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We revisit the notion on almost automorphic functions on time scales given by Lizama and Mesquita (2013). Then we present the
notion of almost automorphic functions of order n. Finally, we apply this notion to study the existence and uniqueness and the
global stability of almost automorphic solution of first order to a dynamical equation with finite time varying delay.

1. Introduction

The concept of time scales was initiated in 1988 by Hilger in
his outstanding Ph.D. thesis [1]. The purpose of such theory
was to unify both continuous and discrete analysis. Conse-
quently, using time scales in studying dynamic systems prev-
ents from proving results separately for differential equations
and difference equations. Since then, several papers were
devoted to dynamical systems on time scales [2-8]. We refer
also readers to the excellent book by Bohner and Peterson
[9] and their edited book [10] which contains high quality
contributions to the theory.

It was natural to study almost periodic time scales as well
as almost periodic differential equations on almost periodic
time scales [3]. Our initial motivation for the current study
comes from [4] where the authors studied the existence and
exponential stability of almost periodic solutions of a neutral-
type BAM neural network with delays on time scales, using
exponential dichotomy of linear dynamical systems.

Recently Lizama and Mesquita introduced the notion of
almost automorphic functions on time scales in their work
[11]. The purpose of this paper is twofold. First we would like
to revisit Lizama and Mesquita’s paper in light of the following
remarks.

Let T be a time scale. It is said to be invariant under
translations if

IM={reR:t¥1eT,VteT}+{0}. 1)

We prove in Lemma 25that [I c T 0 € T.

However, we observe that the inclusion may be strict.
Indeed, let us consider the time scale P,;, = (Jio_. [k(a +
b),k(a + b) + a], where 0 < a < b; it is obviously invariant
under translations, and it contains 0 and a but not —a. Then
a ¢ II. This also proves that the invariant under translations
time scales P, ;, is not symmetric.

For this reason, several results in [11] hold only if the time
scale is symmetric.

Secondly we would like to study the existence and stability
of almost automorphic solutions of the following linear dyna-
mic system with finite delay:

X; () = —a; () x; () + )b (1) f; (x; (£ =7 (1)) + I (1),
j=1

teT T, i=12,...,m,

x;(s)=¢(s), se€[-0,0y, i=12,...,m,

2)



where T is an appropriate time scale, m > 2 is the number
of neurons in the network, x;(t) denote the activation of the
ith neuron at time ¢, and g; represents the rate with which
the ith neurons will rest their potential to the resting state in
isolation when they are disconnected from the network and
the external inputs at time t. The m x m matrix B(t) = (bij(t))
represents the connection strengths between neurons at time
t; b,-j is an element of feedback templates at time ¢; fj is the
activation function. 7;; is the transmission delay at time ¢ and
satisfies t — 7;; € T; I;(f) denote the bias of the ith neuron at
timet, 0 = max; hsup,.y7;(t) and [a,bly = {t [ t € [a,b]NT}.
We organized our paper as follows. In Section 2, we recall
some definitions and recent results on time scales. In Sec-
tion 3, we present properties of almost automorphic functions
on symmetric time scales along with a composition theorem.
In Section 4, we introduce and present elementary properties
of almost automorphic functions on time scales of order n
and study differentiation and integration of such functions
in Section 5 and superposition of operators on the space of
such functions in Section 6. Finally in Section 7, we study the
existence, uniqueness, and global stability of system (2).

2. Preliminaries

In this section we recall some definitions and recent results
on time scales.

Definition 1. A time scale is an arbitrary nonempty closed
subset of real numbers.

Definition 2. Let T be a time scale. The forward and backward
jump operators g,p : T — T and the graininess 4 : T —
[0, +00) are defined, respectively, by

o(t)=inf{seT: s>t}, p(t)=sup{seT:s<t},
ut)y=o() -t
(3)
In Definition 5, we put inf @ = sup T and sup @ = inf T.

Definition 3. Let T be time scales.

(i) A point t € T is called right-dense if t < sup T and
o(t) =t.

(ii) A point t € T is called left-dense if ¢ > inf T and
p(t) =t.

Definition 4 (see [9]). A function f : T — R is called reg-
ulated provided its right-sided limits exist (finite) at all right-
dense points in T and its left-sided limits exist (finite) at all
left-dense points in T.

Definition 5 (see [9]). A function f : T — R is called rd-
continuous provided it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points in
T.
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We will denote the set of rd-continuous function f: T —
R by C,q = C,4(T, R). From now on, we define the set T* by

1% = [T\ [p(supT),supT]
T if supT = oo.

if supT <00

(4)

Definition 6 (see [9]). Let f: T — Rbeafunctionandt € T*.
We define f A(#) to be the number (provided it exists) with the
property that, given any € > 0, there exists a neighborhood U
of t such that

|fle®)-f)- 2O o) -3l <elo() -s|
Vs e U.

(5)

We call f A(#) the delta (or Hilger) derivative of f att.
Moreover, we say that f is delta (or Hilger) differentiable

(or in short differentiable) on T* provided f A(#) exists for all
t € T, The function f A T* 5 Ris called the (delta) deriva-
tive of f on T*.

Next we recall some easy and useful relationships con-
cerning the delta derivative.

Theorem 7 (see [9]). Assume f: T — R is a function and let
t € T¥. Then one has the following.
(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is
differentiable at t with

fle®)-f®)

A p—
S 0= ul(t)

(6)
(iii) If t is right-dense, then f is differentiable at t if and only

if the limit
AGESO) )

S—>t t—s

exists as a finite number. In this case

0= f() f(s) ®)
(iv) If f is differentiable at t, then
fle@)=f@®+u® 2@, 9)

Theorem 8 (see [9]). Assume f,g: T — R are differentiable
att € TX. Then

(i) the sum f + g : T — R is differentiable at t with
(F+9)®

(ii) for any constant o, af : T — R is differentiable at t
with

= A ) +g" 1); (10)

(af)* () = af™ (1) (11)
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(iii) the product fg: T — R is differentiable at t with
(f9)' )= F* g0+ f (@0 (1) g" ()
=f0g" O+ Hgo®).

(12)

We define higher order derivatives of a function on time
scale in the usual way.

Definition 9 (see [9]). For a function f: T — R one will talk
about the second derivative f** provided f* is differentiable
on T = (TH* with derivative 2% = (f4* : T - R.
Similarly one defines higher order derivatives f ML S
R. Finally, for t € T, one denotes o*(t) := o(o(t)) and
p*(t) := p(p(t)), and o”'(t) and p"(t) are defined accordingly.
For convenience one also puts po(t) = oo(t) =t and Tko =T.

Theorem 10 (see [9] (Leibniz formula)). Let S](c") be the set
consisting of all possible strings of length n, containing exactly

k times o and n — k times A. If f* exists for all A € S,(c"), then

(fg)* = Z < D fA> e (13)

k=0 \ Aes!
holds for alln € N.
The following results on chain rule can be found in [9].

Theorem 11 (chain rule). Let f: R — R be continuously dif-
ferentiable and suppose g : T — R is delta differentiable on
T*. Then f o g : T — R is delta differentiable and the formula

1
(fog) ()= “0 f(g®+hu)g® (t))dh] x g (t)
(14)

holds for all t € T*,

Theorem 12 (chain rule). Assume thatv : T — R is strictly
increasing and T = (T) is a time scale. Let w : T — X, where

X is a Banach space. If v*(t) and wz(t) exist fort € T*, then

A

(Wo )2 =" o, (15)

where ™ denote the ® in T*.
Definition 13. Ifa € T, sup T = +00, and f is a C,4 function
on [a, +00), then the improper integral of f is defined by
[e3) b
J f(t)At = lim J f(t)At (16)
a b—+o0 J,
provided this limit exists. In this case, the improper integral

is said to converge.

Lemma 14 (see [4]). Leta € T, b € T, and assume that
f:Tx T — R is continuous at (t,t), where t € T* with

t > a. Assume also that fA(t, -) is rd-continuous on [a, o(t)].
Suppose that, for each € > 0, there exists a neighborhood U of
T € [a,0(t)] such that

If o)1)= f(s1) - AT o) —5]| <elo(t)—s|

Vs e U,
(17)

where f* denotes the derivative of f with respect to the first
variable. Then

t
MﬂzjfmﬂAr

a

implies
t (18)

0 :J PBndr+ fo®).0).

a

We now present some definitions and results useful for
the study of some dynamical systems.

Definition 15 (see [9]). One says thata function p: T — R is
regressive provided

1+u(t)p(t) #0, VteT (19)

The set of all regressive functions will be denoted by % =
R(T,R).

Definition 16. One defines the set Z" of all positively regres-
sive elements of & by

R = R (T,R)
(20)
={peR:1+ut)pt)>0VteT}.

Definition 17 (see [9]). If p € R, then one defines the

generalized exponential function by

e, (t,s) = exp (J‘EM (p (1)) Ar) fort,s €T, (21)

where the cylinder transformation &, : C,, — Z,, is given by

§,((2) =  log (1 +2h), (22)

where log is the principal logarithm function. For h = 0, we
define §(z) = z forall z € C.

The generalized exponential functions have the following
properties.

Lemma 18 (see [9]). Assume that p,q: T — R are two regre-
ssive functions. Then

(i) ey(t,s) = 1 and ep(t, t)=1;
(ii) ep(t, s) = 1/eP(s, t) = eep(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r);

(i) [ep(t,9)]° = p(t)e,(t,s).



Lemma 19 (see [9]). Assume that p € R*. Then

(1) ey(t,s) > 0, forallt,s € T;

(ii) if p(t) < q(t) forallt > s, t,s € T, then ep(t, s) <
e, (t, s)forallt >s.

Lemma 20 (see [9]). If p € R and a,b,c € T, then
(1) [EP(C, )]A = —P[EP(C’ ')]0’
(ii) I: p(t)e,(c, o)At = e (c,a) —e,(c, b) forallt > s.

Proposition 21 (see [9]). Let p : T — R be rd-continuous
and regressive, t, € T, and y, € R. Then the unique solution of
the initial value problem

YVO=pOy®O+ht), y(t)=y 23

is given by
t

y(t) = €p (t, to) + Jt [ (t,o (s)) h(s)As. (24)

We now present some definitions about matrix-valued
functions on T.

Definition 22. Let A be an m x m matrix-valued function on
T. One says that A is rd-continuous on T if each entry of A is
rd-continuous on T. One denotes by €,4(T, R™") the class
of all rd-continuous m x m matrix-valued functions on T.

We say that A is delta differentiable on T if each entry of
A is delta differentiable on T. And in this case, we have

Ald®) =AW +u®) A1), (25)

Definition 23. An m x m matrix-valued function A is called
regressive if

I+u(t)A(t) is invertible Vt € T*. (26)

The class of all such regressive rd-continuous functions is
denoted by

R (T,R™™). (27)
3. Almost Automorphic Functions of Order #
on Time Scales
From now on, (X, | - ||) is a (real or complex) Banach space.

Definition 24 (see [11]). A time scale T is called invariant
under translations if

M={reR:t¥1teT,VteT}+{0}. (28)

Lemma 25. Let T be an invariant under translations time
scale. Then one has

(OcTe0eT;
() IINT=00¢T.
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Proof

(i) In view of the definition of IT, if 0 € T, then forall T €
IT we have 7 € T. Thus, IT ¢ T. Conversely, assume
thatIT ¢ T. Then, forany 7 € I, wehave 0 = 7—7 € T.
Thus 0 € T.

(ii) It is clear that if IIN T = @ then 0 ¢ T. Now assume
that0 ¢ T.If r € IINT, then we have t —7 € T for any
t € T; particularly, fort = 7, wehaver -7 =0 € T.
This contradicts the fact that 0 ¢ T. ThusIINT = 0.

O

We have the following properties of the points in T, for-
ward jump operator, and the graininess function when the
time scales are invariant under translations.

Lemma 26 (see [2]). Let T be an invariant under translation
time scale. If t is right-dense (resp., right-scattered), then for
every h € I1, t + h is right-dense (resp., right-scattered).

Lemma 27 (see [2]). Let T be an invariant under translations
time scale and h € T1. Then

(i) o(t + h) = o(t) + hand o(t — h) = o(t) — h, for every
teT;

(ii) u(t + h) = pu(t) = u(t — h), foreveryt € T.

Remark 28. As we pointed out in Section 1 time scales invari-
ant under translations are not automatically symmetric. Since
almost automorphic functions are defined on symmetric
domains, some definitions and results in [11] on these func-
tions will be given with additional assumption on the time
scale. More precisely we will assume that the time scale is
symmetric and invariant under translations.

Definition 29. Let X be Banach space and let T be a sym-
metric time scale which is invariant under translations. Then
the rd-continuous function f : T — X is called almost
automorphic on T if for every sequence (s,,) on I, there exists
a subsequence (t,,) C (s,,) such that

f®=limf(t+,) (29)
is well defined for each t € T and
lim f (t-1,) = f (©) (30)

foreacht e T.

We denote by AA+(X) the space of all almost automor-
phic functions on time scales f: T — X.

Remark 30. In view of Lemma 27, if T is a symmetric time
scale which is invariant under translations then the graininess
function y : T — R, is an almost automorphic function.

We have the following properties.

Theorem 31. Let T be a symmetric time scale which is invari-
ant under translation. Assume that the rd-continuous functions
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f,g: T — Xare almost automorphic on T. Then the following
assertions hold:

(i) f + g is almost automorphic on time scales;
(ii) Af is almost automorphic on T for every scalar A;

(iii) for each I € 11, the function f; : T — X defined by
fi(t) = f(t +1) is almost automorphic on time scales;

(iv) f: T — X defined by f(t) = f(-t) is almost automo-
rphic on time scales;

(v) sup,crll f (Bl < o0; that is, f is a bounded function;
(vi) sup,erl F (I = sup,erll ()], where

f®=limf(t+z,), lmf(-7,)=F®. @)

Proof. See [11]. O

We have the following remark on the property given in
[11].

Remark 32. Notice that

(i) in order to give a sense to (iii), we consider [ as an
element of IT instead of [ € T as in [11];

(ii) we need the symmetry of the time scale T to obtain
that —t € Tift € T, thatis, to give a sense to the defin-

ition of f in (iv).

Remark 33. The space AA(X) equipped with the norm
sup,7ll f ()| is a Banach space (see [11] pp. 2280).

Lemma 34. If f € AA+(X), the range Ry = {f@t):t eT}is
relatively compact in X.

Proof. Leta € T be fixed and let (x]),, be a sequence in Ry.

Then, for any n € N, there is t:l € T such that x:l = f(t:l).
By invariance under translations of T, for each n € N, we can
find o, € ITsuch that ¢, = a + «. Hence, for all n € N, we
have x| = f(a + o). Since f is almost automorphic on time
scale, there exists a subsequence («,,), of («),, such that

Jim f (a+a,) = f (@). (32)

Thus, the subsequence (x, = f(a + «,)) converges to f(a).
Therefore, R is relatively compact in X, O

Theorem 35 (see [11]). Let T be a symmetric time scale which
is invariant under translations. Let alsou : T — C and f :
T — X be two almost automorphic functions on time scales.
Then the function uf : T — X defined by (uf)(t) = u(t) f(t)
is almost automorphic on time scales.

Theorem 36 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let (f,) be a sequence of
almost automorphic functions such that lim,_,, f,(t) = f(t)
converges uniformly for each t € T. Then, f is an almost
automorphic function.

Theorem 37 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let X and Y be Banach
spaces. Suppose f: T — X is an almost automorphic function
on time scales and ¢ : X — Y is a continuous function; then
the composite function ¢ o f : T — Y is almost automorphic
on time scales.

Definition 38 (see [11]). Let X be a (real or complex) Banach
space and let T be a symmetric time scale which is invariant
under translations. Then a rd-continuous function f : T x
X — Xis called almost automorphicon t € T for each x € X
if for every sequence (s,) on II, there exists a subsequence
(t,) € (s,) such that

ftx) = lim f (¢t +7,,%) (33)
is well defined for each t € T, x € X and
45%7 (t-7,,x)=f(t,x)

foreacht € Tand x € X.

(34)

Theorem 39 (see [11]). Let T be a symmetric time scale which
is invariant under translations and let f,g : T x X — X be
almost automorphic functions on time scale in t for each x in
X. Then the following assertions hold:

(i) f + g is almost automorphic on time scale in t for each
x in X;
(ii) Af is almost automorphic function on time scale in t for
each x in X, where A is an arbitrary scalar;
(iii) sup,qll f(t, x)ll = M, < oo, for each x € X;

(iv) suptdrII?(t, x)| = N, < oo, for each x € X, where? is
the function in Definition 38.

Theorem 40. Let T be a symmetric time scale which is invari-
ant under translations and let f : T x X — X be almost
automorphic functions on time scale in t for each x in X and
satisfy Lipschitz condition in x uniformly in t; that is,

If &)= f &) < Lix-5, (35)

forall x, y € X. Assume that ¢ : T — X almost automorphic
on time scale. Then the functionU : T — X defined by U(t) =
f(t, ¢(t)) is almost automorphic on time scale.

We can now introduce the notion of almost automorphic
functions of order n on time scales.

4. Almost Automorphic Functions of Order n
on Time Scales

We denote by C/4(T,X) the linear space of all functions

f + T — X that are nth differentiable on T and fAn
is rd-continuous. We denote by Bl(T, X) the subspace of
C4(T, X) consisting of such function f: T — X for which

ap (% o) < oo

teT \ j=0

(36)



i 0
where f* denotes the ith derivative of f,i = 1,2,...,n, f* =

f>and fAl = f". In the space B",(T,X) we introduce the
norm

71, = sup (Z |7 (t>||> . for feBLTX).  (37)
tel \i=0

Then we have the following.

Proposition 41. B,(T,X) equipped with the norm defined
above is a Banach space.

Proof. It’s clear that BJ(T, X) is a linear space and that (37)
is a norm on Bl (X). Now, let (fj)j be a Cauchy sequence in

By4(T, X). Then for any € > 0, there exists N € N such that,
forall j € N, j > N, we have

5500 = £, = sup ( ZO IRSIORS /S (f>||> se

Vp eN.

(38)

In other words, given € > 0, there is N € N such that, for all
jeEN,j>N,

sl 1, =sup (S0 17 0] ) << 6
peN i=0

= sup
" peN
teT

In particular, forall t € T, (fin(t)), i=0,1,...,n, are Cauchy
sequences in X which is a Banach space. Thus if we denote by
f the limit of f ].Ao(t), we have that

Ao — Mo, i=01..n (40)
Since fori =0,1,...,n,
lros0-,®|<e VipeN veeT @)

passing to the limit in these above n+ 1 relations as p — +00,
we obtain fori =0,1,...,n,

||ffi &) - £~ (t)" <e, VjeN, VteT.  (42)

This means that, for all j € N,

|51, = sup (ZO 77 o-r* <t>||) ce Wy

which on the one hand proves that f € Bj4(T, X) since for
any j € N,

Y@ <=+l veeT @a
i=0
and on the other hand shows that
fj — f as j — +oo. (45)
O
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Definition 42. Let X be a (real or complex) Banach space and
let T be a symmetric time scale which is invariant under tran-
slations. Then a rd-continuous function f : T x X — Xis
called almost automorphic if f(¢, x) is almost automorphic
int € T uniformly for each x € B, where B is any bounded
subset of X.

We denote by AA(T x X, X) the space of all almost
automorphic functions on time scales f: T x X — X.

Definition 43. A function f € C,y(T,X) is said to be Cly-

almost automorphic (briefly Cj-a.a.), if f, fAi belong to
AA¢(X) foralli=1,...,n.

Denote by AA({’)(X) the set of €"-a.a. functions.
Directly from the above definitions it follows that

AA({‘”)(X) C AA({‘)(X). Moreover, putting n = 0, we have
AAD(X) = AAL(X).

Lemma 44. We have AA"™ (X) ¢ B"(T, X).

Proof. It is straightforward from the definition of an almost
automorphic function on time scales (see Theorem 31). [

Proposition 45. A linear combination of Cy-a.a. functions is
a Cy-a.a. function. Moreover, let X be a Banach space over the
fild K (K = R or C). Let f,g € AAP(X), v ¢ AAP(K),
and A € K. Assume that v* exists for all A € S,((") and is almost
automorphic on time scale. Then the following functions are
also in AA({')(X):

W f+g
(i) Af,
(i) £,
(iv) f,(t) == f(t +a), where a € T is fixed.

Proof. For the proof of (i) and (ii), one proceeds as in [11].
To prove (iii), we use the Leibnitz formula on time scales,
the definition, and the properties of an almost automorphic
function; we get the result easily.

Now, let us prove (iv). For any a € II, if we consider
the function v : T — R defined by v(t) = a + ¢, then we
have f,(t) = (f o v)(t), for all t in T. It is clear that v is
strictly increasing, v(T) = T, and VA() = 1, forallt € T.
Using Theorem 12, we obtain ( £,)*(t) = v*(t) - (f* o v)(t) =
fA(v(t)) = fA(a +1) = faA(t) for each t € T. Hence, for fA
being an almost automorphic function on time scale, we ded-
uce that (f,)* = £ is almost also automorphic on time scale.

Similarly, we prove that ( fa)Al is almost automorphic for i =
1,2,...,n. Thus, f, € AAT(X). O

Theorem 46. If a sequence (f,),en of Ciy-a.a. functions is
such that || f, - fll, — 0ask — +oo, then f is Cry-a.a.
function.
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Proof. From the assumption, it is clear that f € Bly(T, X).

Moreover, fﬁl — fA’ uniformly on T for eachi = 0,...,n.
Thus Theorem 36 allows us to say that f isa C-a.a. function.
O

Corollary 47. AAS?)(X) considered with norm (37) turns out
to be a Banach space.

Proof. Inview of Proposition 45 and Lemma 44, AA({') (X)isa
linear subspace of By (T, X). Let (fp) fp € AA({‘)(X), peN,
be a Cauchy sequence. Then there exists f € Byy(T, X) such

that limy_, [l f, = fIl, = 0. By Theorem 46, f € AAY(X), s0
it is a Banach space. O

5. Differentiation and Integration

The first result in this section gives a sufficient condition
which guarantees that the derivative of a function f €

AAS?)(X) is also a Cy-a.a. function.

Theorem 48. Let T be a symmetric time scale which is
invariant under translations. Let also X be a Banach space and
f: T — Xan almost automorphic function on T. Assume that

f is A-differentiable on T and f* is uniformly continuous. Then
f2 is also almost automorphic on time scales.

Proof. Assume that the points of T are right-dense. Then for
T being invariant under translations, we obtain T = R. Hence
% = f"andsince f* is uniformly continuous, it follows from
Theorem 2.4.1in [12] that f 2 is almost automorphic on time
scale.

Now, let us suppose that T has at least a right-scattered
point t,; then we have

f(o(to)) = f (to)
u(to) .

Given a sequence («,) € TI, since f is almost automorphic,
there is a subsequence («,,),, such that

f (U (tO + an)) - f (tO + an)
I (tO + ‘Xn)
f (0 (tO) + an) - f (tO + (xn)
u(t) (47)
_ F(o(t) - f (to)
u(to)
= g(t))
since Lemma 27 holds. On the other hand, we have
flo(to +an)) = f (b + )
U (tO + (Xn)

L Flelra)-Flra)
u(t)

12 () = (46)

. A T
S 7 (b + o0,) = Jim,

= lim
n—00

Jlim g (t, — e,) = lim

n—o0

7
o)~ £ (1)
u(to)
=f : (to)-
(48)
The proof is completed. O

Theorem 49. If f € AA({’)(X) and fNHl is uniformly contin-
uous, then fA € AA({‘)(X).

Proof. In view of Theorem 48, we have fAM € AAL(X).
This means that f is in AAU™(X). Then it follows that f* €
AAP(X). O

Similarly as in [12], we introduce some useful notations
in order to facilitate the proof.

Notation 1. Let T be a symmetric time scale which is invariant
under translations. If f: T — X s a function and a sequence
a = («,) C ITis such that

lim f (t+a,)=g() pointwise on T, (49)

we will write T f = g.
Remark 50 (see [12]). Consider the following.

(i) T, is a linear operator.
Given a fixed sequence & = («,) ¢ II, the domain
of T, is D(T,) = {f : T — X such that T, f exists}.
D(T,) is a linear set.

(ii) Let us write —s = (—«,,) and suppose that f € D(T,)

and T, f € D(T_;). The product operator A, = T_ T f
is well defined. It is also a linear operator.

(iii) A maps bounded functions into bounded functions,
and for an almost authorphic function on time scale

f.wegetA f = f.

Now we are ready to enunciate and prove Bohl-Bohr’s
type theorem known from the literature for almost automor-
phic functions on time scale. The proof is inspired by the
proof of Theorem 2.4.4 in [12].

Theorem 51. Let T be a symmetric time scale containing zero
and invariant under translations. Let also f € AA(X). One
considers the function F : T — X defined by F(t) = '[; f(s)As.
Then F € AA+(X) if and only if Ry, is relatively compact in X.

Proof. In view of Lemma 34, it suffices to prove that F €
AA(X) if R, is relatively compact in X.

Assume that Ry is relatively compact in X and let (s:l') C
I1. Then there exists a subsequence (s;) of (s;') such that

r}irgof(t+s;) =g(t),
(50)
limg(t-s,)=f ),



pointwise on T, and

lim F (s,) = o, (51)

n—00

for some o € X.
We get, for every t € T,

F(ees)= |

0

!
t+s,

f(r)Ar

_ L Fr) Ar+ jm" FOA (52)

!
Sn

=F (s;) + Jiﬂn f(r)Ar.

Making the change of variable § = r — s, we obtain
t
Fevs)=F(s)+ | f(6+s)08. ()
0
If we apply the Lebesgue dominated theorem to this latter
identity, we get
t

lim F (t + s;) =a, + J g (o) Ao, (54)
n—00 0

for each t € T. Let us observe that the range of the function
G(t) =oq + Iot g(r)Ar is also relatively compact and

sup (G () < sup IF (1) (55)
teT teT

so that we can extract a subsequence (s,,) of (5:1) such that

lim G (-s,) = a,, (56)

n—o00
for some «, € X. Now we can write

t

G(t—s,)=G(-s,)+ L gr—s)or  (57)

so that
t
limG(t—sn)=oc2+Jf(r)Ar=042+F(t). (58)
n—oo 0

Let us prove now that o, = 0. Using Notation 1 we get
ASF:(X2+F; (59)

where s = (s,,). Now it is easy to observe that F and «, belong
to the domain of A ; therefore A F is also in the domain of
A and we deduce the equation

AF=Ao, + AF=a,+0,+F=2a+F (60)
We can continue indefinitely the process to get

AF =noa, +F, VYn=1,2,.... (61)
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But we have

sup |A%F ()| < sup |IF (1)l (62)
teT teT

and F(t) is a bounded function.

This leads to contradiction if o, # 0. Hence, o, = 0,
and using Remark 50, we have A;F = F, so F is almost
automorphic. The proof is complete. O

Theorem 52. If f € AA(X) and the range Ry is relatively
compact, then F € AA%)(X).

Proof. It f € AA;(X) and the range Ry is relatively compact,
then in view of Theorem 51, F ¢ AA{(X). Since F(t) =

[ F(5)As, FA(t) = f(t), for t € T. Thus F* € AA4(X) and,
consequently, F € AA%)(X). O

Theorem 52 is a special case of the following.

Theorem 53. If f ¢ AA({')(X) and the range Ry, is relatively
compact then F € AA({‘”)(X).

Proof. If f € AA%')(X) and the range Ry is relatively compact
then in view of Theorem 51, F € AA(X). Therefore, F* =
fe AA(F)(X). This means that F € AA(F“)(X). O

Corollary 54. If f* ¢ AA%?’)(X) and the range R is relatively
compact, then f € AATD(X),

Proof. We know that f(¢) = f(O)+J0t fA(s)As, foreacht € T.
In view of Theorem 53, we have f € AA({’“)(X). O

6. Superposition Operators

In this section, X, and X, are two Banach spaces.

Proposition 55. Let A : X; — X, be a bounded linear ope-
rator and f € AA({’)(XI). Then we have Af € AA({‘)(XZ).

Proof. Since Aisabounded linear operator, we have (Af A =
Af A" Therefore, observing the fact that f Mg AA(X,) for
eachi = 0,1,...,n because f € AA({‘)(XI), it follows from
Theorem 37 that AfAi € AA(X,), foralli = 0,1,...,n.
Hence Af € AAD(X,). O

Forevery f ¢ AA({’)(XI), we define the functionG : T —
X, as follows:

G(t) = L Af (s) As, (63)

where A : X; — X, is a bounded linear operator. We have
the following.

Corollary 56. Let A : X; — X, be a bounded linear operator
with a relatively compact range. Then X,-valued function G

defined above is in AA({‘“)(XZ).
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Proof. According to Proposition 55, Af € AA(#)(XZ) for

every f € AA({’)(XI). Since A is a bounded linear operator,
the range R, of the operator A contains the range Rg
of G. Hence R is relatively compact and it follows from

Theorem 53 that G € AA({'H)(XZ). O

Remark 57 In Corollary 56, if operator A is compact (or of
the finite rank), the stated result holds.

Now we will consider the superposition of operator (the

autonomous case) acting on the space AA({I)(X). Using this
fact we will prove the following result with the Fréchet
derivative.

Theorem 58. If$ € €' (R,R) and f € AAP(R), then ¢o f €
AADR).

Proof. First, we observe that the result holds if for n = 0, in
view of Theorem 37, we have that ¢ o f € AA(R)if¢ €
&' (R,R) and f e AA4(R). So, it suffices to show that (¢ o

)% € AAL(R) to complete the proof of the theorem.
By Theorem 11, for each t € T, we have

@o N @ =[[ ¢ (F 0+ s 0)an] o).
(64

Since f € AA%)(IR{) and y € AA;(R,) we have that, for
any h € [0,1], the function t — f(t) + hy(t)fA(t) belongs
to AA¢(R). Therefore for ¢’ being continuous, Theorem 37
allows us to say that the function t (p'(f(t) + hy(t)fA(t))
is also in AA+(R) for any h € [0, 1] and consequently the
function ¢ jol @' (f(t) + hu(t) f2(t))dh is AA7(R). It then
follows from Theorem 35 that (¢ o f 2 e AA+(R) since
2 e AAL(R). O

7. Applications to First-Order Dynamic
Equations on Time Scales

Definition 59 (see [5]). Let A(t) be m x mrd-continuous
matrix-valued function on T. The linear system

LH=At)x@®), teT (65)

is said to admit an exponential dichotomy on T if there exist
positive constants K, «, projection P, and the fundamental
solution matrix X(t) of (65) satisfying

|X(t)PX*1(s)|T < Keg, (t,5), steT, t=s,
(66)
|X(t)(I - P)Xfl(s)lT < Keg, (s,t), steT, s>t

where | - |} is the matrix norm on T. This means that if A =

2\1/2
(@) mxm then we can take |Aly = 08 ZTZl la;;1%) 2,

Consider the following system:

L =AW x@)+ f (1), teT, (67)

where A is an m x m matrix-valued function which is
regressiveon T and f: T — R™ is rd-continuous.

Theorem 60 (see [11]). Let T be a symmetric time scale which
is invariant under translation and let A € R(T,R"™™) be
almost automorphic and nonsingular on T and (At )¢t and
{a+ pt(t)A(t))_l}tﬂ are bounded. Assume that linear system
(65) admits an exponential dichotomy and f € C4(T,R™) is
an almost automorphic function on time scales. Then system
(67) has an almost automorphic solution as follows:

X(t) = Jt X (0 PX (0 (5)) f () As
- (68)

-["xoa-pxtee roas
where X (t) is the fundamental solution matrix of (65).

Lemma 61 (see [3]). Let¢; : T — (0,+00) be an almost
automorphic function, —¢; € R*, and min,_;_,,inf, . {c; ()} >
0. Then the linear system

x* (1) = diag (—¢; (1), —¢ () 5., —¢,, (1)) x (£)  (69)

admits an exponential dichotomy on T.

In view of Lemma 61 and Theorem 60 we have the follow-
ing result.

Lemma 62. Let T be a symmetric time scale which is invariant
under translation. Let A(t) = diag(—¢,(t), —(t),...,—c, (1))
be such that the functions¢; : T — (0,+00) i =1,2,...,mare
almost automorphic, —¢; € R*, and min, _;_,,inf,cr{c;(£)} > 0,
i=1,2,...,m. Assume also that € C4(T,R™) is an almost
automorphic function on time scales. Then system (67) has an
almost automorphic solution as follows:

x; (t) = f e (£0() fi(s)As, i=12,....,m. (70)

Lemma 63. Let T be a symmetric time scale which is invariant
under translation. Let A(t) = diag(—¢,(t), —¢,(t), ..., —¢, (1))
be such that the functions¢, : T — (0,400)i = 1,2,...,m
are Cly-almost automorphic, —c; € R*, and min,_,_,,inf,cy
{¢®)}>0,i=1,2,...,m. Assume also that f is a Crld—almost
automorphic function on time scales. Then system (67) has a
C-almost automorphic solution as follows:

x; (¢) = [ e (£0() fi(s)As, i=12,....,m. (71)

Proof. By Lemma 62,

x; () = J_t e (t,o(s) fi(s)As, i=12,....,m, (72)

is a C,4-almost automorphic solution to system (67). Now,
since
t
X (1) = —¢ (t) J e_. (t,0(s)) f; (s)As
-0 (73)

+ fi (t),

i=1,2,...,m,
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using on the one hand the fact that functions ¢t I

(t,o(s)) fi(s)As, t — ¢(t), and t +— f; are Cy- almost
automorphic and on the other hand the fact that Theorem 35
holds, we deduce that xiA(t), i = 1,2,...,m, are also C,4-
almost automorphic. The proof of Lemma 63 is then com-
plete. O

In the following we will consider AA(T%) (R) with the norm
| - IIl; obtained by taking n = 1 in (37).

Set E = {y = (W s ¥,) | 4 € AA(%)([R{), i=
1,2,...,m}. Then with the norm |y = max,_;,.llvl,, E is
a Banach space.

Definition 64. Let z"(¢) = (xf(t),x;(t),...,x;(t))T be a
Cl-almost automorphic solution of (2) with initial value

" (s) = (o7 (1), @5 (t),... ,¢:1(t))T. Assume that there exists
a positive constant A with —A € %" such that for ¢, €
[-0, 0]y, there exists M > 1 such that for an arbitrary solution

z(t) = (x1(8), x,(t), ..., xm(t))T of (2) with initial value ¢(t) =
(@1(8) @y (8), ... (pm(t))T, z satisfies
Iz =z" @, < Mo - ¢"[[ge-r (t:5).

t>t,

(74)
€ [-0, +00)¢,

where
ll=® -2z O,
= max [|x; (0 =] (0] +|(x; - )" 0]

leo =9l

= max Sup
1<1<mt€[ 6,0]¢

* s\ A
(lo: ) = 9 @) +|(g: = 9)" ®)])-
(75)
Then, the solution z* is said to be exponentially stable.

In what follows, we will give sufficient condition for the
existence of Cl;-almost automorphic solutions of (2).
Let
= {60 = (¢ (1,8, (). 0, ) | ¢ € ALY ®),
i=1,2,...,m}.
(76)

Then it is clear that E endowed with the norm ¢y =
max, ;. ll¢;ll,, where || - ||; is obtained by taking n = 1 in
(37), is a Banach space.

We make the following assumption.

(H;) Assumea,, b, I, € AA%)([RJr), t-7; € AA(%)(T]'), -a; €

l]’ l
R*,i,j=1,2,...,m,and min,;_,inf, . {a;(#)} > 0.
(H,) There exists a positive constant M;, j = 1,2,...,m,
such that

Ifi@| <M, j=12..,m (77)
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(Hj) fj € AA(%)([R),]' = 1,2,...,m, and there exists a

positive constant H Jf such that

|fj(u)_fj(1/)| sH{lu—vl,

Yu,v € R,

(78)
j=L2...,m

For convenience, for a C,-almost automorphic function
Jf:T— R, weset f =sup,¢|f(t)l and by f = inf, | f (D).

Theorem 65. Assume that (H,) and (H;) hold. Assume also
that

(79)

[ > by, ( —) 2hH] | <

Then, (2) has a unique Cy-almost automorphic solution in
E, = {¢(t) € E | |¢lg < L}, where L is a positive constant

satisfying
1
) . (80)

L= max(ZbM +I>( 4 *
1<i<m ai

Proof. For any ¢ € E, we consider the following C!,-almost
automorphic system:

X =—a,(t)x, () + Y b; (1) f; (tg; (t -7, ()))
1 (81)

+I(t), teT,i=12,...,m

Since (H,) holds, it follows from Lemma 61 that the system
i=1,2,...,m, (82)

X (t) = —a; (t) x; (t),

admits an exponential dichotomy on T. Thus by Lemma 63,
system (2) has a Cid—almost automorphic solution:

xf(t) = [ e, (t,0(s))

X <Zb,] (s) fj ((pj (s - T (s))) + 1 (s)> As,
=1

i=1,2,...,m
(83)

Now, we prove that the following mapping is a contraction
on E:

I':E— E
0= (91,90 s )
— (T9) (1) = [(Tg), (). (Tp), (®),....(Tp),, ()]

(84)
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where
(1) = | et

X <Zbij ) fi (@i (s—1,9)) + I, (s)> As
j=1

To this end we proceed in two steps.

Step 1. We prove that if ¢ € E; then (T'p) € E,.
Let ¢ € E,; then using (H,) and the fact that b, I; €

ij> Li
AA%)(R), we have

), 0] = || e o)

X (Zbij (s)
=1

xfi (‘Pj (5 - T (5))) +1; (5)> As

< Jt e, (t,o(s))
<Zb (s)
x| (@5 (s = 7)) + L. (S)|> As
m__ t
< (Z 1M +I_1> J e_g, (t,0(s)) As

( bJMJ+I>,
j=1

—a; (t) j_ e_q (1,0(5))

[COROIE
(Zb (s)
<f; (9; (s~ (S)))> As

+ |—a; (t) Jt e, (t,0(s)) I; (s)As

1
+ 1Y b ) fi (9 (t =7, ®)) + L (1)
j=1
g <Zb,,MJ + I> <Zb,]MJ +T, >
(5)()
B (86)
Consequently,
|l = maxsup[|(Tg), )] + |(To); @)
(87)

a; +1
S{222(1<Zb1]MJ+I>< ai >=L

Step 2. We prove that I' is a contraction on E,,.
Let ¢ and ¢ be in E;. Then using (H;) and the fact that
b € AA%)(IR), we obtain

|(T), (1) — (T¢), (1)]

J_too e (t,0(s))

’ [,Zbij ©) (i (9 (s = 7))

- Jj (¢J (5 T (5))))] As

<[ entow

. [zbﬁ O (o1 (55, 9)

~f(9; (s -7 (5)))@ As
t
SJ_ ey (£ (5) Zb &) H |o; (s -7, (9)

~¢;(s- 7 <s>)|] As
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<

Yot lo - ¢, ] LO e (6,0 (5)) Bs

j=1

§

<

ZleHijl "(P - (/5”50 >

1
&
|re); () - (T¢); (®)

<|-a (1) J:)O

e, (t,0(s))

[\/]§

i (5) (fJ ((PJ( T (S)))

1

£ (9 (s -7y (5))))] As

(f; (9 (s - 7;9))

(e, <s>>>>\

< Z Y by, o - ¢>||E0] + [Zb,]H]f lo - ¢||E0]
2t j=1
- {ZE»@ H/ [1 ;i] lo =l
i=1 %
(88)
Hence,
|(Te) - )]
= maxsup [|(Tg), () - (9); )
+|1)! - (rg); )]
=5 [al ]ZlbuH;f ( —> Y oH] | o= 9l -
(89)

Because max,;.,,[(1/a;) Z

H]J.c ] < 1, T is a contraction on E,. We then deduce by the
fixed point theorem of Banach that T has a unique solution

f — m 7=
leH] (1 + (a,-/@))zjzl bij
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in E,. Consequently system (2) has a unique CJ;-almost
automorphic solution in E:

-

x <Zb,»j ) fi (@i (s—7,(9)) + I, (s)> As,
j=1

i=1,2,...,m
(90)

e (10 (5))

O

Theorem 66. Assume that (H,) and (H;) hold. Assume also
that

aaﬁ

> i=1,2,...,m.
a;, +a; ©D

Then, the Cly-almost automorphic solution of (2) is globally
exponentially stable.

Proof. According to Theorem 65, system (2) has a Cl;-almost
automorphic solution x*(¢) = (x; (t), x5 (t),..., x:n(t))T with
initial value

9" (5) = (9 (1), 95 (1)l (D). (92)

Assume that z(t) = (x,(t), xz(t),...,xm(t))T is an arbi-
trary solution of (2) with initial value @(t) = (¢(t),

(), o). Let yi(t) = x,() — x7(t), i = 1,2,...,m
Then it follows from (2) that

yi () = =a; (1) y; (0) + Y by O [ f; (%, (£ -7, ()
=
i (% (t -7 )]
teT, i=12,...,m,
V()= ()—¢"(s), se€[-0,0]y,i=12,...,m

(93)
Multiplying both sides of the first equation in (93) by e_,

(t,0(s)) and integrating on [f,, t]}, where t, € [-0,0], we
obtain, fori =1,2,...,m,

Jt yi(s) e, (t:0(s)) As
to

- J =a;(3) i (s) e, (£,0()) As

3

) SISt
5y 0))]e

-
Il

£ (% (s o (60 () As.

(94)
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This means that, fori = 1,2,...,m,

y; (£) = y; (t) e_g, (t:10)
+) J b () [ £ (% (s - 7 9))
j=17t

~fi(x (s =1 9))] e (o () Bs.

(95)

Then choose A < min, ., and
a; 4
M > — , —— . 96
= ai_(ai+a_i)6i a; = ; o
One proves by contradiction as in [8] that
Ol < Meoy (.t o9l ¥t € (1 r00),

(97)
This means that the C.;-almost automorphic solution x* of
(2) is globally exponentially stable. O
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