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The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by
constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical
application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the
theoretical results.

1. Introduction

Chaos synchronization can be found in many areas, such
as laser physics and chemical reactor. Up to now many
kinds of methods have been developed to realize chaos
synchronization, such as feedback control method [1–3],
sliding control method [4–6], backstepping control method
[7, 8], fuzzy control method [9–12], and adaptive control
method [13–15].

Recently impulsive control theory and its application in
chaos synchronization have become a research hotspot. For
instance, based on impulsive control strategies, the reduced-
order observer for the synchronization of generalized Lorenz
chaotic systems is built in [16], the adaptive modified
function projective synchronization of multiple time-delayed
chaotic Rossler systems is discussed in [17], the hybrid
synchronization of Lü hyperchaotic systemwith disturbances
is investigated in [18], and the robust synchronization of
perturbed Chen’s fractional-order chaotic systems is studied
in [19]. However, these results are just about one kind of
chaotic systems, which limits their applied scope. Hence how
to design the impulsive strategy to realize the synchronization
suitable for more chaotic systems activates our research.

In this paper, the following class of chaotic system is
introduced:

�̇� = 𝑓 (𝑧) ,

𝑧 (𝑡

0

+
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0
,

(1)

where 𝑧(𝑡) ∈ 𝑅𝑛 is the system state vector and𝑓(𝑧) is the non-
linear function below second order and can be transformed
as follows:
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(2)

where 𝐴 and 𝐶 are linear constant matrices and 𝐵(𝑧) is the
linear matrix about 𝑧.

System model (2) includes some chaotic systems, such as
Lorenz system, Rossler system, Chen system, and Lü system.
Hence, the research on system model (2) will possess more
practical application value, compared with those focused on
one kind of chaotic system.
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The remainder of this paper is organized as follows.
The model description and preliminaries are proposed in
Section 2. Based on impulsive control theory and Lyapunov
method, we shall try to propose a new and practical impulsive
strategy to realize the synchronization for a class of chaotic
systems in Section 3. Finally, some typical examples will be
included to show the correctness of the theoretical results in
Section 4, and the paper will be concluded in Section 5.

2. Model Description and Preliminaries

Consider the following main chaotic system:

̇𝑦 = 𝐶 + 𝐴𝑦 + 𝐵 (𝑦) 𝑦,
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(3)

where 𝑦(𝑡) ∈ 𝑅𝑛 is the state variable of the main system.
The slave system is

�̇� = 𝐶 + 𝐴𝑥 + 𝐵 (𝑥) 𝑥, 𝑡 ̸= 𝑡

𝑘
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(4)

Define the error state variable as

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) . (5)

We get the following error dynamical system:
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(6)

Hence, the problem to be addressed in this paper is to design
an impulsive control method such that the tracking error
variable satisfies

lim
𝑡→∞

‖𝑒 (𝑡)‖ = lim
𝑡→∞









𝑥 (𝑡) − 𝑦 (𝑡)









→ 0. (7)

3. Main Results

In this section, based on Lyapunov method and impulsive
control theory, the following theoretical results are presented.

Theorem 1. For the given class of chaotic systems, based on the
following impulsive control strategy
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(9)

the slave chaotic system (4) with any initial conditions will
synchronize the master chaotic system (3).

Proof. Choose the following Lyapunov functional candidate:
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Considering Δ
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When 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
), the time derivative of 𝑉(𝑡) along the

trajectories of the error dynamical system is given by
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For 𝐵(𝑒)𝑥 = 𝐵(𝑥)𝑒, the error dynamical system (6) can be
transformed as

̇𝑒 (𝑡) = (𝐴 + 𝐵 (𝑥) + 𝐵 (𝑦)) 𝑒 (𝑡) , 𝑡 ̸= 𝑡
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Hence
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It can be concluded that
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where
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Integrating the above inequality from 𝑡
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Then the following inequality can be obtained:
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we have

𝑉 (𝑡) ≤ 𝑉 (𝑡
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+
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One can obtain

‖𝑒 (𝑡)‖ ≤ 𝑒0
exp(1

2

𝑎 (𝑡 − 𝑡

0
)) . (23)

Hence, it can be concluded that the error dynamical system
(6) is stable. That means that the slave system (4) can
synchronize with the master system (3) based on the given
impulsive control strategy and this completes the proof.

Next, let 𝐵
𝑘
= 𝑏𝐼 and Δ

𝑘
= Δ, and based on Theorem 1,

we can derive the following theoretical results, and its proof
is omitted.

Theorem 2. For the given class of chaotic system, based on the
following impulsive control strategy

𝑎 = 𝜆max (
(𝑢 − 1)

Δ ⋅ 𝑢

+ Π

𝑇
+ Π) < 0 (24)

with

Π =

1

𝑢

(𝐴 + 𝐵 (𝑥) + 𝐵 (𝑦)) ,

𝑢 = 𝜆max [(𝐼 + 𝑏𝐼)
𝑇
(𝐼 + 𝑏𝐼)]

𝑏 < 0,

(25)

the slave chaotic system (4) with any initial conditions will
synchronize with the master chaotic system (3).
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Figure 1: Dynamic behavior of the chaotic system in case 1.

4. Example and Simulation

In this section, we will verify the proposed methodology by
giving two illustrative examples. First consider the unified
chaotic system as follows:

�̇�

1
= (25𝑟 + 10) (𝑧

2
− 𝑧

1
) ,

�̇�

2
= (28 − 35𝑟) 𝑧1

− 𝑧

1
𝑧

3
+ (29𝑟 − 1) 𝑧2

,

�̇�

3
= 𝑧

1
𝑧

2
−

𝑟 + 8

3

𝑧

3
.

(26)

It can be transformed as

�̇� = 𝐶 + 𝐴𝑧 + 𝐵 (𝑧) 𝑧 (27)

with

𝐴 =

[

[

[

−25𝑟 − 10 25𝑟 + 10 0

28 − 35𝑟 29𝑟 − 1 0

0 0 −

𝑟 + 8

3

]

]

]

,

𝐵 (𝑧) =

1

2

[

[

0 0 0

−𝑧

3
0 −𝑧

1

𝑧

2
𝑧

1
0

]

]

, 𝐶 =

[

[

0

0

0

]

]

.

(28)

Unified chaotic system has different dynamic behavior with
different parameter 𝑟. For instance, the unified chaotic system
represents Lü system when 𝑟 = 0.8, Lorenz system when 0 ≤
𝑟 < 0.8, and Chen system when 0.8 < 𝑟 ≤ 1.

The numerical simulation is with initial condition 𝑥
0
=

[7, 9, 2]

𝑇, 𝑦
0
= [−1, 3, 5]

𝑇, and the simulation step 0.001
second. Based onTheorem 2,we choose the impulsive control
parameters Δ = 0.02, 𝑏 = −0.8.

Remark 3. Figure 1 depicts the dynamic behavior of the
chaotic system in case 1. It can be seen that the state variable
moves in a scope and will never converge to a constant with
the lapse of time. Figure 2 depicts the time response of the
error variable of master-salve system in case 1. It can be seen
that the error variable closes to zero quickly based on the
given impulse control method, which verifies the correctness
of our theoretical results.
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Figure 2: Time response of the error variable in case 1.

Next, consider the following Rossler system

�̇�

1
= − 𝑧

2
− 𝑧

3
,

�̇�

2
= 𝑧

1
+ 0.15𝑧

2
,

�̇�

3
= 0.2 + 𝑧

3
(𝑧

1
− 10) .

(29)

It can be transformed as follows:

�̇� = 𝐶 + 𝐴𝑧 + 𝐵 (𝑧) 𝑧 (30)

with

𝐴 =

[

[

0 −1 −1

1 0.15 0

0 0 −10

]

]

, 𝐵 (𝑧) =

1

2

[

[

0 0 0

0 0 0

𝑧

3
0 𝑧

1

]

]

,

𝐶 =

[

[

0

0

0.2

]

]

.

(31)

The numerical simulation is with initial condition 𝑥
0
=

[−1, 5, −4]

𝑇, 𝑦
0
= [7, −6, 2]

𝑇 and the simulation step 0.001
second. Based onTheorem 2,we choose the impulsive control
parameters Δ = 0.02 and 𝑏 = −0.8.

Remark 4. Figure 3 depicts the dynamics of the chaotic
system in case 2. Figure 4 depicts the time response of the
error variable of master-salve system in case 2. It can be seen
that the error variable converges to zero quickly based on the
proposed impulse control method.

From the above numerical simulations, it can be con-
cluded that our impulsive synchronization strategy has more
practical application value compared with those specific to
one kind of chaotic system.

−15 −10 −5 0 5 10 15 20

−20
−10

0
10

20
0
5

10
15
20
25
30
35
40

y1

y
2

y
3

Figure 3: Dynamical behavior of the chaotic system in case 2.
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Figure 4: Time response of the error state variable in case 2.

5. Conclusions

This paper focuses on the chaos synchronization problem
and tries to figure out the strategies suitable for more chaotic
systems. Based on the impulsive control technique and Lya-
punov stability theory, we have presented the new impulsive
synchronization strategies for a class of chaotic systems.
Finally some numerical simulations have been carried out to
demonstrate the effectiveness of our theoretical results.
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