and the range 𝑅
𝐹
is relatively

compact then 𝐹 ∈ 𝐴𝐴
(𝑛+1)

T (X).

Proof. If𝑓 ∈ 𝐴𝐴
(𝑛)

T (X) and the range𝑅
𝐹
is relatively compact

then in view of Theorem 51, 𝐹 ∈ 𝐴𝐴T (X). Therefore, 𝐹Δ =

𝑓 ∈ 𝐴𝐴
(𝑛)

T (X). This means that 𝐹 ∈ 𝐴𝐴
(𝑛+1)

T (X).

Corollary 54. If 𝑓Δ ∈ 𝐴𝐴(𝑛)

T (X) and the range 𝑅
𝑓
is relatively

compact, then 𝑓 ∈ 𝐴𝐴
(𝑛+1)

T (X).

Proof. We know that𝑓(𝑡) = 𝑓(0)+∫

𝑡

0

𝑓
Δ

(𝑠)Δ𝑠, for each 𝑡 ∈ T .
In view of Theorem 53, we have 𝑓 ∈ 𝐴𝐴

(𝑛+1)

T (X).

6. Superposition Operators

In this section,X
1
andX

2
are two Banach spaces.

Proposition 55. Let 𝐴 : X
1
→ X

2
be a bounded linear ope-

rator and 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
1
). Then we have 𝐴𝑓 ∈ 𝐴𝐴

(𝑛)

T (X
2
).

Proof. Since𝐴 is a bounded linear operator, we have (𝐴𝑓)Δ
𝑛

=

𝐴𝑓
Δ
𝑛

. Therefore, observing the fact that 𝑓Δ
𝑖

∈ 𝐴𝐴T (X1
) for

each 𝑖 = 0, 1, . . . , 𝑛 because 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
1
), it follows from

Theorem 37 that 𝐴𝑓Δ
𝑖

∈ 𝐴𝐴T (X2
), for all 𝑖 = 0, 1, . . . , 𝑛.

Hence 𝐴𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
2
).

For every 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
1
), we define the function𝐺 : T →

X
2
as follows:

𝐺 (𝑡) = ∫

𝑡

0

𝐴𝑓 (𝑠) Δ𝑠, (63)

where 𝐴 : X
1
→ X

2
is a bounded linear operator. We have

the following.

Corollary 56. Let𝐴 : X
1
→ X

2
be a bounded linear operator

with a relatively compact range. Then X
2
-valued function 𝐺

defined above is in 𝐴𝐴(𝑛+1)

T (X
2
).
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Proof. According to Proposition 55, 𝐴𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
2
) for

every 𝑓 ∈ 𝐴𝐴
(𝑛)

T (X
1
). Since 𝐴 is a bounded linear operator,

the range 𝑅
𝐴

of the operator 𝐴 contains the range 𝑅
𝐺

of 𝐺. Hence 𝑅
𝐺
is relatively compact and it follows from

Theorem 53 that 𝐺 ∈ 𝐴𝐴
(𝑛+1)

T (X
2
).

Remark 57. In Corollary 56, if operator 𝐴 is compact (or of
the finite rank), the stated result holds.

Now we will consider the superposition of operator (the
autonomous case) acting on the space 𝐴𝐴(𝑛)

T (X). Using this
fact we will prove the following result with the Fréchet
derivative.

Theorem 58. If 𝜙 ∈ C1

(R,R) and𝑓 ∈ 𝐴𝐴
(1)

T (R), then 𝜙∘𝑓 ∈

𝐴𝐴
(1)

T (R).

Proof. First, we observe that the result holds if for 𝑛 = 0, in
view of Theorem 37, we have that 𝜙 ∘ 𝑓 ∈ 𝐴𝐴T (R) if 𝜙 ∈

C1

(R,R) and 𝑓 ∈ 𝐴𝐴T (R). So, it suffices to show that (𝜙 ∘
𝑓)

Δ

∈ 𝐴𝐴T (R) to complete the proof of the theorem.
ByTheorem 11, for each 𝑡 ∈ T , we have

(𝜙 ∘ 𝑓)
Δ

(𝑡) = [∫

1

0

𝜙


(𝑓 (𝑡) + ℎ𝜇 (𝑡) 𝑓
Δ

(𝑡)) 𝑑ℎ]𝑓
Δ

(𝑡) .

(64)

Since 𝑓 ∈ 𝐴𝐴
(1)

T (R) and 𝜇 ∈ 𝐴𝐴T (R+
) we have that, for

any ℎ ∈ [0, 1], the function 𝑡 → 𝑓(𝑡) + ℎ𝜇(𝑡)𝑓
Δ

(𝑡) belongs
to 𝐴𝐴T (R). Therefore for 𝜙 being continuous, Theorem 37
allows us to say that the function 𝑡 → 𝜙



(𝑓(𝑡) + ℎ𝜇(𝑡)𝑓
Δ

(𝑡))

is also in 𝐴𝐴T (R) for any ℎ ∈ [0, 1] and consequently the
function 𝑡 → ∫

1

0

𝜙


(𝑓(𝑡) + ℎ𝜇(𝑡)𝑓
Δ

(𝑡))𝑑ℎ is 𝐴𝐴T (R). It then
follows from Theorem 35 that (𝜙 ∘ 𝑓)

Δ

∈ 𝐴𝐴T (R) since
𝑓
Δ

∈ 𝐴𝐴T (R).

7. Applications to First-Order Dynamic
Equations on Time Scales

Definition 59 (see [5]). Let 𝐴(𝑡) be 𝑚 × 𝑚 rd-continuous
matrix-valued function on T . The linear system

𝑥
Δ

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ T (65)

is said to admit an exponential dichotomy on T if there exist
positive constants 𝐾, 𝛼, projection 𝑃, and the fundamental
solution matrix𝑋(𝑡) of (65) satisfying






𝑋(𝑡)𝑃𝑋

−1

(𝑠)





T
≤ 𝐾𝑒

⊖𝛼
(𝑡, 𝑠) , 𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,






𝑋(𝑡)(𝐼 − 𝑃)𝑋

−1

(𝑠)





T
≤ 𝐾𝑒

⊖𝛼
(𝑠, 𝑡) , 𝑠, 𝑡 ∈ T , 𝑠 ≥ 𝑡,

(66)

where | ⋅ |T is the matrix norm on T . This means that if 𝐴 =

(𝑎
𝑖𝑗
)
𝑚×𝑚

then we can take |𝐴|T = (∑
𝑚

𝑖=1
∑
𝑚

𝑗=1
|𝑎
𝑖𝑗
|
2

)
1/2.

Consider the following system:

𝑥
Δ

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ T , (67)

where 𝐴 is an 𝑚 × 𝑚 matrix-valued function which is
regressive on T and 𝑓 : T → R𝑚 is rd-continuous.

Theorem 60 (see [11]). Let T be a symmetric time scale which
is invariant under translation and let 𝐴 ∈ R(T ,R𝑚×𝑚

) be
almost automorphic and nonsingular on T and (𝐴−1

(𝑡))
𝑡∈T and

{(𝐼 + 𝜇(𝑡)𝐴(𝑡))
−1

}
𝑡∈T are bounded. Assume that linear system

(65) admits an exponential dichotomy and 𝑓 ∈ 𝐶rd(T ,R
𝑚

) is
an almost automorphic function on time scales. Then system
(67) has an almost automorphic solution as follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑋 (𝑡) 𝑃𝑋
−1

(𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠

− ∫

∞

𝑡

𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠,

(68)

where𝑋(𝑡) is the fundamental solution matrix of (65).

Lemma 61 (see [3]). Let 𝑐
𝑖
: T → (0, +∞) be an almost

automorphic function, −𝑐
𝑖
∈ R+, andmin

1≤𝑖≤𝑚
inf

𝑡∈T {𝑐𝑖(𝑡)} >

0. Then the linear system

𝑥
Δ

(𝑡) = diag (−𝑐
1
(𝑡) , −𝑐

2
(𝑡) , . . . , −𝑐

𝑚
(𝑡)) 𝑥 (𝑡) (69)

admits an exponential dichotomy on T .

In view of Lemma 61 andTheorem 60 we have the follow-
ing result.

Lemma 62. Let T be a symmetric time scale which is invariant
under translation. Let 𝐴(𝑡) = diag(−𝑐

1
(𝑡), −𝑐

2
(𝑡), . . . , −𝑐

𝑚
(𝑡))

be such that the functions 𝑐
𝑖
: T → (0, +∞) 𝑖 = 1, 2, . . . , 𝑚 are

almost automorphic, −𝑐
𝑖
∈ R+, andmin

1≤𝑖≤𝑚
inf

𝑡∈T {𝑐𝑖(𝑡)} > 0,
𝑖 = 1, 2, . . . , 𝑚. Assume also that 𝑓 ∈ 𝐶rd(T ,R

𝑚

) is an almost
automorphic function on time scales. Then system (67) has an
almost automorphic solution as follows:

𝑥
𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑐
𝑖
(𝑡, 𝜎 (𝑠)) 𝑓

𝑖
(𝑠) Δ𝑠, 𝑖 = 1, 2, . . . , 𝑚. (70)

Lemma 63. Let T be a symmetric time scale which is invariant
under translation. Let 𝐴(𝑡) = diag(−𝑐

1
(𝑡), −𝑐

2
(𝑡), . . . , −𝑐

𝑚
(𝑡))

be such that the functions 𝑐
𝑖
: T → (0, +∞) 𝑖 = 1, 2, . . . , 𝑚

are 𝐶1

rd-almost automorphic, −𝑐
𝑖
∈ R+, and min

1≤𝑖≤𝑚
inf

𝑡∈T

{𝑐
𝑖
(𝑡)} > 0, 𝑖 = 1, 2, . . . , 𝑚. Assume also that 𝑓 is a 𝐶1

rd-almost
automorphic function on time scales. Then system (67) has a
𝐶
1

rd-almost automorphic solution as follows:

𝑥
𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑐
𝑖
(𝑡, 𝜎 (𝑠)) 𝑓

𝑖
(𝑠) Δ𝑠, 𝑖 = 1, 2, . . . , 𝑚. (71)

Proof. By Lemma 62,

𝑥
𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑐
𝑖
(𝑡, 𝜎 (𝑠)) 𝑓

𝑖
(𝑠) Δ𝑠, 𝑖 = 1, 2, . . . , 𝑚, (72)

is a 𝐶rd-almost automorphic solution to system (67). Now,
since

𝑥
Δ

𝑖
(𝑡) = −𝑐

𝑖
(𝑡) ∫

𝑡

−∞

𝑒
−𝑐
𝑖
(𝑡, 𝜎 (𝑠)) 𝑓

𝑖
(𝑠) Δ𝑠

+ 𝑓
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(73)
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using on the one hand the fact that functions 𝑡 → ∫

𝑡

−∞

𝑒
−𝑐
𝑖

(𝑡, 𝜎(𝑠))𝑓
𝑖
(𝑠)Δ𝑠, 𝑡 → 𝑐

𝑖
(𝑡), and 𝑡 → 𝑓

𝑖
are 𝐶rd-almost

automorphic and on the other hand the fact thatTheorem 35
holds, we deduce that 𝑥Δ

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑚, are also 𝐶rd-

almost automorphic. The proof of Lemma 63 is then com-
plete.

In the following we will consider𝐴𝐴(1)

T (R)with the norm
‖ ⋅ ‖

1
obtained by taking 𝑛 = 1 in (37).

Set 𝐸 = {𝜓 = (𝜓
1
, 𝜓

2
, . . . , 𝜓

𝑚
)
𝑇

| 𝜓
𝑖
∈ 𝐴𝐴

(1)

T (R), 𝑖 =

1, 2, . . . , 𝑚}. Then with the norm ‖𝜓‖
𝐸
= max

1≤𝑖≤𝑚
‖𝜓‖

1
, 𝐸 is

a Banach space.

Definition 64. Let 𝑧∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡), . . . , 𝑥

∗

𝑚
(𝑡))

𝑇 be a
𝐶
1

rd-almost automorphic solution of (2) with initial value
𝜑
∗

(𝑠) = (𝜑
∗

1
(𝑡), 𝜑

∗

2
(𝑡), . . . , 𝜑

∗

𝑚
(𝑡))

𝑇. Assume that there exists
a positive constant 𝜆 with −𝜆 ∈ R+ such that for 𝑡

0
∈

[−𝜃, 0]T , there exists𝑀 > 1 such that for an arbitrary solution
𝑧(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇 of (2) with initial value𝜑(𝑡) =
(𝜑

1
(𝑡), 𝜑

2
(𝑡), . . . , 𝜑

𝑚
(𝑡))

𝑇, 𝑧 satisfies









𝑧(𝑡) − 𝑧

∗

(𝑡)








1
≤ 𝑀





𝜑 − 𝜑

∗


𝐸
𝑒
−𝜆
(𝑡, 𝑡

0
) ,

𝑡 ∈ [−𝜃, +∞)T , 𝑡 ≥ 𝑡
0
,

(74)

where









𝑧 (𝑡) − 𝑧

∗

(𝑡)








1

= max
1≤𝑖≤𝑚

[




𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)




+








(𝑥
𝑖
− 𝑥

∗

𝑖
)
Δ

(𝑡)








] ,





𝜑 − 𝜑

∗


𝐸

= max
1≤𝑖≤𝑚

sup
𝑡∈[−𝜃,0]T

(




𝜑
𝑖
(𝑡) − 𝜑

∗

𝑖
(𝑡)




+








(𝜑
𝑖
− 𝜑

∗

𝑖
)
Δ

(𝑡)








) .

(75)

Then, the solution 𝑧∗ is said to be exponentially stable.

In what follows, we will give sufficient condition for the
existence of 𝐶𝑛

rd-almost automorphic solutions of (2).
Let

𝐸 = {𝜙 (𝑡) = (𝜙
1
(𝑡) , 𝜙

2
(𝑡) , . . . , 𝜙

𝑚
(𝑡))

𝑇

| 𝜙
𝑖
∈ 𝐴𝐴

(1)

T (R) ,

𝑖 = 1, 2, . . . , 𝑚} .

(76)

Then it is clear that 𝐸 endowed with the norm ‖𝜙‖
𝐸

=

max
1≤𝑖≤𝑚

‖𝜙
𝑖
‖
1
, where ‖ ⋅ ‖

1
is obtained by taking 𝑛 = 1 in

(37), is a Banach space.
We make the following assumption.

(H1) Assume 𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝐼
𝑖
∈ 𝐴𝐴

(1)

T (R+

), 𝑡−𝜏
𝑖𝑗
∈ 𝐴𝐴

(1)

T (T),−𝑎
𝑖
∈

R+, 𝑖, 𝑗 = 1, 2, . . . , 𝑚, and min
1≤𝑖≤𝑚

inf
𝑡∈T {𝑎𝑖(𝑡)} > 0.

(H2) There exists a positive constant 𝑀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚,

such that





𝑓
𝑗
(𝑥)






≤ 𝑀

𝑗
, 𝑗 = 1, 2 . . . , 𝑚. (77)

(H3) 𝑓𝑗 ∈ 𝐴𝐴
(1)

T (R), 𝑗 = 1, 2, . . . , 𝑚, and there exists a
positive constant𝐻𝑓

𝑗
such that






𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)






≤ 𝐻

𝑓

𝑗
|𝑢 − V| ,

∀𝑢, V ∈ R, 𝑗 = 1, 2 . . . , 𝑚.

(78)

For convenience, for a 𝐶1

rd-almost automorphic function
𝑓 : T → R, we set 𝑓 = sup

𝑡∈T |𝑓(𝑡)| and by 𝑓 = inf
𝑡∈T |𝑓(𝑡)|.

Theorem 65. Assume that (𝐻
1
) and (𝐻

3
) hold. Assume also

that

max
1≤𝑖≤𝑚

[

[

1

𝑎
𝑖

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗
, (1 +

𝑎
𝑖

𝑎
𝑖

)

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗

]

]

< 1. (79)

Then, (2) has a unique 𝐶1

rd-almost automorphic solution in
𝐸
0
= {𝜙(𝑡) ∈ 𝐸 | ‖𝜙‖

𝐸
≤ 𝐿}, where 𝐿 is a positive constant

satisfying

𝐿 = max
1≤𝑖≤𝑚

(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
)(1 +

𝑎
𝑖
+ 1

𝑎
𝑖

) . (80)

Proof. For any 𝜑 ∈ 𝐸, we consider the following 𝐶1

rd-almost
automorphic system:

𝑥
Δ

𝑖
= −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑡, 𝜑

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+ 𝐼
𝑖
(𝑡) , 𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑚.

(81)

Since (𝐻
1
) holds, it follows from Lemma 61 that the system

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚, (82)

admits an exponential dichotomy on T . Thus by Lemma 63,
system (2) has a 𝐶1

rd-almost automorphic solution:

𝑥
𝜑

𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) + 𝐼

𝑖
(𝑠))Δ𝑠,

𝑖 = 1, 2, . . . , 𝑚.

(83)

Now,we prove that the followingmapping is a contraction
on 𝐸

0
:

Γ : 𝐸 → 𝐸

𝜑 = (𝜑
1
, 𝜑

2
, . . . , 𝜑

𝑚
)
𝑇

→ (Γ𝜑) (𝑡) = [(Γ𝜑)
1
(𝑡) , (Γ𝜑)

2
(𝑡) , . . . , (Γ𝜑)

𝑚
(𝑡) ]

𝑇

,

(84)
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where

(Γ𝜑)
𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) + 𝐼

𝑖
(𝑠))Δ𝑠,

𝑖 = 1, 2, . . . , 𝑚.

(85)

To this end we proceed in two steps.

Step 1.We prove that if 𝜑 ∈ 𝐸
0
then (Γ𝜑) ∈ 𝐸

0
.

Let 𝜑 ∈ 𝐸
0
; then using (𝐻

2
) and the fact that 𝑏

𝑖𝑗
, 𝐼
𝑖
∈

𝐴𝐴
(1)

T (R), we have





(Γ𝜑)

𝑖
(𝑡)




=













∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)

×𝑓
𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) + 𝐼

𝑖
(𝑠))Δ𝑠













≤ ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)

×






𝑓
𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))






+




𝐼
𝑖
(𝑠)




)Δ𝑠

≤ (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
)∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠

≤

1

𝑎
𝑖

(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
) ,








(Γ𝜑)
Δ

𝑖
(𝑡)








≤













− 𝑎
𝑖
(𝑡) ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

×(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)

×𝑓
𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))Δ𝑠













+










−𝑎
𝑖
(𝑡) ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) 𝐼

𝑖
(𝑠) Δ𝑠










+













𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝜑

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡)













≤

𝑎
𝑖

𝑎
𝑖

(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
) + (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
)

= (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
)(1 +

𝑎
𝑖

𝑎
𝑖

) .

(86)

Consequently,





(Γ𝜑)




𝐸

= max
1≤𝑖≤𝑚

sup
𝑡∈T

[




(Γ𝜑)

𝑖
(𝑡)




+








(Γ𝜑)
Δ

𝑖
(𝑡)








]

≤ max
1≤𝑖≤𝑚

(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑀

𝑗
+ 𝐼

𝑖
)(1 +

𝑎
𝑖
+ 1

𝑎
𝑖

) = 𝐿.

(87)

Step 2.We prove that Γ is a contraction on 𝐸
0
.

Let 𝜑 and 𝜙 be in 𝐸
0
. Then using (𝐻

3
) and the fact that

𝑏
𝑖𝑗
∈ 𝐴𝐴

(1)

T (R), we obtain





(Γ𝜑)

𝑖
(𝑡) − (Γ𝜙)

𝑖
(𝑡)





=













∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

×
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) (𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

− 𝑓
𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

]

]

Δ𝑠














≤ ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

×
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)






𝑓
𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑓
𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))







]

]

Δ𝑠

≤ ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)𝐻

𝑓

𝑗






𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

−𝜙
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))







]

]

Δ𝑠
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≤
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗





𝜑 − 𝜙




𝐸
0

]

]

∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠

≤

1

𝑎
𝑖

[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗

]

]





𝜑 − 𝜙




𝐸
0

,








(Γ𝜑)
Δ

𝑖
(𝑡) − (Γ𝜙)

Δ

𝑖
(𝑡)








≤













− 𝑎
𝑖
(𝑡) ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

×
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) (𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑓
𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

]

]

Δ𝑠














+













𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) (𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑓
𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))













≤

𝑎
𝑖

𝑎
𝑖

[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗





𝜑 − 𝜙




𝐸
0

]

]

+
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗





𝜑 − 𝜙




𝐸
0

]

]

=
[

[

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)𝐻

𝑓

𝑗

]

]

[1 +

𝑎
𝑖

𝑎
𝑖

]




𝜑 − 𝜙




𝐸
0

.

(88)

Hence,





(Γ𝜑) − (Γ𝜙)




𝐸

= max
1≤𝑖≤𝑚

sup
𝑡∈T

[




(Γ𝜑)

𝑖
(𝑡) − (Γ𝜙)

𝑖
(𝑡)





+








(Γ𝜑)
Δ

𝑖
(𝑡) − (Γ𝜙)

Δ

𝑖
(𝑡)








]

≤ max
1≤𝑖≤𝑚

[

[

1

𝑎
𝑖

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗
, (1 +

𝑎
𝑖

𝑎
𝑖

)

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗

]

]





𝜑 − 𝜙




𝐸
0

.

(89)

Because max
1≤𝑖≤𝑚

[(1/𝑎
𝑖
) ∑

𝑚

𝑗=1
𝑏
𝑖𝑗
𝐻

𝑓

𝑗
, (1 + (𝑎

𝑖
/𝑎

𝑖
)) ∑

𝑚

𝑗=1
𝑏
𝑖𝑗

𝐻
𝑓

𝑗
] < 1, Γ is a contraction on 𝐸

0
. We then deduce by the

fixed point theorem of Banach that Γ has a unique solution

in 𝐸
0
. Consequently system (2) has a unique 𝐶

1

rd-almost
automorphic solution in 𝐸

0
:

𝑥
𝜑

𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑎
𝑖
(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝜑

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) + 𝐼

𝑖
(𝑠))Δ𝑠,

𝑖 = 1, 2, . . . , 𝑚.

(90)

Theorem 66. Assume that (𝐻
1
) and (𝐻

3
) hold. Assume also

that

(𝐻
4
) : 𝜃

𝑖
=

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝐻

𝑓

𝑗
≥

𝑎
𝑖
− 𝑎

𝑖
𝑎
𝑖

𝑎
𝑖
+ 𝑎

𝑖

, 𝑖 = 1, 2, . . . , 𝑚. (91)

Then, the 𝐶1

rd-almost automorphic solution of (2) is globally
exponentially stable.

Proof. According toTheorem 65, system (2) has a𝐶1

rd-almost
automorphic solution 𝑥∗(𝑡) = (𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡), . . . , 𝑥

∗

𝑚
(𝑡))

𝑇 with
initial value

𝜑
∗

(𝑠) = (𝜑
∗

1
(𝑡) , 𝜑

∗

2
(𝑡) , . . . , 𝜑

∗

𝑚
(𝑡))

𝑇

. (92)

Assume that 𝑧(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇 is an arbi-
trary solution of (2) with initial value 𝜑(𝑡) = (𝜑

1
(𝑡),

𝜑
2
(𝑡), . . . , 𝜑

𝑚
(𝑡))

𝑇. Let 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑚.

Then it follows from (2) that

𝑦
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑦

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−𝑓
𝑗
(𝑥

∗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))] ,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑚,

𝑦
𝑖
(𝑠) = 𝜑 (𝑠) − 𝜑

∗

(𝑠) , 𝑠 ∈ [−𝜃, 0]T , 𝑖 = 1, 2, . . . , 𝑚.

(93)

Multiplying both sides of the first equation in (93) by 𝑒
−𝑎
𝑖

(𝑡, 𝜎(𝑠)) and integrating on [𝑡
0
, 𝑡]T , where 𝑡0 ∈ [−𝜃, 0]T , we

obtain, for 𝑖 = 1, 2, . . . , 𝑚,

∫

𝑡

𝑡
0

𝑦
Δ

𝑖
(𝑠) 𝑒

−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠

= ∫

𝑡

𝑡
0

−𝑎
𝑖
(𝑠) 𝑦

𝑖
(𝑠) 𝑒

−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠

+

𝑚

∑

𝑗=1

∫

𝑡

𝑡
0

𝑏
𝑖𝑗
(𝑠) [𝑓

𝑗
(𝑥

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑓
𝑗
(𝑥

∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))] 𝑒

−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠.

(94)
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This means that, for 𝑖 = 1, 2, . . . , 𝑚,

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡
0
) 𝑒

−𝑎
𝑖

(𝑡, 𝑡
0
)

+

𝑚

∑

𝑗=1

∫

𝑡

𝑡
0

𝑏
𝑖𝑗
(𝑠) [𝑓

𝑗
(𝑥

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑓
𝑗
(𝑥

∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))] 𝑒

−𝑎
𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠.

(95)

Then choose 𝜆 < min
1≤𝑖≤𝑚

𝑎
𝑖
and

𝑀 > max
1≤𝑖≤𝑚

{

{

{

𝑎
𝑖
𝑎
𝑖

𝑎
𝑖
− (𝑎

𝑖
+ 𝑎

𝑖
) 𝜃

𝑖

,

𝑎
𝑖

𝑎
𝑖
− 𝜃

𝑖

}

}

}

. (96)

One proves by contradiction as in [8] that









𝑦 (𝑡)









1
≤ 𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)




𝜑 − 𝜑

∗


𝐸
, ∀𝑡 ∈ (𝑡

0
, +∞)

T
.

(97)

This means that the 𝐶1

rd-almost automorphic solution 𝑥
∗ of

(2) is globally exponentially stable.
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