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We study the exponential stabilizability for a class of switched nonlinear systems with mixed time-varying delays. By using a new
technique developed for positive systems, we design the average dwell time switching under which the switched nonlinear system
is exponentially stable for any bounded delays. Finally, numerical examples are worked out to illustrate the main theoretical result.

1. Introduction

A switched system which consists of a series of dynamical
subsystems and a switching signal is a type of hybrid dynam-
ical systems. Switched systems can be used to model many
phenomena which cannot be described by purely continuous
or purely discrete processes. Due to its broad applications
in traffic control, chemical processing, switching power con-
verters, and network control, the theory of switched systems
has historically a position of great importance in systems
theory and has been studied extensively in recent years [1–
5].

Up to now, the stability of switched systems has attracted
many researchers’ attention. For stability issues, two main
problems have been investigated in the literature. One is
to find conditions that guarantee asymptotic stability of the
switched system under arbitrary switching. For this case, the
common Lyapunov function is required for all subsystems
[6, 7]. The other is to identify those switching signals for
which the switched system is asymptotically stable, that is,
stability of switched systems under constrained switching.
For this case, themultiple-Lyapunov functions are a powerful
and effective tool, and average dwell time (ADT) approaches
have been used to investigate the stability and stabilization
problems in [8].

Recently, positive switched system receives much atten-
tion. In the theory of positive switched systems, the stability

problem is investigated extensively by many researchers [9–
13], especially for the stability under arbitrary switching. It
is well known that a common linear copositive Lyapunov
function (CLCLF) is usually applied to the asymptotic sta-
bility of positive switched systems under arbitrary switching.
Recently, necessary and sufficient conditions for the existence
of CLCLFs were established in [13, 14]. For the case when the
positive switched system does not share a CLCLF, a multiple
linear copositive Lyapunov functional method was used in
[15]. Some other methods to stability of switched nonlinear
systems were proposed in [16–21].

In this paper, we study the exponential stabilizability
for a class of switched nonlinear systems with mixed time-
varying delays. Due to the the existence of both discrete and
distributed time-varying delays and the assumption that the
system is not necessarily positive, a new technique developed
for positive systems is employed to the exponential stability
under ADT switching for a class of switched nonlinear
systems with mixed time-varying delays.

Notation. Throughout this paper, ⟨𝑚⟩ is the set of integers
{1, 2, . . . , 𝑚} for any positive integer 𝑚. Say a real vector 𝑥 ≻

0 (≺ 0) if all entries of 𝑥 are positive (negative). The norm of
the vector 𝑥 ∈ 𝑅

𝑛 is defined to be ‖𝑥‖ = max
𝑖=1,2,...,𝑛

{|𝑥
𝑖
|}.

Say a square matrix is Metzler if its off-diagonal entries are
nonnegative. Say a matrix is nonnegative if all its entries are
nonnegative.
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2. Problem Statements and Preliminaries

Consider the following switched nonlinear systems with
mixed time-varying delays:

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑓 (𝑥 (𝑡)) + 𝐵
𝜎(𝑡)

𝑓 (𝑥 (𝑡 − 𝑑
1

(𝑡)))

+ 𝐶
𝜎(𝑡)

∫
0

−𝑑
2
(𝑡)

𝑓 (𝑥 (𝑡 + 𝑠)) 𝑑𝑠, 𝑡 ≥ 0,
(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛; 𝑑
1
(𝑡) and 𝑑

2
(𝑡)

are piecewise continuous time-delays satisfying 0 < 𝑑
1
(𝑡) ≤

𝜏
1
, 0 < 𝑑

2
(𝑡) ≤ 𝜏

2
, and 𝜏

1
> 0 and 𝜏

2
> 0 are constants; 𝜎 is a

piecewise constant function of time, called a switching signal,
that takes its values in the finite set ⟨𝑚⟩ = {1, . . . , 𝑚}; 𝐴

𝑝
=

[𝑎
(𝑝)

𝑖𝑗
], 𝐵
𝑝

= [𝑏
(𝑝)

𝑖𝑗
], 𝐶
𝑝

= [𝑐
(𝑝)

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛, 𝑝 ∈ ⟨𝑚⟩, are constant

matrices; 𝑓(𝑥) = [𝑥
𝛾
1

1
, . . . , 𝑥

𝛾
𝑛

𝑛
]
𝑇 with 0 < 𝛾

𝑖
= 𝑜𝑑𝑑/𝑜𝑑𝑑 ≤ 1

for 𝑖 ∈ ⟨𝑛⟩.
For the particular case when 𝛾

𝑖
= 1 and 𝐶

𝑝
≡ 0, system

(1) reduces to the following switched linear delay system:

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝑑
1

(𝑡)) , 𝑡 ≥ 0. (2)

Under the assumption that 𝐴
𝑝
is Metzler and 𝐵

𝑝
is nonneg-

ative for 𝑝 ∈ ⟨𝑚⟩, it was proved in [11] that system (2) is
asymptotically stable under arbitrary switching if there exists
a common vector 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇

≻ 0 such that

[𝐴
𝑝

+ 𝐵
𝑝
] 𝜉 ≺ 0, 𝑝 ∈ ⟨𝑚⟩. (3)

If we do not assume that 𝐴
𝑝
is Metzler and 𝐵

𝑝
and 𝐶

𝑝
are

nonnegative for 𝑝 ∈ ⟨𝑚⟩, set 𝐴
𝑝

= [𝑎
(𝑝)

𝑖𝑗
] with 𝑎

(𝑝)

𝑖𝑖
= 𝑎
(𝑝)

𝑖𝑖

and 𝑎
(𝑝)

𝑖𝑗
= |𝑎
(𝑝)

𝑖𝑗
| for 𝑖 ̸= 𝑗, 𝐵

𝑝
= [𝑏
(𝑝)

𝑖𝑗
] with 𝑏

(𝑝)

𝑖𝑗
= |𝑏
(𝑝)

𝑖𝑗
|, and

𝐶
𝑝

= [𝑐
(𝑝)

𝑖𝑗
]with 𝑐

(𝑝)

𝑖𝑗
= |𝑐
(𝑝)

𝑖𝑗
|. It was proved in [22] that system

(2) is asymptotically stable under arbitrary switching if there
exists a common vector 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇

≻ 0 such that

[𝐴
𝑝

+ 𝐵
𝑝
] 𝜉 ≺ 0, 𝑝 ∈ ⟨𝑚⟩. (4)

However, in many cases, condition (3) or (4) may not
hold. It may be natural to assume that there exist a set of
vectors 𝜉

(𝑝)

= [𝜉
(𝑝)

1
, 𝜉
(𝑝)

2
, . . . , 𝜉

(𝑝)

𝑛
]
𝑇

≻ 0 such that

[𝐴
𝑝

+ 𝐵
𝑝
] 𝜉
(𝑝)

≺ 0, 𝑝 ∈ ⟨𝑚⟩. (5)

In this paper, we will study the exponential stability of system
(1) under the milder condition of form (5).

Let 𝐶([−𝜏, 0], 𝑅
𝑛

) be the Banach space of all continuous
functions on [−𝜏, 0] with values in 𝑅

𝑛 normed by the
maximum norm ‖𝜙‖

𝜏
= max

𝜃∈[−𝜏,0]
‖𝜙(𝜃)‖, where 𝜙 =

[𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
]
𝑇 and 𝜏 = max{𝜏

1
, 𝜏
2
}.

For a switching signal 𝜎(𝑡) and any 𝑡
2

> 𝑡
1

≥ 0, let
𝑁
𝜎
(𝑡
1
, 𝑡
2
) denote the number of discontinuities of 𝜎(𝑡) in the

open interval (𝑡
1
, 𝑡
2
). We say that 𝜎(𝑡) has an ADT 𝜏

𝑎
> 0 if

𝜏
𝑎
satisfies

𝑁
𝜎

(𝑡
1
, 𝑡
2
) ≤

𝑡
2

− 𝑡
1

𝜏
𝑎

. (6)

Throughout this paper, system (1) is said to be expo-
nentially stabilizable via ADT switching, if for any initial
function 𝜙 ∈ 𝐶([−𝜏, 0], 𝑅

𝑛

) there exist positive constants
𝐾 > 0, 𝛽 > 0, and 𝜏

𝑎
> 0 (which are usually relative to the

given initial function 𝜙) such that the corresponding solution
𝑥(𝑡) of system (1) under any switching with ADT 𝜏

𝑎
satisfies

‖𝑥(𝑡)‖ ≤ 𝐾𝑒
−𝛽𝑡 for 𝑡 ≥ 0.

3. Main Results

In the sequel, we assume that there exist vectors 𝜉
(𝑝)

≻ 0, 𝑝 ∈

𝑆, such that

[𝐴
𝑝

+ 𝐵
𝑝

+ 𝜏
2
𝐶
𝑝
] 𝜉
(𝑝)

≺ 0, 𝑝 ∈ ⟨𝑚⟩. (7)

Then, we have the following global exponential stability cri-
terion for system (1).

Theorem 1. System (1) is exponentially stabilizable via ADT
switching if there exist vectors 𝜉

(𝑝)

≻ 0, 𝑝 ∈ 𝑆, such that (7)
holds.

Proof. For a given switching sequence 0 = 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ <

𝑡
𝑘

< 𝑡
𝑘+1

< ⋅ ⋅ ⋅ , let 𝜎(𝑡) = 𝑖
𝑘

∈ 𝑆 for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

); that is,
the 𝑖
𝑘
th subsystem is active on [𝑡

𝑘
, 𝑡
𝑘+1

). For any given 𝜙 ∈

𝐶([−𝜏, 0], 𝑅
𝑛

), we choose an appropriate constant 1 ≥ 𝜌 > 0

such that 𝜌
1/𝛾
𝑖‖𝜙‖
𝜏

≤ 1 for 𝑖 ∈ ⟨𝑛⟩. Set 𝑦
𝑖
(𝑡) = 𝜌

1/𝛾
𝑖𝑥(𝑡) for

𝑖 ∈ ⟨𝑛⟩. Then, we have

̇𝑦
𝑖
(𝑡) = 𝜌

(1/𝛾
𝑖
)−1

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑦
𝛾
𝑗

𝑗
(𝑡) + 𝑏

𝑖𝑗
𝑦
𝛾
𝑗

𝑗
(𝑡 − 𝑑

1
(𝑡))

+ ∫
0

−𝑑
2
(𝑡)

𝑐
𝑖𝑗
𝑦
𝛾
𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠] , 𝑖 ∈ ⟨𝑛⟩.

(8)

Denote 𝜂 = min
𝑖∈⟨𝑛⟩

min
𝑝∈⟨𝑚⟩

{𝜉
(𝑝)

𝑖
}. Noting that

lim
𝜆→0

+

𝑒
𝜆𝜏
1 = 1, lim

𝜆→0
+

𝑒
𝜆𝜏
2 − 1

𝜆
= 𝜏
2
, (9)

we can get from (7) that there exists an appropriate constant
𝜆 > 0 such that

1

𝜂
𝜌
1/𝛾
𝑖
−1

𝑛

∑
𝑗=1

[𝑎
(𝑝)

𝑖𝑗
+ 𝑒
𝜆𝜏
1𝑏
(𝑝)

𝑖𝑗
+

𝑒
𝜆𝜏
2 − 1

𝜆
𝑐
(𝑝)

𝑖𝑗
] 𝜉
(𝑝)

𝑗

+
𝜆

𝛾
𝑖

[
𝜉
(𝑝)

𝑖

𝜂
]

1/𝛾
𝑖

≺ 0, 𝑖 ∈ ⟨𝑛⟩ , 𝑝 ∈ ⟨𝑚⟩.

(10)
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Let 𝑧
𝑖
(𝑡) = 𝑒

(𝜆/𝛾
𝑖
)𝑡

𝑦
𝑖
(𝑡).Then, system (1) reduces to the follow-

ing system:

�̇�
𝑖
(𝑡) =

𝜆

𝛾
𝑖

𝑧
𝑖
(𝑡) + 𝜌

1/𝛾
𝑖
−1

𝑒
𝜆(1/𝛾

𝑖
−1)𝑡

×

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑧
𝛾
𝑗

𝑗
(𝑡) + 𝑏

𝑖𝑗
𝑒
𝜆𝑑
1
(𝑡)

𝑧
𝛾
𝑗

𝑗
(𝑡 − 𝑑

1
(𝑡))

+ ∫
0

−𝑑
2
(𝑡)

𝑐
𝑖𝑗
𝑒
−𝜆𝑠

𝑧
𝛾
𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠] ,

(11)

where 𝑡 ≥ 0 and 𝑖 ∈ ⟨𝑛⟩.
First, we get from (10) that there exists a constant 𝜁 > 1

such that, for any 𝑖 ∈ ⟨𝑛⟩, 𝑝 ∈ ⟨𝑚⟩, and 𝛿 ∈ (1, 𝜁),

𝛿

𝜂
𝜌
1/𝛾
𝑖
−1

𝑛

∑
𝑗=1

[𝑎
(𝑝)

𝑖𝑗
+ 𝑒
𝜆𝜏
1𝑏
(𝑝)

𝑖𝑗
+

𝑒
𝜆𝜏
2 − 1

𝜆
𝑐
(𝑝)

𝑖𝑗
] 𝜉
(𝑝)

𝑗

+
𝜆

𝛾
𝑖

[
𝛿𝜉
(𝑝)

𝑖

𝜂
]

1/𝛾
𝑖

≺ 0.

(12)

Set ‖𝑧‖
𝜏

= max
𝜃∈[−𝜏,0]

‖𝑧(𝜃)‖. Then, we have that, for any 𝛿 ∈

(1, 𝜁) and 𝑖 ∈ ⟨𝑛⟩,
𝑧𝑖 (0)

 =
𝑦𝑖 (0)



= 𝜌
1/𝛾
𝑖𝑥
𝑖
(0) ≤ 𝜌

1/𝛾
𝑖
𝜙

𝜏 ≤ 1 < [𝛿
𝜉
(𝑖
0
)

𝑖

𝜂
]

1/𝛾
𝑖

.

(13)

By the continuity of 𝑧
𝑖
(𝑡) at 𝑡 = 0, there exists 𝑡

∗

: 𝑡
0

< 𝑡
∗

< 𝑡
1

such that

𝑧𝑖 (𝑡)
 < [𝛿

𝜉
(𝑖
0
)

𝑖

𝜂
]

1/𝛾
𝑖

, 𝑡 ∈ [𝑡
0
, 𝑡
∗

] , 𝑖 ∈ ⟨𝑛⟩. (14)

We now prove that (14) holds on [𝑡
0
, 𝑡
1
) for any given 𝛿 ∈

(1, 𝜁). Otherwise, there exist �̃� : 𝑡
∗

< �̃� < 𝑡
1
and at least one

index 𝑘
0

∈ ⟨𝑛⟩ such that, for 𝑡 ∈ [𝑡
0
, �̃�) and 𝑖 ∈ ⟨𝑛⟩,


𝑧
𝑘
0

(�̃�)

= [

[

𝛿
𝜉
(𝑖
0
)

𝑘
0

𝜂
]

]

1/𝛾
𝑖

,
𝑧𝑖 (𝑡)

 < [𝛿
𝜉
(𝑖
0
)

𝑖

𝜂
]

1/𝛾
𝑖

. (15)

It implies that𝐷
−
|𝑧
𝑘
0

(�̃�)| ≥ 0. On the other hand, for 𝑡 ∈ [𝑡
0
, �̃�)

and 𝑧
𝑘
0

(𝑡) ̸= 0, we get from (11) that

𝐷
−


𝑧
𝑘
0
(𝑡)


= �̇�
𝑘
0
(𝑡) sign 𝑧

𝑘
0
(𝑡)

≤
𝜆

𝛾
𝑘
0


𝑧
𝑘
0
(𝑡)


+ 𝜌
1/𝛾
𝑘0
−1

𝑒
𝜆(1/𝛾

𝑘0
−1)𝑡

×

𝑛

∑
𝑗=1

[𝑎
(𝑖
0
)

𝑘
0
𝑗


𝑧
𝑗
(𝑡)



𝛾
𝑗

+ 𝑏
(𝑖
0
)

𝑘
0
𝑗
𝑒
𝜆𝜏
1

𝑧
𝑗
(𝑡 − 𝑑

1
(𝑡))



𝛾
𝑗

+ ∫
0

−𝑑
2
(𝑡)

𝑐
(𝑖
0
)

𝑘
0
𝑗
𝑒
−𝜆𝑠


𝑧
𝑗
(𝑡 + 𝑠)



𝛾
𝑗

𝑑𝑠] .

(16)

Therefore, by (15), we have that

𝐷
−


𝑧
𝑘
0

(�̃�)


≤
𝜆

𝛾
𝑘
0

[

[

𝛿
𝜉
(𝑖
0
)

𝑘
0

𝜂
]

]

1/𝛾
𝑘0

+
𝛿

𝜂
𝜌
1/𝛾
𝑘0
−1

𝑒
𝜆(1/𝛾

𝑘0
−1)𝑡

×

𝑛

∑
𝑗=1

[𝑎
(𝑖
0
)

𝑘
0
𝑗

+ 𝑒
𝜆𝜏
1𝑏
(𝑖
0
)

𝑘
0
𝑗

+ 𝑐
(𝑖
0
)

𝑘
0
𝑗

∫
0

−𝜏
2

𝑒
−𝜆𝑠

𝑑𝑠] 𝜉
(𝑖
0
)

𝑗

=
𝛿

𝜂
𝜌
1/𝛾
𝑘0
−1

𝑒
𝜆(1/𝛾

𝑘0
−1)𝑡

×

𝑛

∑
𝑗=1

[𝑎
(𝑖
0
)

𝑘
0
𝑗

+ 𝑒
𝜆𝜏
1𝑏
(𝑖
0
)

𝑘
0
𝑗

+
𝑒
𝜆𝜏
2 − 1

𝜆
𝑐
(𝑖
0
)

𝑘
0
𝑗
] 𝜉
(𝑖
0
)

𝑗

+
𝜆

𝛾
𝑘
0

[

[

𝛿
𝜉
(𝑖
0
)

𝑘
0

𝜂
]

]

1/𝛾
𝑘0

.

(17)

From (12), we have that

𝑛

∑
𝑗=1

(𝑎
(𝑖
0
)

𝑘
0
𝑗

+ 𝑒
𝜆𝜏
1𝑏
(𝑖
0
)

𝑘
0
𝑗

+
𝑒
𝜆𝜏
2 − 1

𝜆
𝑐
(𝑖
0
)

𝑘
0
𝑗
) 𝜉
(𝑖
0
)

𝑗
< 0. (18)

Noting that 0 < 𝛾
𝑘
0

≤ 1, we get from (17) and (18) that

𝐷
−


𝑧
𝑘
0

(�̃�)

≤

𝛿

𝜂
𝜌
1/𝛾
𝑘0
−1

×

𝑛

∑
𝑗=1

[𝑎
(𝑖
0
)

𝑘
0
𝑗

+ 𝑒
𝜆𝜏
1𝑏
(𝑖
0
)

𝑘
0
𝑗

+
𝑒
𝜆𝜏
2 − 1

𝜆
𝑐
(𝑖
0
)

𝑘
0
𝑗
) 𝜉
(𝑖
0
)

𝑗

+
𝜆

𝛾
𝑘
0

[

[

𝛿
𝜉
(𝑖
0
)

𝑘
0

𝜂
]

]

1/𝛾
𝑘0

.

(19)

It yields that 𝐷
−
|𝑦
𝑘
0

(�̃�)| < 0 from (12) with 𝑝 = 𝑖
0
and 𝑖 = 𝑘

0
,

which contradicts the fact that 𝐷
−
|𝑧
𝑘
0

(�̃�)| ≥ 0. Therefore, (14)
holds on [𝑡

0
, 𝑡
1
) for any 𝛿 ∈ (1, 𝜁). By letting 𝛿 and 𝑡 tend to 1

and 𝑡
1
, respectively, we have that

𝑧𝑖 (𝑡1)
 ≤ [

𝜉
(𝑖
0
)

𝑖

𝜂
]

1/𝛾
𝑖

= [
𝜉
(𝑖
0
)

𝑖
𝜉
(𝑖
1
)

𝑖

𝜉
(𝑖
1
)

𝑖
𝜂

]

1/𝛾
𝑖

≤ [𝜇
𝜉
(𝑖
1
)

𝑖

𝜂
]

1/𝛾
𝑖

, 𝑖 ∈ ⟨𝑛⟩,

(20)

where 𝜇 = max{𝜉
(𝑝)

𝑖
/𝜉
(𝑞)

𝑖
: 𝑝, 𝑞 ∈ ⟨𝑚⟩, 𝑖 ∈ ⟨𝑛⟩}. Therefore,

𝑧𝑖 (𝑡1)
 < [𝜇𝛿

𝜉
(𝑖
1
)

𝑖

𝜂
]

1/𝛾
𝑖

, ∀𝛿 ∈ (1, 𝜁) . (21)
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Since 𝑦
𝑖
(𝑡) is continuous at 𝑡 = 𝑡

1
, by repeating the above

procedure, we can conclude that

𝑧𝑖 (𝑡)
 ≤ [𝜇

𝜉
(𝑖
1
)

𝑖

𝜂
]

1/𝛾
𝑖

, 𝑡 ∈ [𝑡
1
, 𝑡
2
) , 𝑖 ∈ ⟨𝑛⟩. (22)

By induction, we have that, for each 𝑘 ∈ {0, 1, 2, . . .},

𝑧𝑖 (𝑡)
 ≤ [𝜇

𝑘
𝜉
(𝑖
𝑘
)

𝑖

𝜂
]

1/𝛾
𝑖

, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑖 ∈ ⟨𝑛⟩. (23)

Therefore, for any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), we get from (23) that
𝑥𝑖 (𝑡)

 = 𝜌
−1/𝛾
𝑖𝑒
−(𝜆/𝛾

𝑖
)𝑡 𝑧𝑖 (𝑡)



≤ 𝜌
−1/𝛾
𝑖𝑒
−(𝜆/𝛾

𝑖
)𝑡

[𝜇
𝑘
𝜉
(𝑖
𝑘
)

𝑖

𝜂
]

1/𝛾
𝑖

≤ 𝜌
−1/𝛾
𝑖𝑒
−(𝜆/𝛾

𝑖
)𝑡

[𝜇
𝑡/𝜏
𝑎𝜇]
1/𝛾
𝑖

= 𝜌
−1/𝛾
𝑖𝑒
−(𝜆/𝛾

𝑖
)𝑡

[𝜇𝑒
(ln 𝜇/𝜏

𝑎
)𝑡

]
1/𝛾
𝑖

= 𝜌
−1/𝛾
𝑖𝜇
1/𝛾
𝑖 [𝑒
−(𝜆−ln 𝜇/𝜏

𝑎
)𝑡

]
1/𝛾
𝑖

.

(24)

If we set 𝐾 = 𝜌
−1/𝛾min𝜇

1/𝛾min and 𝛽 = (𝜆 − ln 𝜇/𝜏
𝑎
)(1/𝛾max),

where 𝛾min = min
𝑖∈⟨𝑛⟩

𝛾
𝑖
, 𝛾max = max

𝑖∈⟨𝑛⟩
𝛾
𝑖
and 𝜏
𝑎
satisfies

𝜏
𝑎

> ln 𝜇/𝜆. By (24), we have that system (1) is exponentially
stabilizable via ADT switching. This completes the proof of
Theorem 1.

If there exists a common vector 𝜉 ≻ 0 such that

[𝐴
𝑝

+ 𝐵
𝑝

+ 𝜏
2
𝐶
𝑝
] 𝜉 ≺ 0, 𝑝 ∈ ⟨𝑚⟩, (25)

we have that 𝜇 = 1. Then, Theorem 1 yields the following
corollary.

Corollary 2. If there exists a common vector 𝜉 ≻ 0 such that
(25) holds, then system (1) is globally exponentially stable under
any switching.

4. Illustrative Examples

Example 1. Consider system (1) with 0 < 𝑑
1
(𝑡) ≤ 0.1, 0 <

𝑑
2
(𝑡) ≤ 0.2, 𝛾

1
= 7/9, 𝛾

2
= 1, and

𝐴
1

= [
−1 −0.1

0.05 −0.5
] , 𝐴

2
= [

−0.6 0.2

−0.1 −1
] ,

𝐵
1

= [
0.1 −0.1

0 0
] , 𝐵

2
= [

0 0

0.1 −0.05
] ,

𝐶
1

= [
−0.5 0

1.25 1
] , 𝐶

2
= [

0.75 1.25

−0.5 0.25
] .

(26)

Based on a straightforward computation, we have that

𝐴
1

+ 𝐵
1

+ 0.2 ⋅ 𝐶
1

≜ Φ
1

= [
−0.8 0.2

0.3 −0.3
] ,

𝐴
2

+ 𝐵
2

+ 0.2 ⋅ 𝐶
2

≜ Φ
2

= [
−0.45 0.45

0.3 −0.9
] .

(27)

We see that there does not exist a vector 𝜉 = [𝜉
1
, 𝜉
2
]
𝑇

≻ 0 such
that Φ

𝑝
𝜉 < 0 for 𝑝 = 1, 2. Otherwise, we can get 𝜉

1
< 𝜉
2
and

𝜉
2

< 𝜉
1
. This is a contradiction. Therefore, condition (25) is

invalid for this case. However, there exist two vectors 𝜉
(1)

=

[0.25, 0.5]
𝑇 and 𝜉

(2)

= [0.5, 0.29]
𝑇 such that

Φ
𝑝
𝜉
(𝑝)

≺ 0, 𝑝 = 1, 2; (28)

that is, condition (7) holds. For any initial condition 𝜙

satisfying ‖𝜙‖
𝜏

≤ 1, we can choose 𝜌 = 1. It is not difficult
to verify that (10) holds for 𝜆 = 0.12 and 𝜌 = 1. Therefore,
by Theorem 1, all solutions satisfying the initial condition
‖𝜙‖
𝜏

≤ 1 are exponentially stabilizable via the switching with
ADT 𝜏

𝑎
> ln 𝜇/𝜆 ≈ 5.78.

Example 2. Consider system (1) with 0 < 𝑑
1
(𝑡) ≤ 0.5, 𝛾

1
=

𝛾
2

= 𝛾
3

= 1, and

𝐴
1

= [

[

−3 0.3 0.2

0.4 −1.2 0.2

0.2 0 −2.5

]

]

, 𝐴
2

= [

[

−1.5 0.3 0.1

0.2 −3 0.4

0.1 0.5 −3

]

]

,

𝐵
1

= [

[

1 −0.2 0.3

0.6 −0.2 0

−0.3 0.5 0.5

]

]

, 𝐵
2

= [

[

−0.5 0.7 0

0.1 0.5 −0.2

0.2 −0.1 1

]

]

,

𝐶
1

= 𝐶
2

= 𝐶
3

= 0.

(29)

For this case, we have that

𝐴
1

+ 𝐴
2

≜ Ψ
1

= [

[

−2 0.5 0.5

1 −1 0.2

0.5 0.5 −2

]

]

,

𝐴
2

+ 𝐵
2

≜ Ψ
2

= [

[

−1 1 0.1

0.3 −2.5 0.6

0.3 0.6 −2

]

]

.

(30)

It is not difficult to verify that there does not exist a vector
𝜉 = [𝜉

1
, 𝜉
2
, 𝜉
3
]
𝑇

≻ 0 such that Ψ
𝑝
𝜉 < 0 for 𝑝 = 1, 2. Note that

(10) reduces to

𝑛

∑
𝑗=1

[𝑎
(𝑝)

𝑖𝑗
+ 𝑒
𝜆𝜏
1𝑏
(𝑝)

𝑖𝑗
] 𝜉
(𝑝)

𝑗
+ 𝜆𝜉
(𝑝)

𝑖
≺ 0, 𝑖 = 1, 2, 3, 𝑝 = 1, 2.

(31)

By solving the above inequality, we get a solution 𝜉
(1)

=

[1, 2.1, 1]
𝑇, 𝜉
(2)

= [2.1, 1, 1]
𝑇, and 𝜆 = 0.3. Therefore,

by Theorem 1 and its proof, we have that system (1) is
exponentially stabilizable via the switching with ADT 𝜏

𝑎
>

ln 𝜇/𝜆 ≈ 2.4731.

5. Conclusion

This paper has investigated the exponential stabilizability
for a class of switched nonlinear systems with mixed time-
varying delays by using a new technique developed for pos-
itive systems. By using a new method developed for positive
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systems, we design the appropriate ADT switching under
which the system is exponentially stable. The main results
generalize some existing results in the literature. Twonumeri-
cal examples are also worked out to illustrate the effectiveness
and sharpness of the given theoretical result. Stability analysis
for the more general switched nonlinear systems with mixed
time delays will be further investigated in the future.
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