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We investigate the dynamical behaviors of a class of discrete SIRS epidemic models with nonlinear incidence rate and varying
population sizes. The model is required to possess different death rates for the susceptible, infectious, recovered, and constant
recruitment into the susceptible class, infectious class, and recovered class, respectively. By using the inductivemethod, the positivity
and boundedness of all solutions are obtained. Furthermore, by constructing new discrete type Lyapunov functions, the sufficient
and necessary conditions on the global asymptotic stability of the disease-free equilibrium and endemic equilibrium are established.

1. Introduction

As well known in the theoretical study of epidemic models,
the susceptible-infected-recovered (SIR) compartmental epi-
demic models are a kind of very important epidemic models
and in recent years have been widely investigated. According
to the assumptions of Kermack and McKendrick [1], the
population of size𝑁(𝑡) at time 𝑡 is divided into three distinct
classes: the susceptible class of size 𝑆(𝑡), the infectious class
of size 𝐼(𝑡), and the recovered class 𝑅(𝑡) at time 𝑡. When a
susceptible individual acquires the disease by contacting with
an infectious individual, the susceptible individual moves
into the infectious compartment and, subsequently, as a result
of somemeasures such asmedication or isolation the infector
takes into the recovered class. If the recovered individuals
retain their immunity permanently, then he/her remains
in the recovered compartment. The model based on these
assumptions is known as the SIR epidemic model. Further-
more, if the immunity is not permanent, that is, the recovered
individual may lose his/her immunity after a period of time,
then he/her returns to the susceptible class. Thus, we obtain
the SIRS epidemic model.

Usually, there are two kinds of epidemic dynamical mod-
els: the continuous-time models described by differential

equations and the discrete-time models described by differ-
ence equations. In this paper, we will focus our attention on
discrete-time epidemic dynamical models. For an epidemic
model, which is continuous-time model or discrete-time
model, we all know that an important subject is to deter-
mine the global stability of the disease-free equilibrium and
endemic equilibrium. Particularly, we expect to compute
basic reproduction number R

0
of the model and also to

obtain the fact that the disease-free equilibrium is globally
stable whenR

0
≤ 1, as well as the endemic equilibrium exists

and is globally stable whenR
0
> 1.

Until now, the discrete-time SIR and SIRS epidemicmod-
els have been extensively studied in many articles; for exam-
ple, see [2–22] and the reference therein. Many important
results have been established. These results focus on the
computation of the basic reproduction number, the local and
global stability of the disease-free equilibrium and endemic
equilibrium, the permanence, persistence, and extinction of
the disease, and so forth. Particularly, in [2, 3], the authors
studied a class of discrete-time SIRS epidemic models with
time delays derived from corresponding continuous-time
models by applying Mickens’ nonstandard finite difference
scheme. The sufficient conditions on the global asymptotic
stability of the disease-free equilibrium and the permanence
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of the disease are established. In [4], the authors studied a
discrete-time SIRS epidemic model with bilinear incidence
rate derived from corresponding continuous-time model
by applying backward Euler finite difference scheme. The
sufficient and necessary conditions on the global asymptotic
stability of the disease-free equilibrium and endemic equilib-
rium are established. In [5], the authors discussed a class of
discrete-time SIRS epidemic models with general nonlinear
incidence rate derived from corresponding continuous-time
model by applying forward Euler scheme. The sufficient
conditions for the existence and local stability of the disease-
free equilibrium and endemic equilibrium are obtained. In
[6], the authors discussed a class of discrete-time SIRS epi-
demic models with standard incidence rate discretized from
corresponding continuous-time model by applying forward
Euler scheme. The sufficient condition for the global stability
of the endemic equilibrium is established.

However, we can see from the above literatures that the
studies on the global stability for discrete-time SIRS epidemic
models are not perfect. The necessary and sufficient condi-
tions for the global stability of the disease-free equilibrium
when basic reproduction number R

0
≤ 1, as well as the

global stability of the endemic equilibrium when R
0
> 1,

are established only for bilinear incidence rate (see [4]).
Therefore, motivated by the above works, as an extension
of the results given in [4], in this paper, we consider the
following discrete-time SIRS epidemic model with nonlinear
incidence rate and varying population sizes derived from
corresponding continuous-timemodel by applying backward
Euler scheme:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝑎𝐴 − 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) − 𝑑
1
𝑆
𝑛+1

+ 𝛿𝑅
𝑛+1

,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝑏𝐴 + 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝑐𝐴 + 𝛾𝐼

𝑛+1
− (𝑑
3
+ 𝛿) 𝑅

𝑛+1
.

(1)

By constructing new discrete type Lyapunov functions
and using the theory of stability of difference equations,
we will establish the global asymptotic stability of equilibria
only under basic hypothesis (H) (see Section 2). That is, the
disease-free equilibrium is globally asymptotically stable if
and only if basic reproduction number R

0
≤ 1, and the

endemic equilibrium is globally asymptotically stable if and
only ifR

0
> 1.

The organization of this paper is as follows. In the second
section, we give a model description and further obtain the
results on the positivity and boundedness of solutions of
model (1). In the third section, we discuss the existence
and global asymptotic stability of equilibria of model (1)
for case 𝑏 = 0. In the fourth section, we will study the
global asymptotic stability of endemic equilibrium of model
(1) for case 𝑏 > 0. Lastly, in the fifth section, we will give a
conclusion.

2. Preliminaries

In model (1), 𝑆
𝑛
, 𝐼
𝑛
, and 𝑅

𝑛
denote the numbers of sus-

ceptible, infected, and recovered individuals at 𝑛th period,
respectively. 𝐴 is the recruitment rate of the total population,

parameters 𝑎 > 0, 𝑏 ≥ 0, and 𝑐 ≥ 0 are the fraction
constants of input to susceptible class 𝑆

𝑛
, infected class 𝐼

𝑛
,

and recovered class 𝑅
𝑛
, respectively, and satisfying 𝑎 + 𝑏 +

𝑐 = 1. 𝑑
1
, 𝑑
2
, and 𝑑

3
represent the death rate of susceptible,

infected, and recovered individuals, respectively. Particularly,
death rate 𝑑

2
includes the natural death rate and the disease-

related death rate of the infected individuals. 𝛿 is the rate
at which recovered individuals lose immunity and return to
the susceptible class. 𝛾 is the natural recovery rate of the
infective individuals. 𝛽 is the proportionality constant, and
the transmission of the infection is governed by a nonlinear
incidence rate 𝛽𝑆𝑔(𝐼). In this paper, we always assume that
𝐴, 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝛿, 𝛽, 𝛾 are positive constants.

The initial condition for model (1) is given by

𝑆
0
> 0, 𝐼

0
> 0, 𝑅

0
> 0. (2)

Throughout this paper, we always assume that

(H) 𝑔(𝐼) is continuous and monotonically increasing on
[0, +∞), 𝑔(0) = 0, 𝐼/𝑔(𝐼) is also monotonically
increasing on (0, +∞), and𝑔󸀠(0) exists with𝑔󸀠(0) > 0.

Remark 1. Hypothesis (H) is basic for model (1). Particularly,
𝑔(𝐼) = 𝐼/(1 + 𝜔𝐼) with constant 𝜔 ≥ 0; then assumption
(𝐻
1
) naturally holds. Furthermore, if function 𝑔(𝐼) satisfies

that second-order derivative 𝑔󸀠󸀠(𝐼) exists and 𝑔
󸀠󸀠
(𝐼) ≤ 0 for

all 𝐼 ∈ [0,∞), then we easily prove that 𝐼/𝑔(𝐼) is monotone
increasing on 𝐼 ∈ (0, +∞).

On the positivity and boundedness of all solutions of
model (1) with initial condition (2), we have the following
results.

Lemma2. For any solution (𝑆
𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ofmodel (1)with initial

condition (2), it holds that

𝑆
𝑛
> 0, 𝐼

𝑛
> 0, 𝑅

𝑛
> 0 ∀𝑛 ≥ 0. (3)

Proof. Model (1) is equivalent to the following form:

𝑆
𝑛+1

=
𝑎𝐴 + 𝛿𝑅

𝑛+1
+ 𝑆
𝑛

1 + 𝛽𝑔 (𝐼
𝑛+1

) + 𝑑
1

,

𝐼
𝑛+1

=
𝑏𝐴 + 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) + 𝐼
𝑛

1 + 𝑑
2
+ 𝛾

,

𝑅
𝑛+1

=
𝑐𝐴 + 𝛾𝐼

𝑛+1
+ 𝑅
𝑛

1 + 𝑑
3
+ 𝛿

.

(4)

When 𝑛 = 0, we have

𝑆
1
=

𝑎𝐴 + 𝛿𝑅
1
+ 𝑆
0

1 + 𝛽𝑔 (𝐼
1
) + 𝑑
1

,

𝐼
1
=
𝑏𝐴 + 𝛽𝑆

1
𝑔 (𝐼
1
) + 𝐼
0

1 + 𝑑
2
+ 𝛾

,

𝑅
1
=
𝑐𝐴 + 𝛾𝐼

1
+ 𝑅
0

1 + 𝑑
3
+ 𝛿

.

(5)
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Let 𝐶
1
= 1 + 𝑑

3
+ 𝛿 and let 𝐶

2
= 1 + 𝑑

2
+ 𝛾; then obviously,

𝐶
1
𝐶
2
− 𝛿𝛾 > 0. Substituting 𝑆

1
, 𝑅
1
into 𝐼
1
, we obtain that 𝐼

1

satisfies the following equation:

𝐼
1
=
𝛽𝑔 (𝐼
1
) ℎ + 𝛿𝛾𝛽𝑔 (𝐼

1
) 𝐼
1
+ 𝐶
1
(𝑏𝐴 + 𝐼

0
) (1 + 𝑑

1
)

(1 + 𝛽𝑔 (𝐼
1
) + 𝑑
1
) 𝐶
1
𝐶
2

, (6)

where ℎ = 𝐶
1
𝐴(𝑎 + 𝑏) + 𝛿(𝑐𝐴 + 𝑅

0
) + 𝐶
1
(𝑆
0
+ 𝐼
0
). From this,

we further obtain that 𝐼
1
satisfies the following equation:

𝐻(𝐼
1
) ≜ (𝐶

1
𝐶
2
− 𝛿𝛾) 𝛽𝑔 (𝐼

1
) + 𝐶
1
𝐶
2
(1 + 𝑑

1
)

−
𝐶
1
(𝑏𝐴 + 𝐼

0
) (1 + 𝑑

1
)

𝐼
1

− ℎ𝛽
𝑔 (𝐼
1
)

𝐼
1

= 0.

(7)

From hypothesis (H), we obtain that𝐻(𝐼
1
) is monotonically

increasing on (0, +∞), and, obviously,

lim
𝐼
1
→0
+

𝐻(𝐼
1
) = −∞. (8)

If lim
𝐼
1
→∞

𝑔(𝐼
1
) < ∞, then we have

lim
𝐼
1
→∞

𝐻(𝐼
1
) = 𝐶
1
𝐶
2
(1 + 𝑑

1
) + (𝐶

1
𝐶
2
− 𝛿𝛾)

× 𝛽 lim
𝐼
1
→∞

𝑔 (𝐼
1
) > 0

(9)

and if lim
𝐼
1
→∞

𝑔(𝐼
1
) = +∞, then lim

𝐼
1
→∞

𝐻(𝐼
1
) = +∞.

Hence, there is a unique positive solution 𝑥
∗
> 0 such that

𝐻(𝑥
∗
) = 0. Therefore, we have 𝐼

1
= 𝑥
∗
> 0. Further, from (5)

we also obtain 𝑆
1
> 0 and 𝑅

1
> 0.

When 𝑛 = 1, in a similar way, we can obtain 𝑆
2
> 0, 𝐼
2
> 0

and 𝑅
2
> 0. By the induction, we finally obtain that 𝑆

𝑛
> 0,

𝐼
𝑛
> 0 and 𝑅

𝑛
> 0 for all 𝑛 ≥ 0. This completes the proof.

Lemma3. For any solution (𝑆
𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ofmodel (1)with initial

condition (2), it holds that

lim sup
𝑛→∞

(𝑆
𝑛
+ 𝐼
𝑛
+ 𝑅
𝑛
) ≤

𝐴

𝑑
, (10)

where 𝑑 = min{𝑑
1
, 𝑑
2
, 𝑑
3
}.

Proof. Let𝑁
𝑛
= 𝑆
𝑛
+ 𝐼
𝑛
+ 𝑅
𝑛
; then from model (1) we have

𝑁
𝑛
= 𝐴 + 𝑁

𝑛−1
− 𝑑
1
𝑆
𝑛
− 𝑑
2
𝐼
𝑛
− 𝑑
3
𝑅
𝑛
≤ 𝐴 + 𝑁

𝑛−1
− 𝑑𝑁
𝑛
.

(11)
Hence,

𝑁
𝑛
≤
𝐴 + 𝑁

𝑛−1

1 + 𝑑
, 𝑛 = 1, 2, . . . . (12)

By using iteration method, we obtain

𝑁
𝑛
≤
𝐴 + 𝑁

𝑛−1

1 + 𝑑

≤
𝐴

1 + 𝑑
+

𝐴

(1 + 𝑑)
2
+

𝐴

(1 + 𝑑)
3
+ ⋅ ⋅ ⋅ +

𝐴

(1 + 𝑑)
𝑛

+
𝑁
0

(1 + 𝑑)
𝑛

≤
𝐴

𝑑
[1 −

1

(1 + 𝑑)
𝑛
] +

𝐴

(1 + 𝑑)
𝑛
𝑁
0
.

(13)

Therefore, it holds that

lim sup
𝑛→+∞

𝑁
𝑛
≤
𝐴

𝑑
. (14)

This completes the proof.

3. Case 𝑏 = 0

If 𝑏 = 0, we have 𝑎 + 𝑐 = 1, and 𝑎 > 0, 𝑐 ≥ 0; then model (1)
becomes into the following form:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝑎𝐴 − 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) − 𝑑
1
𝑆
𝑛+1

+ 𝛿𝑅
𝑛+1

,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝑐𝐴 + 𝛾𝐼

𝑛+1
− (𝑑
3
+ 𝛿) 𝑅

𝑛+1
.

(15)

Particularly, when 𝑏 = 𝑐 = 0, then 𝑎 = 1 and model (1) will
become into the following well-known form:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝐴 − 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) − 𝑑
1
𝑆
𝑛+1

+ 𝛿𝑅
𝑛+1

,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝛾𝐼
𝑛+1

− (𝑑
3
+ 𝛿) 𝑅

𝑛+1
.

(16)

For model (15), under hypotheses (H), the basic repro-
duction number, that is an average number of secondary
infectious cases produced by an infectious individual during
his or her effective infectious period when introduced into an
entirely susceptible population, can be defined by

R
0
=

𝛽𝐴 (𝛿 + 𝑎𝑑
3
) 𝑔
󸀠
(0)

𝑑
1
(𝑑
2
+ 𝛾) (𝛿 + 𝑑

3
)
. (17)

Here, 𝛽 is the disease transmission rate, 1/(𝑑
2
+ 𝛾) is the

average infection period, and

lim
𝐼→0
+

𝛽𝐴 (𝛿 + 𝑎𝑑
3
)

𝑑
1
(𝛿 + 𝑑

3
)

𝑔 (𝐼)

𝐼
=
𝛽𝐴 (𝛿 + 𝑎𝑑

3
)

𝑑
1
(𝛿 + 𝑑

3
)
𝑔
󸀠
(0) (18)

implies that (𝛽𝐴(𝛿+𝑎𝑑
3
)/𝑑
1
(𝛿+𝑑
3
))𝑔
󸀠
(0)denotes the number

of new cases infected per unit time by one infective individual
which is introduced into the susceptible compartment in the
case that all the members of the population are susceptible.
Particularly, for model (16) we have the basic reproduction
number as follows:

R
0
=

𝛽𝐴𝑔
󸀠
(0)

𝑑
1
(𝑑
2
+ 𝛾)

. (19)

On the existence of equilibria of model (15), we have the
following result.

Theorem 4. (1) IfR
0
≤ 1, then model (15) only has a unique

disease-free equilibrium 𝐸
0
= (𝑆
0
, 0, 𝑅
0
), where 𝑆0 = 𝐴(𝛿 +

𝑎𝑑
3
)/𝑑
1
(𝛿 + 𝑑

3
) and 𝑅0 = 𝑐𝐴/(𝛿 + 𝑑

3
).

(2) IfR
0
> 1, then model (15) has a unique endemic equi-

librium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
), except for the disease-free equilib-

rium 𝐸
0
.
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Proof. We know that an equilibrium 𝐸 = (𝑆, 𝐼, 𝑅) of model
(15) satisfies

𝑎𝐴 − 𝛽𝑆𝑔 (𝐼) − 𝑑
1
𝑆 + 𝛿𝑅 = 0,

𝛽𝑆𝑔 (𝐼) − (𝑑
2
+ 𝛾) 𝐼 = 0,

𝑐𝐴 + 𝛾𝐼 − (𝑑
3
+ 𝛿) 𝑅 = 0.

(20)

Firstly, when 𝐼 = 0, we have

𝑎𝐴 − 𝑑
1
𝑆 + 𝛿𝑅 = 0,

𝑐𝐴 − (𝑑
3
+ 𝛿) 𝑅 = 0,

(21)

from which we obtain the disease-free equilibrium 𝐸
0

=

(𝑆
0
, 0, 𝑅
0
), where 𝑆

0
= 𝐴(𝛿 + 𝑎𝑑

3
)/𝑑
1
(𝛿 + 𝑑

3
) and 𝑅

0
=

𝑐𝐴/(𝛿 + 𝑑
3
).

Secondly, when 𝐼 > 0, from the second and third
equations of (20), we obtain

𝑅 =
𝑐𝐴 + 𝛾𝐼

𝛿 + 𝑑
3

, 𝑆 =
(𝑑
2
+ 𝛾) 𝐼

𝛽𝑔 (𝐼)
. (22)

Substituting 𝑅, 𝑆 into the first equation of (20), we have

𝐴 (𝛿 + 𝑎𝑑
3
)

𝛿 + 𝑑
3

−
𝑑
3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2

𝛿 + 𝑑
3

𝐼 −
𝑑
1
(𝑑
2
+ 𝛾) 𝐼

𝛽𝑔 (𝐼)
= 0.

(23)

Denote

𝐻(𝐼) =
𝐴 (𝛿 + 𝑎𝑑

3
)

𝛿 + 𝑑
3

−
𝑑
3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2

𝛿 + 𝑑
3

𝐼 −
𝑑
1
(𝑑
2
+ 𝛾) 𝐼

𝛽𝑔 (𝐼)
.

(24)

By hypothesis (H), 𝐻(𝐼) is monotonically decreasing on
(0, +∞) satisfying

lim
𝐼→0
+

𝐻(𝐼) =
𝐴 (𝛿 + 𝑎𝑑

3
)

𝛿 + 𝑑
3

−
𝑑
1
(𝑑
2
+ 𝛾)

𝛽𝑔󸀠 (0)

=
𝐴 (𝛿 + 𝑎𝑑

3
)

𝛿 + 𝑑
3

(1 −
1

R
0

) ,

(25)

and we also have

lim
𝐼→+∞

𝐻(𝐼) = −∞. (26)

WhenR
0
≤ 1, we have lim

𝐼→0
+𝐻(𝐼) ≤ 0. Then, there is

not any 𝐼∗ > 0 such that 𝐻(𝐼
∗
) = 0. Therefore, model (15)

only has a unique disease-free equilibrium 𝐸
0
.

When R
0
> 1, we have lim

𝐼→0
+𝐻(𝐼) > 0. Then, there

exists a unique 𝐼∗ > 0 such that𝐻(𝐼
∗
) = 0. Furthermore, we

have 𝑆∗ = (𝑑
2
+ 𝛾)𝐼
∗
/𝛽𝑔(𝐼

∗
) > 0 and 𝑅∗ = (𝑐𝐴 + 𝛾𝐼

∗
)/(𝛿 +

𝑑
3
) > 0. This implies that model (15) has a unique endemic

equilibrium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
). This completes the proof.

Remark 5. Particularly, for model (16), the disease-free equi-
librium given in Theorem 4 will become into 𝐸

0
= (𝐴/𝑑

1
,

0, 0).

Now, we study the stability of equilibria of model (15). On
the global stability of the disease-free equilibrium𝐸

0
, we have

the following result.

Theorem 6. Disease-free equilibrium 𝐸
0
of model (15) is

globally asymptotically stable if and only ifR
0
≤ 1.

Proof. The necessity is obvious; we only need to prove the
sufficiency.Model (15) can be rewritten as the following form:

𝑆
𝑛+1

− 𝑆
𝑛
= − (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
0
) + 𝛿 (𝑅

𝑛+1
− 𝑅
0
)

− 𝛽𝑆
0
𝑔 (𝐼
𝑛+1

) ,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
0
) − (𝑑

2
+ 𝛾) 𝐼
𝑛+1

+ 𝛽𝑆
0
𝑔 (𝐼
𝑛+1

) ,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝛾𝐼
𝑛+1

− (𝑑
3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
0
) .

(27)

We consider the following Lyapunov function:

𝑊
𝑛
=
1

2
(𝑆
𝑛
− 𝑆
0
+ 𝐼
𝑛
+ 𝑅
𝑛
− 𝑅
0
)
2

+
𝑘
1

2
(𝑆
𝑛
− 𝑆
0
)
2

+ (𝑘
2
+ 𝑘
3
) 𝐼
𝑛
+
𝑘
4

2
(𝑅
𝑛
− 𝑅
0
)
2

,

(28)

where

𝑘
1
=
𝑑
1
+ 𝑑
3

𝛿
, 𝑘

2
= 𝑘
1
𝑆
0
,

𝑘
3
=
𝑑
1
+ 𝑑
2

𝛽𝑔󸀠 (0)
, 𝑘

4
=
𝑑
2
+ 𝑑
3
+ 𝛼

𝛾
.

(29)

Calculating the difference of𝑊
𝑛
along (27), we have

𝑊
𝑛+1

−𝑊
𝑛
=
𝑘
1

2
[(𝑆
𝑛+1

− 𝑆
0
)
2

− (𝑆
𝑛
− 𝑆
0
)
2

]

+ (𝑘
2
+ 𝑘
3
) (𝐼
𝑛+1

− 𝐼
𝑛
)

+
𝑘
4

2
[(𝑅
𝑛+1

− 𝑅
0
)
2

− (𝑅
𝑛
− 𝑅
0
)
2

]

+
1

2
[(𝑆
𝑛+1

− 𝑆
0
+ 𝐼
𝑛+1

+ 𝑅
𝑛+1

− 𝑅
0
)
2

−(𝑆
𝑛
− 𝑆
0
+ 𝐼
𝑛
+ 𝑅
𝑛
− 𝑅
0
)
2

]

=
𝑘
1

2
(𝑆
𝑛+1

− 𝑆
𝑛
) (𝑆
𝑛
− 𝑆
𝑛+1

+ 2 (𝑆
𝑛+1

− 𝑆
0
))

+ (𝑘
2
+ 𝑘
3
) (𝐼
𝑛+1

− 𝐼
𝑛
)

+
𝑘
4

2
(𝑅
𝑛+1

− 𝑅
𝑛
) (𝑅
𝑛
− 𝑅
𝑛+1

+ 2 (𝑅
𝑛+1

− 𝑅
0
))

+
1

2
(𝑆
𝑛+1

− 𝑆
𝑛
+ 𝐼
𝑛+1

− 𝐼
𝑛
+ 𝑅
𝑛+1

− 𝑅
𝑛
)

× (𝑆
𝑛
− 𝑆
𝑛+1

+ 2 (𝑆
𝑛+1

− 𝑆
0
) + 𝐼
𝑛
− 𝐼
𝑛+1

+ 2𝐼
𝑛+1

+ 𝑅
𝑛
− 𝑅
𝑛+1

+ 2 (𝑅
𝑛+1

− 𝑅
0
))
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≤ 𝑘
1
(𝑆
𝑛+1

− 𝑆
𝑛
) (𝑆
𝑛+1

− 𝑆
0
)

+ (𝑘
2
+ 𝑘
3
) (𝐼
𝑛+1

− 𝐼
𝑛
)

+ 𝑘
4
(𝑅
𝑛+1

− 𝑅
𝑛
) (𝑅
𝑛+1

− 𝑅
0
)

+ (𝑆
𝑛+1

− 𝑆
𝑛
+ 𝐼
𝑛+1

− 𝐼
𝑛
+ 𝑅
𝑛+1

− 𝑅
𝑛
)

× (𝑆
𝑛+1

− 𝑆
0
+ 𝐼
𝑛+1

+ 𝑅
𝑛+1

− 𝑅
0
)

= 𝑘
1
[− (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
0
)

+𝛿 (𝑅
𝑛+1

− 𝑅
0
) − 𝛽𝑆

0
𝑔 (𝐼
𝑛+1

)] (𝑆
𝑛+1

− 𝑆
0
)

+ 𝑘
2
[𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
0
) − (𝑑

2
+ 𝛾) 𝐼
𝑛+1

+𝛽𝑆
0
𝑔 (𝐼
𝑛+1

)]

+ 𝑘
3
[𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

]

+ 𝑘
4
[𝛾𝐼
𝑛+1

− (𝑑
3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
0
)]

× (𝑅
𝑛+1

− 𝑅
0
)

+ (−𝑑
1
𝑆
𝑛+1

− 𝑑
2
𝐼
𝑛+1

− 𝑑
3
𝑅
𝑛+1

)

× (𝑆
𝑛+1

− 𝑆
0
+ 𝐼
𝑛+1

+ 𝑅
𝑛+1

− 𝑅
0
) .

(30)

Since 𝑅
0
= 𝛽𝐴𝑔

󸀠
(0)(𝛿 + 𝑎𝑑

3
)/𝑑
1
(𝑑
2
+ 𝛾)(𝛿 + 𝑑

3
) ≤ 1, we have

𝛽𝑆
0
𝑔
󸀠
(0) ≤ 𝑑

2
+ 𝛾. Hence,

𝑊
𝑛+1

−𝑊
𝑛
≤ 𝑘
1
[− (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
0
)

+𝛿 (𝑅
𝑛+1

− 𝑅
0
) − 𝛽𝑆

0
𝑔 (𝐼
𝑛+1

)] (𝑆
𝑛+1

− 𝑆
0
)

+ 𝑘
2
[𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
0
) − 𝛽𝑆

0
𝑔
󸀠
(0) 𝐼𝑛+1

+𝛽𝑆
0
𝑔 (𝐼
𝑛+1

)]

+ 𝑘
3
[𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

) − 𝛽𝑆
0
𝑔
󸀠
(0) 𝐼𝑛+1]

+ 𝑘
4
[𝛾𝐼
𝑛+1

− (𝑑
3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
0
)]

× (𝑅
𝑛+1

− 𝑅
0
)

+ [−𝑑
1
(𝑆
𝑛+1

− 𝑆
0
) − 𝑑
2
𝐼
𝑛+1

− 𝑑
3
(𝑅
𝑛+1

− 𝑅
0
)]

× (𝑆
𝑛+1

− 𝑆
0
+ 𝐼
𝑛+1

+ 𝑅
𝑛+1

− 𝑅
0
)

= − [𝑘
1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
0
)
2

− 𝑑
2
𝐼
2

𝑛+1
− [𝑘
4
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
0
)
2

+ 𝑘
2
𝐼
𝑛+1

𝛽𝑆
0
[
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝑔
󸀠
(0)]

+ 𝑘
3
𝛽𝑆
𝑛+1

𝐼
𝑛+1

[
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝑔
󸀠
(0)]

+ 𝑘
3
𝛽𝐼
𝑛+1

𝑔
󸀠
(0) (𝑆

𝑛+1
− 𝑆
0
)

≤ − [𝑘
1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
0
)
2

− 𝑑
2
𝐼
2

𝑛+1
− [𝑘
4
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
0
)
2

+ 𝛽𝐼
𝑛+1

(𝑘
2
𝑆
0
+ 𝑘
3
𝑆
𝑛+1

)(
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝑔
󸀠
(0)) .

(31)

Under hypothesis (H), we have for any 𝑛 ≥ 0

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

≤ lim
𝐼→0
+

𝑔 (𝐼)

𝐼
= 𝑔
󸀠
(0) . (32)

Hence,

𝑊
𝑛+1

−𝑊
𝑛
≤ − [𝑘

1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
0
)
2

− 𝑑
2
𝐼
2

𝑛+1
− [𝑘
4
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
0
)
2

.

(33)

This implies that

𝑊
𝑛+1

−𝑊
𝑛
< 0 ∀ (𝑆

𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ̸= (𝑆

0
, 0, 𝑅
0
) . (34)

By Lyapunov’s theorems on the global asymptotical stability
for difference equations, we directly obtained that the disease-
free equilibrium 𝐸

0
is globally asymptotically stable. This

completes the proof.

On the global stability of the endemic equilibrium 𝐸
∗, we

have the following result.

Theorem 7. Endemic equilibrium 𝐸
∗ of model (15) is globally

asymptotically stable if and only ifR
0
> 1.

Proof. The necessity is obvious, we only need to prove the
sufficiency. Model (15) can be rewritten as the following
form:

𝑆
𝑛+1

− 𝑆
𝑛
= − (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
∗
) + 𝛿 (𝑅

𝑛+1
− 𝑅
∗
)

− 𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) ,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
∗
) − (𝑑

2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)

+ 𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) ,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝛾 (𝐼

𝑛+1
− 𝐼
∗
) − (𝑑

3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
∗
) .

(35)
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We also have

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

= 𝐼
𝑛+1

[𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− (𝑑
2
+ 𝛾)]

= 𝐼
𝑛+1

[𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝛽𝑆
∗
𝑔 (𝐼
∗
)

𝐼∗
]

= 𝐼
𝑛+1

[𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝛽𝑆
∗
𝑔 (𝐼
∗
)

𝐼∗
+ 𝛽𝑆
𝑛+1

𝑔 (𝐼
∗
)

𝐼∗

−𝛽𝑆
𝑛+1

𝑔 (𝐼
∗
)

𝐼∗
]

= 𝐼
𝑛+1

[𝛽𝑆
𝑛+1

(
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
)

+𝛽
𝑔 (𝐼
∗
)

𝐼∗
(𝑆
𝑛+1

− 𝑆
∗
)] .

(36)

We consider the following Lyapunov function:

𝑉
𝑛
=
1

2
(𝑆
𝑛
− 𝑆
∗
+ 𝐼
𝑛
− 𝐼
∗
+ 𝑅
𝑛
− 𝑅
∗
)
2
+
𝑘
1

2
(𝑆
𝑛
− 𝑆
∗
)
2

+ 𝑘
2
∫

𝐼
𝑛

𝐼
∗

𝑔 (𝜏) − 𝑔 (𝐼
∗
)

𝑔 (𝜏)
𝑑𝜏 +

𝑘
3

2
(𝑅
𝑛
− 𝑅
∗
)
2

+ 𝑘
4
(
𝐼
𝑛

𝐼∗
− 1 − ln

𝐼
𝑛

𝐼∗
) ,

(37)

where

𝑘
1
=
𝑑
1
+ 𝑑
3

𝛿
, 𝑘

2
= 𝑘
1
𝑆
∗
,

𝑘
3
=
𝑑
2
+ 𝑑
3
+ 𝛼

𝛾
, 𝑘

4
=
(𝑑
1
+ 𝑑
2
) (𝐼
∗
)
2

𝛽𝑔 (𝐼
∗
)

.

(38)

Calculating the difference of𝑊
𝑛
along (35), we have

𝑉
𝑛+1

− 𝑉
𝑛
=
𝑘
1

2
[(𝑆
𝑛+1

− 𝑆
∗
)
2
− (𝑆
𝑛
− 𝑆
∗
)
2
]

+ 𝑘
2
∫

𝐼
𝑛+1

𝐼
𝑛

𝑔 (𝜏) − 𝑔 (𝐼
∗
)

𝑔 (𝜏)
𝑑𝜏

+
𝑘
3

2
[(𝑅
𝑛+1

− 𝑅
∗
)
2
− (𝑅
𝑛
− 𝑅
∗
)
2
]

+ 𝑘
4
(
𝐼
𝑛+1

− 𝐼
𝑛

𝐼∗
− ln

𝐼
𝑛+1

𝐼
𝑛

)

+
1

2
[(𝑆
𝑛+1

− 𝑆
∗
+ 𝐼
𝑛+1

− 𝐼
∗
+ 𝑅
𝑛+1

− 𝑅
∗
)
2

− (𝑆
𝑛
− 𝑆
∗
+ 𝐼
𝑛
− 𝐼
∗
+ 𝑅
𝑛
− 𝑅
∗
)
2
]

≤ 𝑘
1
(𝑆
𝑛+1

− 𝑆
𝑛
) (𝑆
𝑛+1

− 𝑆
∗
)

+ 𝑘
2
(𝐼
𝑛+1

− 𝐼
𝑛
) [

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)
]

+ 𝑘
3
(𝑅
𝑛+1

− 𝑅
𝑛
) (𝑅
𝑛+1

− 𝑅
∗
)

+ 𝑘
4
(𝐼
𝑛+1

− 𝐼
𝑛
) [

𝐼
𝑛+1

− 𝐼
∗

𝐼∗𝐼
𝑛+1

]

+ (𝑆
𝑛+1

− 𝑆
𝑛
+ 𝐼
𝑛+1

− 𝐼
𝑛
+ 𝑅
𝑛+1

− 𝑅
𝑛
)

× (𝑆
𝑛+1

− 𝑆
∗
+ 𝐼
𝑛+1

− 𝐼
∗
+ 𝑅
𝑛+1

− 𝑅
∗
)

= 𝑘
1
[− (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
∗
)

+𝛿 (𝑅
𝑛+1

− 𝑅
∗
) − 𝛽𝑆

∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))]

× (𝑆
𝑛+1

− 𝑆
∗
)

+ 𝑘
2
[𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
∗
)

− (𝑑
2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)

+𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))]

× [
𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)
]

+ 𝑘
3
[𝛾 (𝐼
𝑛+1

− 𝐼
∗
) − (𝑑

3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
∗
)]

× (𝑅
𝑛+1

− 𝑅
∗
)

+ 𝑘
4
𝐼
𝑛+1

[𝛽𝑆
𝑛+1

(
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
)

+𝛽
𝑔 (𝐼
∗
)

𝐼∗
(𝑆
𝑛+1

− 𝑆
∗
)] [

𝐼
𝑛+1

− 𝐼
∗

𝐼∗𝐼
𝑛+1

]

+ (−𝑑
1
𝑆
𝑛+1

− 𝑑
2
𝐼
𝑛+1

− 𝑑
3
𝑅
𝑛+1

)

× (𝑆
𝑛+1

− 𝑆
∗
+ 𝐼
𝑛+1

− 𝐼
∗
+ 𝑅
𝑛+1

− 𝑅
∗
)

≤ − [𝑘
1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
∗
)
2

− 𝑑
2
(𝐼
𝑛+1

− 𝐼
∗
)
2

− [𝑘
3
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
∗
)
2

+ 𝑘
2

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)

× [𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))

− (𝑑
2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)]

+
𝑘
4

𝐼∗
𝛽𝑆
𝑛+1

(𝐼
𝑛+1

− 𝐼
∗
) (

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
) .

(39)
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Further, from hypothesis (H) and 𝑑
2
+𝛾 = 𝛽𝑆

∗
(𝑔(𝐼
∗
)/𝐼
∗
), we

have

𝑘
2

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)

× [𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) − (𝑑

2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)]

= 𝑘
2

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)
[𝛽𝑆
∗
𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

]

=
𝑘
2
𝐼
𝑛+1

𝑔 (𝐼
𝑛+1

)
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))

× [𝛽𝑆
∗
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− (𝑑
2
+ 𝛾)]

=
𝑘
2
𝐼
𝑛+1

𝑔 (𝐼
𝑛+1

)
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))

× [𝛽𝑆
∗
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝛽𝑆
∗
𝑔 (𝐼
∗
)

𝐼∗
]

=
𝑘
2
𝛽𝑆
∗
𝐼
𝑛+1

𝑔 (𝐼
𝑛+1

)
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) [

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
]

≤ 0,

𝑘
4

𝐼∗
𝛽𝑆
𝑛+1

(𝐼
𝑛+1

− 𝐼
∗
) (

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
) ≤ 0.

(40)

Hence,

𝑉
𝑛+1

− 𝑉
𝑛
≤ − [𝑘

1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
∗
)
2

− 𝑑
2
(𝐼
𝑛+1

− 𝐼
∗
)
2

− [𝑘
3
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
∗
)
2
.

(41)

This implies that

𝑉
𝑛+1

− 𝑉
𝑛
< 0 ∀ (𝑆

𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ̸= (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) . (42)

By Lyapunov’s theorems on the globally asymptotical sta-
bility for difference equations, we directly obtained that the
endemic equilibrium𝐸

∗ is globally asymptotically stable.This
completes the proof.

Remark 8. From the above discussion we immediately see
that the basic reproduction numberR

0
can completely deter-

mine the global asymptotic stability of model (15).

As a consequence ofTheorems 6 and 7, for model (16) we
have the following corollary.

Corollary 9. For model (16) one has the following.

(1) Disease-free equilibrium 𝐸
0
is globally asymptotically

stable if and only ifR
0
≤ 1.

(2) Endemic equilibrium 𝐸
∗ is globally asymptotically sta-

ble if and only ifR
0
> 1.

Remark 10. From Corollary 9, we see that the corresponding
results on the global asymptotic stability obtained in [4] for
discrete-time SIRS epidemic models with bilinear incidence
rate are extended to themodels with nonlinear incidence rate.
Furthermore, comparing with Lyapunov functions estab-
lished in [4], we see that, in order to study the global asymp-
totic stability of model (15), a new Lyapunov function is
constructed in this paper.

4. Case 𝑏 > 0

We firstly discuss the existence of equilibria of model (1). It
is easy to see that if 𝑏 > 0, model (1) has no disease-free
equilibrium.We have the following result about the existence
of endemic equilibrium of model (1).

Theorem 11. Model (1) always has a unique endemic equilib-
rium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
).

Proof. Frommodel (1) we know that the endemic equilibrium
𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) satisfies

𝑎𝐴 − 𝛽𝑆𝑔 (𝐼) − 𝑑
1
𝑆 + 𝛿𝑅 = 0,

𝑏𝐴 + 𝛽𝑆𝑔 (𝐼) − (𝑑
2
+ 𝛾) 𝐼 = 0,

𝑐𝐴 + 𝛾𝐼 − (𝑑
3
+ 𝛿) 𝑅 = 0.

(43)

By the second and third equations of (43), we can obtain

𝑅 =
𝑐𝐴 + 𝛾𝐼

𝛿 + 𝑑
3

, 𝑆 =
(𝑑
2
+ 𝛾) 𝐼 − 𝑏𝐴

𝛽𝑔 (𝐼)
. (44)

Substituting (44) into the first equation of (43), we have

− [𝑑
3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2
] 𝐼 + 𝐴 [𝛿 + (𝑎 + 𝑏) 𝑑

3
]

−
𝑑
1
(𝑑
2
+ 𝛾) (𝛿 + 𝑑

3
) 𝐼

𝛽𝑔 (𝐼)
+
𝑑
1
𝑏𝐴 (𝛿 + 𝑑

3
)

𝛽𝑔 (𝐼)
= 0.

(45)

Denote
𝜑 (𝐼) = − [𝑑

3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2
] 𝐼 + 𝐴 [𝛿 + (𝑎 + 𝑏) 𝑑

3
] ,

𝜓 (𝐼) =
𝑑
1
(𝑑
2
+ 𝛾) (𝛿 + 𝑑

3
) 𝐼

𝛽𝑔 (𝐼)
−
𝑑
1
𝑏𝐴 (𝛿 + 𝑑

3
)

𝛽𝑔 (𝐼)
.

(46)

Now, we consider equation 𝜑(𝐼) = 𝜓(𝐼), which is equiv-
alent to (45). By hypothesis (H), 𝜑(𝐼) is monotonically
decreasing on (0, +∞) and 𝜓(𝐼) is monotonically increasing
on (0, +∞). Let 𝑑 = min{𝑑

1
, 𝑑
2
, 𝑑
3
}; then we have 0 <

𝑏𝐴/(𝑑
2
+ 𝛾) < 𝐴/𝑑. By calculating, we obtain

𝜑(
𝑏𝐴

𝑑
2
+ 𝛾

) = − [𝑑
3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2
]

𝑏𝐴

𝑑
2
+ 𝛾

+ 𝐴 [𝛿 + (𝑎 + 𝑏) 𝑑3]

=
𝐴 [𝛿 (1 − 𝑏) 𝑑

2
+ 𝛿𝛾 + 𝑎𝑑

3
(𝑑
2
+ 𝛾)]

𝑑
2
+ 𝛾

> 0,



8 Discrete Dynamics in Nature and Society

𝜑(
𝐴

𝑑
) = − [𝑑

3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2
]
𝐴

𝑑
+ 𝐴 [𝛿 + (𝑎 + 𝑏) 𝑑

3
]

= −
𝐴

𝑑
[𝑑
3
(𝑑
2
+ 𝛾) + 𝛿𝑑

2
− 𝑑 (𝛿 + (1 − 𝑐) 𝑑3)]

= −
𝐴

𝑑
[𝑑
3
(𝛾 + 𝑑𝑐) + (𝛿 + 𝑑

3
) (𝑑
2
− 𝑑)]

< 0,

𝜓(
𝑏𝐴

𝑑
2
+ 𝛾

) = 0, 𝜓 (
𝐴

𝑑
) > 0.

(47)

Hence, there exists a unique 𝐼∗ ∈ (𝑏𝐴/(𝑑
2
+ 𝛾), 𝐴/𝑑) such

that 𝜑(𝐼∗) = 𝜓(𝐼
∗
). Furthermore, we have 𝑆∗ = ((𝑑

2
+ 𝛾)𝐼
∗
−

𝑏𝐴)/𝛽𝑔(𝐼
∗
) > 0 and 𝑅

∗
= (𝑐𝐴 + 𝛾𝐼

∗
)/(𝛿 + 𝑑

3
) > 0. This

implies thatmodel (1) has a unique endemic equilibrium𝐸
∗
=

(𝑆
∗
, 𝐼
∗
, 𝑅
∗
).

Now, we study the global stability of endemic equilibrium
𝐸
∗; we have the following result.

Theorem 12. Endemic equilibrium 𝐸
∗ of model (1) is always

globally asymptotically stable.

Proof. Model (1) becomes into the following form:

𝑆
𝑛+1

− 𝑆
𝑛
= − (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
∗
) + 𝛿 (𝑅

𝑛+1
− 𝑅
∗
)

− 𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) ,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
∗
) − (𝑑

2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)

+ 𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) ,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝛾 (𝐼

𝑛+1
− 𝐼
∗
) − (𝑑

3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
∗
) .

(48)

We also have

𝐼
𝑛+1

− 𝐼
𝑛
= 𝑏𝐴 + 𝛽𝑆

𝑛+1
𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

= 𝐼
𝑛+1

[
𝑏𝐴

𝐼
𝑛+1

+ 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− (𝑑
2
+ 𝛾)]

= 𝐼
𝑛+1

[
𝑏𝐴

𝐼
𝑛+1

+ 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑏𝐴 + 𝛽𝑆

∗
𝑔 (𝐼
∗
)

𝐼∗
]

= 𝐼
𝑛+1

[
𝑏𝐴

𝐼
𝑛+1

−
𝑏𝐴

𝐼∗
+ 𝛽𝑆
𝑛+1

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

− 𝛽𝑆
∗
𝑔 (𝐼
∗
)

𝐼∗

+𝛽𝑆
𝑛+1

𝑔 (𝐼
∗
)

𝐼∗
− 𝛽𝑆
𝑛+1

𝑔 (𝐼
∗
)

𝐼∗
]

= 𝐼
𝑛+1

[𝑏𝐴(
1

𝐼
𝑛+1

−
1

𝐼∗
)

+ 𝛽𝑆
𝑛+1

(
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
)

+𝛽
𝑔 (𝐼
∗
)

𝐼∗
(𝑆
𝑛+1

− 𝑆
∗
)] .

(49)

We consider the following Lyapunov function:

𝑈
𝑛
=
1

2
(𝑆
𝑛
− 𝑆
∗
+ 𝐼
𝑛
− 𝐼
∗
+ 𝑅
𝑛
− 𝑅
∗
)
2
+
𝑘
1

2
(𝑆
𝑛
− 𝑆
∗
)
2

+ 𝑘
2
∫

𝐼
𝑛

𝐼
∗

𝑔 (𝜏) − 𝑔 (𝐼
∗
)

𝑔 (𝜏)
𝑑𝜏 +

𝑘
3

2
(𝑅
𝑛
− 𝑅
∗
)
2

+ 𝑘
4
(
𝐼
𝑛

𝐼∗
− 1 − ln

𝐼
𝑛

𝐼∗
) ,

(50)

where

𝑘
1
=
𝑑
1
+ 𝑑
3

𝛿
, 𝑘

2
= 𝑘
1
𝑆
∗
,

𝑘
3
=
𝑑
2
+ 𝑑
3

𝛾
, 𝑘

4
=
(𝑑
1
+ 𝑑
2
) (𝐼
∗
)
2

𝛽𝑔 (𝐼
∗
)

.

(51)

Calculating the difference of 𝑈
𝑛
along (48), we have

𝑈
𝑛+1

− 𝑈
𝑛
≤ 𝑘
1
[− (𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) (𝑆
𝑛+1

− 𝑆
∗
)

+ 𝛿 (𝑅
𝑛+1

− 𝑅
∗
)

−𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))] (𝑆
𝑛+1

− 𝑆
∗
)

+ 𝑘
2
[𝛽𝑔 (𝐼

𝑛+1
) (𝑆
𝑛+1

− 𝑆
∗
)

− (𝑑
2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)

+𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))]

× (
𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)
)

+ 𝑘
3
[𝛾 (𝐼
𝑛+1

− 𝐼
∗
) − (𝑑

3
+ 𝛿) (𝑅

𝑛+1
− 𝑅
∗
)]

× (𝑅
𝑛+1

− 𝑅
∗
)

+ 𝑘
4
𝐼
𝑛+1

[𝑏𝐴(
1

𝐼
𝑛+1

−
1

𝐼∗
)

+ 𝛽𝑆
𝑛+1

(
𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
)

+𝛽
𝑔 (𝐼
∗
)

𝐼∗
(𝑆
𝑛+1

− 𝑆
∗
)]

× (
𝐼
𝑛+1

− 𝐼
∗

𝐼∗𝐼
𝑛+1

)

+ (−𝑑
1
𝑆
𝑛+1

− 𝑑
2
𝐼
𝑛+1

− 𝑑
3
𝑅
𝑛+1

)

× (𝑆
𝑛+1

− 𝑆
∗
+ 𝐼
𝑛+1

− 𝐼
∗
+ 𝑅
𝑛+1

− 𝑅
∗
)
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= − [𝑘
1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
∗
)
2

− 𝑑
2
(𝐼
𝑛+1

− 𝐼
∗
)
2

− [𝑘
3
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
∗
)
2

+ 𝑘
2

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)
[𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
))

− (𝑑
2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)]

+
𝑘
4

𝐼∗
𝑏𝐴 (𝐼
𝑛+1

− 𝐼
∗
) (

1

𝐼
𝑛+1

−
1

𝐼∗
)

+
𝑘
4

𝐼∗
𝛽𝑆
𝑛+1

(𝐼
𝑛+1

− 𝐼
∗
) (

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
) .

(52)

From hypothesis (H) and 𝑑
2
+ 𝛾 = 𝛽𝑆

∗
(𝑔(𝐼
∗
)/𝐼
∗
), we have

𝑘
2

𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)

𝑔 (𝐼
𝑛+1

)

× [𝛽𝑆
∗
(𝑔 (𝐼
𝑛+1

) − 𝑔 (𝐼
∗
)) − (𝑑

2
+ 𝛾) (𝐼

𝑛+1
− 𝐼
∗
)] ≤ 0,

𝑘
4

𝐼∗
𝛽𝑆
𝑛+1

(𝐼
𝑛+1

− 𝐼
∗
) (

𝑔 (𝐼
𝑛+1

)

𝐼
𝑛+1

−
𝑔 (𝐼
∗
)

𝐼∗
) ≤ 0,

(53)

and it is easy to see that

𝑘
4

𝐼∗
𝑏𝐴 (𝐼
𝑛+1

− 𝐼
∗
) (

1

𝐼
𝑛+1

−
1

𝐼∗
) ≤ 0. (54)

Hence,

𝑈
𝑛+1

− 𝑈
𝑛
≤ − [𝑘

1
(𝛽𝑔 (𝐼

𝑛+1
) + 𝑑
1
) + 𝑑
1
] (𝑆
𝑛+1

− 𝑆
∗
)
2

− 𝑑
2
(𝐼
𝑛+1

− 𝐼
∗
)
2

− [𝑘
3
(𝑑
3
+ 𝛿) + 𝑑

3
] (𝑅
𝑛+1

− 𝑅
∗
)
2
.

(55)

This implies that

𝑈
𝑛+1

− 𝑈
𝑛
< 0 ∀ (𝑆

𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ̸= (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) . (56)

By Lyapunov’s theorems on the global asymptotical stability
of difference equations, we directly obtained that the endemic
equilibrium 𝐸

∗ is globally asymptotically stable. This com-
pletes the proof.

5. Conclusion

From the main results obtained in this paper, we see that
the results on the global asymptotic stability of the disease-
free equilibrium and endemic equilibrium for a discrete-time
SIRS epidemic model with bilinear incidence rate obtained
in [4] are directly extended. By constructing new discrete

type Lyapunov functions we established the sufficient and
necessary conditions on the global asymptotic stability of the
disease-free equilibrium and endemic equilibrium for a class
of discrete-time SIRS epidemic models with general nonlin-
ear incidence rate 𝛽𝑆𝑔(𝐼) and different death rates 𝑑

1
, 𝑑
2
, and

𝑑
3
. That is, the disease-free equilibrium is globally asymptot-

ically stable if and only if basic reproduction numberR
0
≤ 1,

and the endemic equilibrium is globally asymptotically stable
if and only ifR

0
> 1.

An interesting and important open problem is whether
the results obtained in this paper can be extended to the fol-
lowing discrete-time SIRS epidemic models with general
nonlinear incidence rate:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝑎𝐴 − 𝛽𝑓 (𝑆

𝑛+1
) 𝑔 (𝐼
𝑛+1

) − 𝑑
1
𝑆
𝑛+1

+ 𝛿𝑅
𝑛+1

,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝑏𝐴 + 𝛽𝑓 (𝑆

𝑛+1
) 𝑔 (𝐼
𝑛+1

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝑐𝐴 + 𝛾𝐼

𝑛+1
− (𝑑
3
+ 𝛿) 𝑅

𝑛+1

(57)

and with distributed delay

𝑆
𝑛+1

− 𝑆
𝑛
= 𝑎𝐴 − 𝛽𝑆

𝑛+1

𝑚

∑

𝑗=0

𝑓 (𝑗) 𝑔 (𝐼
𝑛−𝑗

) − 𝑑
1
𝑆
𝑛+1

+ 𝛿𝑅
𝑛+1

,

𝐼
𝑛+1

− 𝐼
𝑛
= 𝑏𝐴 + 𝛽𝑆

𝑛+1

𝑚

∑

𝑗=0

𝑓 (𝑗) 𝑔 (𝐼
𝑛−𝑗

) − (𝑑
2
+ 𝛾) 𝐼
𝑛+1

,

𝑅
𝑛+1

− 𝑅
𝑛
= 𝑐𝐴 + 𝛾𝐼

𝑛+1
− (𝑑
3
+ 𝛿) 𝑅

𝑛+1
.

(58)

That is, only under the assumption which functions 𝑔(𝐼)

and 𝐼/𝑔(𝐼) are monotonically increasing with respect to 𝐼,
whether we also can obtain that the disease-free equilibrium
is globally asymptotically stable if basic reproduction number
R
0
≤ 1, and the endemic equilibrium is globally asymptoti-

cally stable ifR
0
> 1.

In addition, in this paper, functions 𝑔(𝐼) and 𝐼/𝑔(𝐼) in
model (1) are assumed to be monotonically increasing with
respect to 𝐼. Obviously, these conditions are rather strong and
not easily satisfied in many practical applications. Therefore,
an interesting and important open problem is whether the
results obtained in this paper can be extended to model (1)
with function 𝑔(𝐼) or 𝐼/𝑔(𝐼) is not monotonically increasing
with respect to 𝐼.
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