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The goal of this paper is to investigate the blow-up and the global existence of the solutions to the discrete 𝑝-Laplacian parabolic
equation 𝑢

𝑡
(𝑥, 𝑡) = Δ

𝑝,𝑤
𝑢(𝑥, 𝑡) + 𝜆|𝑢(𝑥, 𝑡)|

𝑝−2
𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑆 × (0,∞), 𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞), 𝑢(𝑥, 0) = 𝑢

0
, depending on

the parameters 𝑝 > 1 and 𝜆 > 0. Besides, we provide several types of the comparison principles to this equation, which play a key
role in the proof of the main theorems. In addition, we finally give some numerical examples which exploit the main results.

1. Introduction

A discrete p-Laplacian parabolic equation (a reaction-
diffusion system) has found many applications in chemical
reactions and biological phenomena. A typical example is an
autocatalytic chemical reaction between several chemicals in
which the concentration of each chemical grows (or decays)
due to diffusion and difference of concentration. In general,
many of such phenomena are modeled by

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝑤
𝑢 (𝑥, 𝑡) + 𝜆 |𝑢 (𝑥, 𝑡)|

𝑞−1
𝑢 (𝑥, 𝑡) , 𝑥 ∈ 𝑆, (1)

with some boundary and initial conditions where 𝑆 is the set
of chemicals and 𝑝 > 1, 𝑞 > 0. Here, Δ

𝑝,𝑤
is the discrete

𝑝-Laplace operator on a network 𝑆, defined by

Δ
𝑝,𝑤
𝑓 (𝑥) := ∑

𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑝−2

[𝑓 (𝑦) − 𝑓 (𝑥)] 𝜔 (𝑥, 𝑦) .

(2)

For the continuous case, solutions to the initial value problem
of (1) may blow up in a finite time or exist globally for all time,
depending on the parameters 𝑝 > 1, 𝑞 > 0, and 𝜆 ∈ R (see
[1–7] and see the book [2] for more information about the
various blow-up phenomena). In particular, the case where
𝑝 = 𝑞 − 1 > 1 has been known as the critical case at which
solutions may blow up or exist globally, depending on the
parameter 𝜆.

The goal of this paper is to investigate the blow-up and the
global existence of the solutions to the initial value problem
of the discrete 𝑝-Laplacian parabolic equation

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝑤
𝑢 (𝑥, 𝑡) + 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡) , 𝑥 ∈ 𝑆, (3)

on a network 𝑆with boundary, which is the critical case of (1).
The continuous case of (3) has been studied by many

authors. For example, the case where 1 < 𝑝 < 2 was studied
in [3, 6] and the case where 𝑝 > 2 was studied in [3, 4].

For the discrete case of (1), the authors studied the general
theory of the equation for the case 𝑝 = 2 in [8] and Xin
et al. studied the blow-up solutions and global solutions for
the case where 𝑝 = 2 and 𝜆 = 1 in [9]. On the other hand,
for the case 𝜆 ≤ 0 in (1), Chung et al. [10, 11] investigate the
positive solutions and extinctive solutions, depending on the
parameters 𝑝 and 𝑞. But, the case where 𝑝 > 1 and 𝜆 > 0 in
(3) has not been studied yet. Thus, the purpose of this paper
is to give a complete solution to such a problem about (3).

Themain results of this paper are summarized as follows.

Theorem 1. (i) For 𝑝 > 2 and 𝜆 > 𝜆
0
, the solution to

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝑤
𝑢 (𝑥, 𝑡) + 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑆 × (0,∞) ,
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𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0

(4)

blows up in a finite time𝑇, for every nonnegative and nontrivial
initial data 𝑢

0
.

Here, 𝜆
0
is the first eigenvalue of the p-Laplace operator

Δ
𝑝,𝑤

on 𝑆. Moreover, it is shown that the blow-up rate of the
solution is estimated by

max
𝑥∈𝑆

𝑢 (𝑥, 𝑡) ≥ [(𝑝 − 2) (𝜆 − 𝜆
0
) (𝑇 − 𝑡)]

−(1/(𝑝−2))

,

𝑡 > 0.

(5)

(ii) For 𝑝 > 2 and 𝜆 ≤ 𝜆
0
, the solution to (4) is global, for

every nonnegative initial data 𝑢
0
.

(iii) For 1 < 𝑝 ≤ 2, the nonnegative solution to (4) is global
for every nonnegative initial data 𝑢

0
. In particular, when 1 <

𝑝 < 2 and 𝜆 < 𝜆
0
, there exists 𝑇 > 0 (extinction time) such

that 𝑢(𝑥, 𝑡) ≡ 0 for all 𝑡 ≥ 𝑇.

Besides, we provide several types of the comparison
principles to (4) in Section 2, which play a key role in the
proof of the main theorems and we give some numerical
examples in the final section which exploit the main results.

2. Preliminaries and Discrete
Comparison Principles

In this section, we start with some definitions of graph
theoretic notions frequently used throughout this paper (see
[8, 12, 13] for more details).

For a graph 𝐺 = 𝐺(𝑉, 𝐸) we mean finite sets 𝑉 of vertices
(or nodes) with a set 𝐸 of two-element subsets of 𝑉 (whose
elements are called edges). The set of vertices and edges of a
graph 𝐺 is sometimes denoted by 𝑉(𝐺) and 𝐸(𝐺), or simply
𝑉 and 𝐸, respectively. Conventionally, we denote by 𝑥 ∈ 𝑉 or
𝑥 ∈ 𝐺 the facts that 𝑥 is a vertex in 𝐺.

A graph 𝐺 is said to be simple if it has neither multiple
edges nor loops, and𝐺 is said to be connected if, for every pair
of vertices 𝑥 and 𝑦, there exists a sequence (called a path) of
vertices 𝑥 = 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛−1
, 𝑥
𝑛
= 𝑦 such that 𝑥

𝑗−1
and 𝑥

𝑗
are

connected by an edge (called adjacent) for 𝑗 = 1, . . . , 𝑛.
A graph 𝑆 = 𝑆(𝑉󸀠, 𝐸󸀠) is said to be a subgraph of 𝐺(𝑉, 𝐸)

if 𝑉󸀠 ⊂ 𝑉 and 𝐸󸀠 ⊂ 𝐸.
Aweight on a graph𝐺 is a function𝜔 : 𝑉×𝑉 → [0, +∞)

satisfying

(i) 𝜔(𝑥, 𝑥) = 0, 𝑥 ∈ 𝑉,
(ii) 𝜔(𝑥, 𝑦) = 𝜔(𝑦, 𝑥) if 𝑥 ∼ 𝑦,
(iii) 𝜔(𝑥, 𝑦) = 0 if and only if 𝑥 ≁ 𝑦.

Here, 𝑥∼𝑦means that two vertices 𝑥 and 𝑦 are connected
(adjacent) by an edge in 𝐸. A graph associated with a weight
is said to be a weight graph or a network.

For a subgraph 𝑆 of a graph𝐺(𝑉, 𝐸), the (vertex) boundary
𝜕𝑆 of 𝑆 is the set of all vertices 𝑧 ∈ 𝑉 \ 𝑆 but adjacent to some
vertex in 𝑆; that is,

𝜕𝑆 := {𝑧 ∈ 𝑉 \ 𝑆 | 𝑧 ∼ 𝑦 for some 𝑦 ∈ 𝑆} . (6)

By 𝑆 we denote a graph, whose vertices and edges are in both
𝑆 and 𝜕𝑆. Throughout this paper, all subgraphs 𝑆 and 𝑆 in our
concern are assumed to be simple and connected.

For a function 𝑢 : 𝑆 → R, the discrete p-Laplacian Δ
𝑝,𝜔

on 𝑆 is defined by

Δ
𝑝,𝜔
𝑢 (𝑥) := ∑

𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢(𝑦) − 𝑢(𝑥)
󵄨󵄨󵄨󵄨
𝑝−2

[𝑢 (𝑦) − 𝑢 (𝑥)] 𝜔 (𝑥, 𝑦)

(7)

for 𝑥 ∈ 𝑆.
The following lemmas are useful throughout this paper.

Lemma 2 (see [14, 15]). For functions 𝑓, 𝑔 : 𝑆 → R, one has
the following:

(i) 2∑
𝑥∈𝑆
𝑔(𝑥)[−Δ

𝑝,𝜔
𝑓(𝑥)] = ∑

𝑥,𝑦∈𝑆
|𝑓(𝑦) − 𝑓(𝑥)|

𝑝−2

[𝑓(𝑦) − 𝑓(𝑥)] ⋅ [𝑔(𝑦) − 𝑔(𝑥)]𝜔(𝑥, 𝑦);
(ii) 2∑

𝑥∈𝑆
𝑓(𝑥)[−Δ

𝑝,𝜔
𝑓(𝑥)] = ∑

𝑥,𝑦∈𝑆
|𝑓(𝑥) − 𝑓(𝑦)|

𝑝
𝜔(𝑥,

𝑦).

Lemma 3 (see [14, 15]). For 𝑝 > 1, there exist 𝜆
0
> 0 and

𝜙
0
(𝑥) > 0, 𝑥 ∈ 𝑆, such that

−Δ
𝑝,𝜔
𝜙
0
(𝑥) = 𝜆

0
𝜙
𝑝−1

0
(𝑥) , 𝑥 ∈ 𝑆,

𝜙
0
(𝑥) = 0, 𝑥 ∈ 𝜕𝑆,

∑

𝑥∈𝑆

𝜙
𝑝

0
(𝑥) = 1.

(8)

Moreover,

𝜆
0
= min
𝑢∈A,𝑢 ̸≡ 0

(1/2)∑
𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

∑
𝑥∈𝑆
|𝑢 (𝑥)|

𝑝

≤ ∑

𝑦∈𝑆

𝜔 (𝑥, 𝑦) , 𝑥 ∈ 𝑆,

(9)

whereA := {𝑢 : 𝑆 → R | 𝑢 = 0 𝑜𝑛 𝜕𝑆}.

In the above, the number 𝜆
0
is called the first eigenvalue

of Δ
𝑝,𝜔

on a network 𝑆 with corresponding eigenfunction 𝜙
0

(see [12, 13] for the spectral theory of the Laplacian operators).
The rest of this section is devoted to proving the compari-

son principles for the discrete𝑝-Laplacian parabolic equation

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) + 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑆 × (0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
, 𝑥 ∈ 𝑆,

(10)

where 𝜆 > 0 and 𝑝 > 1, in order to study the blow-up
occurrence and global existence, which we begin in the next
section.

Now, we state the comparison principles and some related
corollaries.
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Theorem 4. Let 𝑇 > 0 (𝑇 may be +∞), 𝜆 > 0, and 𝑝 ≥ 2.
Suppose that real-valued functions 𝑢(𝑥, ⋅), V(𝑥, ⋅) ∈ 𝐶[0, 𝑇) are
differentiable in (0, 𝑇) for each 𝑥 ∈ 𝑆 and satisfy

𝑢
𝑡
(𝑥, 𝑡) − Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) − 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡)

≥ V
𝑡
(𝑥, 𝑡) − Δ

𝑝,𝜔
V (𝑥, 𝑡) − 𝜆 |V (𝑥, 𝑡)|𝑝−2 V (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇) ,

𝑢 (𝑥, 𝑡) ≥ V (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝜕𝑆 × [0, 𝑇) ,

𝑢 (𝑥, 0) ≥ V (𝑥, 0) , 𝑥 ∈ 𝑆.

(11)

Then 𝑢(𝑥, 𝑡) ≥ V(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇).

Proof. Let 𝑇󸀠 > 0 be arbitrarily given with 𝑇󸀠 < 𝑇. Then by
the mean value theorem, for each 𝑥 ∈ 𝑆 and 0 ≤ 𝑡 ≤ 𝑇󸀠,

|𝑢 (𝑥, 𝑡)|
𝑝−2
𝑢 (𝑥, 𝑡) − |V (𝑥, 𝑡)|𝑝−2 V (𝑥, 𝑡)

= (𝑝 − 1)
󵄨󵄨󵄨󵄨𝜉 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
𝑝−2

[𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)]
(12)

for some 𝜉(𝑥, 𝑡) lying between 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡). Then it
follows from (11) that we have

𝑢
𝑡
− Δ
𝑝,𝜔
𝑢 − 𝜆 (𝑝 − 1)

󵄨󵄨󵄨󵄨𝜉 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
𝑝−2

𝑢 (𝑥, 𝑡)

≥ V
𝑡
− Δ
𝑝,𝜔

V − 𝜆 (𝑝 − 1) 󵄨󵄨󵄨󵄨𝜉 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
𝑝−2 V (𝑥, 𝑡)

(13)

for all (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇󸀠]. Let 𝑢̃, Ṽ : 𝑆 × [0, 𝑇󸀠] → R be the
functions defined by

𝑢̃ (𝑥, 𝑡) := 𝑒
−2𝜆(𝑝−1)𝐿𝑡

𝑢 (𝑥, 𝑡) ,

Ṽ (𝑥, 𝑡) := 𝑒−2𝜆(𝑝−1)𝐿𝑡V (𝑥, 𝑡) ,
(14)

where 𝐿 := max
|𝑟|≤𝑀
|𝑟
𝑝−2
| and𝑀 := max

𝑥∈𝑆,𝑡∈[0,𝑇
󸀠
]
{|𝑢(𝑥, 𝑡)|,

|V(𝑥, 𝑡)|}.
Then inequality (13) can be written as

𝑢̃
𝑡
(𝑥, 𝑡) − Ṽ

𝑡
(𝑥, 𝑡) − 𝑒

2𝜆𝐿(𝑝−1)(𝑝−2)𝑡

× [Δ
𝑝,𝜔
𝑢̃ (𝑥, 𝑡) − Δ

𝑝,𝜔
Ṽ (𝑥, 𝑡)] + 𝜆 (𝑝 − 1)

× [2𝐿 −
󵄨󵄨󵄨󵄨𝜉 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
𝑝−2

] [𝑢̃ (𝑥, 𝑡) − Ṽ (𝑥, 𝑡)] ≥ 0

(15)

for all (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇󸀠]. Since 𝑆 × [0, 𝑇󸀠] is compact, there
exists (𝑥

0
, 𝑡
0
) ∈ 𝑆 × [0, 𝑇

󸀠
] such that

(𝑢̃ − Ṽ) (𝑥
0
, 𝑡
0
) = min
𝑥∈𝑆

min
0≤𝑡≤𝑇

󸀠

(𝑢̃ − Ṽ) (𝑥, 𝑡) . (16)

Then we have only to show that (𝑢̃ − Ṽ)(𝑥
0
, 𝑡
0
) ≥ 0. Suppose

that (𝑢̃ − Ṽ)(𝑥
0
, 𝑡
0
) < 0, on the contrary. Since (𝑢̃ − Ṽ)(𝑥, 𝑡) ≥ 0

on both 𝜕𝑆 × [0, 𝑇󸀠] and 𝑆 × {0}, we have (𝑥
0
, 𝑡
0
) ∈ 𝑆 × (0, 𝑇

󸀠
].

Then we have

𝑢̃
𝑡
(𝑥
0
, 𝑡
0
) ≤ Ṽ
𝑡
(𝑥
0
, 𝑡
0
) , Δ

𝑝,𝜔
𝑢̃ (𝑥
0
, 𝑡
0
) ≥ Δ

𝑝,𝜔
Ṽ (𝑥
0
, 𝑡
0
) .

(17)

Since |𝜉𝑝−2(𝑥, 𝑡)| ≤ max
|𝑟|≤𝑀
|𝑟
𝑝−2
| = 𝐿, we have

[2𝐿 −
󵄨󵄨󵄨󵄨𝜉(𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

] (𝑢̃ − Ṽ) (𝑥
0
, 𝑡
0
) ≤ 𝐿 (𝑢̃ − Ṽ) (𝑥

0
, 𝑡
0
) < 0.

(18)

Combining (17) and (18), we obtain

𝑢̃
𝑡
(𝑥
0
, 𝑡
0
) − Ṽ
𝑡
(𝑥
0
, 𝑡
0
) − 𝑒
2𝜆𝐿(𝑝−1)(𝑝−2)𝑡

0

× [Δ
𝑝,𝜔
𝑢̃ (𝑥
0
, 𝑡
0
) − Δ
𝑝,𝜔

Ṽ (𝑥
0
, 𝑡
0
)] + 𝜆 (𝑝 − 1)

× [2𝐿 −
󵄨󵄨󵄨󵄨𝜉 (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

] [𝑢̃ (𝑥
0
, 𝑡
0
) − Ṽ (𝑥

0
, 𝑡
0
)] < 0

(19)

which contradicts (15). Therefore, 𝑢̃(𝑥, 𝑡) − Ṽ(𝑥, 𝑡) ≥ 0 for all
(𝑥, 𝑡) ∈ 𝑆×(0, 𝑇

󸀠
] so that we get 𝑢(𝑥, 𝑡) ≥ V(𝑥, 𝑡) for all (𝑥, 𝑡) ∈

𝑆 × [0, 𝑇), since 𝑇󸀠 < 𝑇 is arbitrarily given.

Now, we obtain a strict comparison principle as a corol-
lary.

Corollary 5 (strict comparison principle). In Theorem 4, if
𝑢
0
(𝑥
∗
) > V

0
(𝑥
∗
) for some 𝑥∗ ∈ 𝑆, then 𝑢(𝑥, 𝑡) > V(𝑥, 𝑡) for

all (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇).

Proof. First, note that 𝑢 ≥ V on 𝑆 × [0, 𝑇) by Theorem 4. Let
𝑇
󸀠
> 0 be arbitrarily given with 𝑇󸀠 < 𝑇 and let 𝜏 : 𝑆 × [0,

𝑇
󸀠
] → R be a function defined by

𝜏 (𝑥, 𝑡) := 𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇󸀠] . (20)

Then 𝜏(𝑥, 𝑡) ≥ 0 for all (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇󸀠]. Since |𝑢(𝑥∗,
𝑡)|
𝑝−2
𝑢(𝑥
∗
, 𝑡) ≥ |V(𝑥∗, 𝑡)|𝑝−2V(𝑥∗, 𝑡) for all 0 < 𝑡 ≤ 𝑇󸀠, and

𝜏(𝑥
∗
, 0) > 0, we obtain from inequality (15) that

𝜏
𝑡
(𝑥
∗
, 𝑡) − [Δ

𝑝,𝜔
𝑢 (𝑥
∗
, 𝑡) − Δ

𝑝,𝜔
V (𝑥∗, 𝑡)] ≥ 0, (21)

for all 0 < 𝑡 ≤ 𝑇󸀠. Then by the mean value theorem, for each
𝑦 ∈ 𝑆 and 𝑡 with 0 ≤ 𝑡 ≤ 𝑇󸀠, it follows that

󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑡) − 𝑢 (𝑥
∗
, 𝑡)
󵄨󵄨󵄨󵄨
𝑝−2

[𝑢 (𝑦, 𝑡) − 𝑢 (𝑥
∗
, 𝑡)]

−
󵄨󵄨󵄨󵄨V (𝑦, 𝑡) − V (𝑥

∗
, 𝑡)
󵄨󵄨󵄨󵄨
𝑝−2

[V (𝑦, 𝑡) − V (𝑥∗, 𝑡)]

= (𝑝 − 1)
󵄨󵄨󵄨󵄨𝜂 (𝑥
∗
, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨
𝑝−2

[𝜏 (𝑦, 𝑡) − 𝜏 (𝑥
∗
, 𝑡)] ,

(22)

and |𝜂(𝑥∗, 𝑦, 𝑡)| < 2𝑀 where 𝑀 := max
0<𝑡≤𝑇

󸀠{|𝑢(𝑥
∗
, 𝑡)|,

|V(𝑥∗, 𝑡)|}.
Then inequality (21) gives

𝜏
𝑡
(𝑥
∗
, 𝑡) ≥ ∑

𝑦∈𝑆

(𝑝 − 1)
󵄨󵄨󵄨󵄨𝜂 (𝑥
∗
, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨
𝑝−2

× [𝜏 (𝑦, 𝑡) − 𝜏 (𝑥
∗
, 𝑡)] 𝜔 (𝑥

∗
, 𝑦)

≥ −𝑑 (𝑝 − 1) [2𝑀]
𝑝−2
𝜏 (𝑥
∗
, 𝑡) ,

(23)

where 𝑑 = ∑
𝑦∈𝑆
𝜔(𝑥
∗
, 𝑦). This implies

𝜏 (𝑥
∗
, 𝑡) ≥ 𝜏 (𝑥

∗
, 0) 𝑒
−𝑑(𝑝−1)(2𝑀)

𝑝−2
𝑡
> 0, 𝑡 ∈ [0, 𝑇

󸀠
] . (24)
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Now, suppose there exists (𝑥
0
, 𝑡
0
) ∈ 𝑆 × (0, 𝑇

󸀠
] such that

𝜏 (𝑥
0
, 𝑡
0
) = min
𝑥∈𝑆,0<𝑡≤𝑇

󸀠

𝜏 (𝑥, 𝑡) = 0. (25)

Then

𝜏
𝑡
(𝑥
0
, 𝑡
0
) ≤ 0,

Δ
𝑝,𝜔
𝑢 (𝑥
0
, 𝑡
0
) ≥ Δ

𝑝,𝜔
V (𝑥
0
, 𝑡
0
) .

(26)

Hence, inequality (21) gives

0 ≤ 𝜏
𝑡
(𝑥
0
, 𝑡
0
) − [Δ

𝑝,𝜔
𝑢 (𝑥
0
, 𝑡
0
) − Δ
𝑝,𝜔

V (𝑥
0
, 𝑡
0
)] ≤ 0. (27)

Therefore,

Δ
𝑝,𝜔
𝑢 (𝑥
0
, 𝑡
0
) = Δ

𝑝,𝜔
V (𝑥
0
, 𝑡
0
) ; (28)

that is,

∑

𝑦∈𝑆

{
󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑡0) − 𝑢 (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

[𝑢 (𝑦, 𝑡
0
) − 𝑢 (𝑥

0
, 𝑡
0
)]

−
󵄨󵄨󵄨󵄨V (𝑦, 𝑡0) − V (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

[V (𝑦, 𝑡
0
) − V (𝑥

0
, 𝑡
0
)]}

× 𝜔 (𝑥
0
, 𝑦) = 0,

(29)

which implies that 𝜏(𝑦, 𝑡
0
) = 0 for all 𝑦 ∈ 𝑆with 𝑦 ∼ 𝑥

0
. Now,

for any 𝑥 ∈ 𝑆, there exists a path

𝑥
0
∼ 𝑥
1
∼ ⋅ ⋅ ⋅ ∼ 𝑥

𝑛−1
∼ 𝑥
𝑛
= 𝑥, (30)

since 𝑆 is connected. By applying the same argument as above
inductively we see that 𝜏(𝑥, 𝑡

0
) = 0 for every 𝑥 ∈ 𝑆. This gives

a contradiction to (24).

For the case 1 < 𝑝 < 2, it is well known that (10) may
not have unique solution, in general, and the comparison
principle in usual form as in Theorem 4 may not hold.
Instead, with a strict condition on the parabolic boundary we
obtain a similar comparison principle as follows.

Theorem 6. Let 𝑇 > 0 (𝑇 may be +∞), 𝜆 > 0, and 𝑝 > 1.
Suppose that real-valued functions 𝑢(𝑥, ⋅), V(𝑥, ⋅) ∈ 𝐶[0, 𝑇) are
differentiable in (0, 𝑇) for each 𝑥 ∈ 𝑆 and satisfy

𝑢
𝑡
(𝑥, 𝑡) − Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) − 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡)

≥ V
𝑡
(𝑥, 𝑡) − Δ

𝑝,𝜔
V (𝑥, 𝑡) − 𝜆 |V (𝑥, 𝑡)|𝑝−2 V (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇) ,

𝑢 (𝑥, 𝑡) > V (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝜕𝑆 × [0, 𝑇) ,

𝑢 (𝑥, 0) > V (𝑥, 0) , 𝑥 ∈ 𝑆.

(31)

Then 𝑢(𝑥, 𝑡) ≥ V(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇).

Proof. Let 𝑇󸀠 > 0 and 𝛿 > 0 be arbitrarily given with 𝑇󸀠 < 𝑇
and 0 < 𝛿 < min

(𝑥,𝑡)∈Γ
[𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)], respectively, where

Γ := {(𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇
󸀠
] | 𝑡 = 0 or 𝑥 ∈ 𝜕𝑆} (called a parabolic

boundary).
Now, let a function 𝜏 : 𝑆 × (0, 𝑇󸀠] → R be a function

defined by

𝜏 (𝑥, 𝑡) := [𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)] − 𝛿, (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇󸀠] .
(32)

Then 𝜏(𝑥, 𝑡) > 0 on Γ. Now, we suppose that min
𝑥∈𝑆,0<𝑡≤𝑇

󸀠

𝜏(𝑥, 𝑡) < 0. Then there exists (𝑥
0
, 𝑡
0
) ∈ 𝑆 × (0, 𝑇

󸀠
] such that

(i) 𝜏(𝑥
0
, 𝑡
0
) = 0,

(ii) 𝜏(𝑦, 𝑡
0
) ≥ 𝜏(𝑥

0
, 𝑡
0
) = 0, 𝑦 ∈ 𝑆,

(iii) 𝜏(𝑥, 𝑡) > 0, (𝑥, 𝑡) ∈ 𝑆 × (0, 𝑡
0
).

Then

𝜏
𝑡
(𝑥
0
, 𝑡
0
) ≤ 0, Δ

𝑝,𝜔
𝑢 (𝑥
0
, 𝑡
0
) ≥ Δ

𝑝,𝜔
V (𝑥
0
, 𝑡
0
) , (33)

since𝑢(𝑦, 𝑡
0
)−𝑢(𝑥

0
, 𝑡
0
) ≥ V(𝑦, 𝑡

0
)−V(𝑥

0
, 𝑡
0
). Hence, inequality

(31) gives

0 ≥ 𝜏
𝑡
(𝑥
0
, 𝑡
0
)

≥ 𝜆 [
󵄨󵄨󵄨󵄨𝑢 (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

𝑢 (𝑥
0
, 𝑡
0
) −
󵄨󵄨󵄨󵄨V (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2

× V (𝑥
0
, 𝑡
0
)]

= 𝜆 [
󵄨󵄨󵄨󵄨V (𝑥0, 𝑡0) + 𝛿

󵄨󵄨󵄨󵄨
𝑝−2

(V (𝑥
0
, 𝑡
0
) + 𝛿)

−
󵄨󵄨󵄨󵄨V (𝑥0, 𝑡0)

󵄨󵄨󵄨󵄨
𝑝−2 V (𝑥

0
, 𝑡
0
)] > 0,

(34)

which leads to a contradiction. Hence, 𝜏(𝑥, 𝑡) ≥ 0 for all
(𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇

󸀠
] so that we have 𝑢(𝑥, 𝑡) ≥ V(𝑥, 𝑡) for all

(𝑥, 𝑡) ∈ 𝑆 × (0, 𝑇), since 𝛿 and 𝑇󸀠 are arbitrary.

3. Blow-Up and Global Existence

In this section, we discuss the blow-up and global existence
of the equation

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) + 𝜆 |𝑢 (𝑥, 𝑡)|

𝑝−2
𝑢 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑆 × (0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
≥ 0, 𝑥 ∈ 𝑆,

(35)

where 𝜆 > 0, 𝑝 > 1, and the initial data 𝑢
0
is nontrivial

on 𝑆. According to the comparison principle in the previous
section, the nonhomogeneous term𝜆|𝑢(𝑥, 𝑡)|𝑝−2𝑢(𝑥, 𝑡) can be
written as a simpler form as 𝜆𝑢𝑝−1(𝑥, 𝑡), for the case where
𝑝 ≥ 2.

Definition 7 (blow-up). We say that a solution 𝑢 to an
equation defined on a network 𝑆 blows up in finite time 𝑇,
if there exists 𝑥 ∈ 𝑆 such that |𝑢(𝑥, 𝑡)| → +∞ as 𝑡 ↗ 𝑇−.
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Theorem 8. For 𝑝 > 2 and 𝜆 > 0, the solution to

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) + 𝜆𝑢

𝑝−1
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝑆 × (0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0 (nontrivial)

(36)

blows up at some 𝑇∗, provided that

−
1

2
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑢0 (𝑦)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦) + 𝜆∑

𝑥∈𝑆

𝑢
𝑝

0
(𝑥) > 0. (37)

Proof. First, we note that 𝑢(𝑥, 𝑡) > 0 on 𝑆 × (0,∞), by the
strict comparison principle (Corollary 5). Now, we define a
functional by

𝐽 (𝑡) := −
1

2𝑝
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+
𝜆

𝑝
∑

𝑥∈𝑆

|𝑢 (𝑥, 𝑡)|
𝑝
, 𝑡 ≥ 0.

(38)

Then by (37),

𝐽 (0) = −
1

2𝑝
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑢0 (𝑦)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+
𝜆

𝑝
∑

𝑥∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

> 0.

(39)

Multiplying (36) by 𝑢 and summing up over 𝑆, we obtain
from Lemma 2

𝑑

𝑑𝑡
∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡) = − ∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+ 2𝜆∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡) .

(40)

Multiplying (36) by 𝑢
𝑡
and summing up over 𝑆, we obtain

from Lemma 2

∑

𝑥∈𝑆

𝑢
2

𝑡
(𝑥, 𝑡) = −∑

𝑥∈𝑆

𝑢
𝑡
(𝑥, 𝑡) [−Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡)]

+
𝑑

𝑑𝑡
[

[

𝜆

𝑝
∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡)]

]

,

∑

𝑥∈𝑆

𝑢
𝑡
(𝑥, 𝑡) (−Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡))

=
1

2
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
𝑝−2

× [𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)] [𝑢
𝑡
(𝑦) − 𝑢

𝑡
(𝑥)]

× 𝜔 (𝑥, 𝑦)

=
𝑑

𝑑𝑡
[

[

1

2𝑝
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)]

]

.

(41)

Then it follows that

∑

𝑥∈𝑆

𝑢
2

𝑡
(𝑥, 𝑡) = −

𝑑

𝑑𝑡
[

[

1

2𝑝
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)]

]

+
𝑑

𝑑𝑡
[

[

𝜆

𝑝
∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡)]

]

.

(42)

Moreover, it follows from (42) that

𝐽
󸀠
(𝑡) = ∑

𝑥∈𝑆

𝑢
2

𝑡
(𝑥, 𝑡) ,

𝐽 (𝑡) = ∫

𝑡

0

𝐽
󸀠
(𝑠) 𝑑𝑠 + 𝐽 (0) = ∫

𝑡

0

∑

𝑥∈𝑆

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 + 𝐽 (0) .

(43)

Now, we introduce a new function

𝐼 (𝑡) = ∫

𝑡

0

∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑠) 𝑑𝑠 +𝑀, 𝑡 ≥ 0, (44)

where𝑀 > 0 is a constant to be determined later. Then by
(40) we have

𝐼
󸀠
(𝑡) = ∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡) , (45)

𝐼
󸀠󸀠
(𝑡) =

𝑑

𝑑𝑡
∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡)

= − ∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+ 2𝜆∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡)

= 2𝑝[

[

𝐽 (0) + ∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠]

]

.

(46)

Moreover,

𝐼
󸀠
(𝑡) = ∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡)

= ∑

𝑥∈𝑆

∫

𝑡

0

2𝑢 (𝑥, 𝑠) 𝑢
𝑡
(𝑥, 𝑠) 𝑑𝑠

+ ∑

𝑥∈𝑆

𝑢
2

0
(𝑥) .

(47)
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Using the Schwarz inequality, we obtain

{𝐼
󸀠
(𝑡)}
2

≤ 4 (1 + 𝜖) [

[

∑

𝑥∈𝑆

∫

𝑡

0

𝑢 (𝑥, 𝑠) 𝑢
𝑡
(𝑥, 𝑠) 𝑑𝑠]

]

2

+ (1 +
1

𝜖
)[

[

∑

𝑥∈𝑆

𝑢
2

0
(𝑥)]

]

2

≤ 4 (1 + 𝜖) [

[

∑

𝑥∈𝑆

(∫

𝑡

0

𝑢
2
(𝑥, 𝑠) 𝑑𝑠)

1/2

(∫

𝑡

0

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠)

1/2

]

]

2

+ (1 +
1

𝜖
)[

[

∑

𝑥∈𝑆

𝑢
2

0
(𝑥)]

]

2

≤ 4 (1 + 𝜖)(∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2
(𝑥, 𝑠) 𝑑𝑠)(∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠)

+ (1 +
1

𝜖
)[

[

∑

𝑥∈𝑆

𝑢
2

0
(𝑥)]

]

2

,

(48)

where 𝜖 > 0 is arbitrary. Combining the above estimates (46),
(47), and (48), we obtain that, for 𝛼 = 𝜖 = √𝑝/2 − 1 > 0,

𝐼
󸀠󸀠
(𝑡) 𝐼 (𝑡) − (1 + 𝛼) 𝐼

󸀠
(𝑡)
2

≥ 2𝑝[

[

𝐽 (0) + ∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠]

]

× [

[

∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2
(𝑥, 𝑠) 𝑑𝑠 +𝑀]

]

− 4 (1 + 𝛼) (1 + 𝜖) [

[

∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2
(𝑥, 𝑠) 𝑑𝑠]

]

× [

[

∑

𝑥∈𝑆

∫

𝑡

0

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠]

]

− (1 + 𝛼) (1 +
1

𝜖
)[

[

∑

𝑥∈𝑆

𝑢
2

0
(𝑥)]

]

2

≥ 2𝑝𝑀 ⋅ 𝐽 (0) − (1 + 𝛼) (1 +
1

𝜖
)[

[

∑

𝑥∈𝑆

𝑢
2

0
(𝑥)]

]

2

.

(49)

Since 𝐽(0) > 0 by assumption, we can choose𝑀 > 0 to be
large enough so that

𝐼
󸀠󸀠
(𝑡) 𝐼 (𝑡) − (1 + 𝛼) 𝐼

󸀠
(𝑡)
2
> 0. (50)

Thus inequality (50) implies that, for 𝑡 ≥ 0,

𝑑

𝑑𝑡
[
𝐼
󸀠
(𝑡)

𝐼𝛼+1 (𝑡)
] > 0

i.e., 𝐼󸀠 (𝑡) ≥ [ 𝐼
󸀠
(0)

𝐼𝛼+1 (0)
] 𝐼
𝛼+1
(𝑡) .

(51)

Therefore, it follows that 𝐼(𝑡) cannot remain finite for all 𝑡 > 0.
In other words, the solutions 𝑢(𝑥, 𝑡) blow up at some time
𝑇
∗.

Remark 9. (i) Condition (37) implies that

𝜆 >
(1/2)∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑢0 (𝑦)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

∑
𝑥∈𝑆
𝑢
𝑝

0
(𝑥)

≥ 𝜆
0
, (52)

where 𝜆
0
is the first eigenvalue of Δ

𝑝,𝜔
.

(ii) The initial data 𝑢
0
with 𝐽(0) > 0 always exists. In fact,

consider an eigenvalue 𝜆
0
> 0 and eigenfunction 𝜙

0
(𝑥) > 0

in Lemma 3. Taking 𝑢
0
(𝑥) = 𝜙

0
(𝑥), then we have

𝐽 (0) = −
1

𝑝
∑

𝑥∈𝑆

𝜙
0
(𝑥) [−Δ

𝑝,𝜔
𝜙
0
(𝑥)] +

𝜆

𝑝
∑

𝑥∈𝑆

𝜙
𝑝

0
(𝑥)

=
𝜆 − 𝜆
0

𝑝
∑

𝑥∈𝑆

𝜙
𝑝

0
(𝑥) > 0,

(53)

where 𝜆 > 𝜆
0
.

(iii)When the solution to (37) is global, thenwemust have

𝐽 (𝑡) = −
1

2𝑝
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+
𝜆

𝑝
∑

𝑥∈𝑆

|𝑢 (𝑥, 𝑡)|
𝑝
< 0

(54)

for all 𝑡 > 0.
(iv) The blow-up time in the above can be estimated

roughly. Taking

𝑀 :=
(𝑝/ (𝑝 − 2)) (1 + √𝑝/2) [∑

𝑥∈𝑆
𝑢
2

0
(𝑥)]
2

−∑
𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑢0 (𝑦)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦) + 2𝜆∑
𝑥∈𝑆

󵄨󵄨󵄨󵄨𝑢0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

(55)

we see that

𝐼
󸀠
(𝑡) ≥ [

∑
𝑥∈𝑆
𝑢
2

0
(𝑥)

𝑀𝛼+1
] 𝐼
𝛼+1
(𝑡) , 𝑡 > 0,

𝐼 (0) = 𝑀,

(56)

which implies

𝐼 (𝑡) ≥ [
1

𝑀𝛼
−
𝛼∑
𝑥∈𝑆
𝑢
2

0
(𝑥)

𝑀𝛼+1
𝑡]

−(1/𝛼)

, (57)

where 𝛼 = √𝑝/2 − 1 > 0. Then the blow-up time 𝑇∗ satisfies

0 < 𝑇
∗
≤

𝑀

𝛼∑
𝑥∈𝑆
𝑢2
0
(𝑥)
. (58)

Now, we state the main theorem as follows.
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Theorem 10. The solution to (36) with 𝑝 > 2 and 𝜆 > 𝜆
0

blows up in finite time, for every nonnegative and nontrivial
initial data 𝑢

0
.

Proof. First, we note that (36) has a unique solution such that

𝑢 (𝑥, 𝑡) > 0, 𝑥 ∈ 𝑆, 𝑡 > 0. (59)

Take 𝑡
0
> 0, 𝑘 > 0 arbitrarily and consider an equation

V
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝜔
V (𝑥, 𝑡) + 𝜆V𝑝−1 (𝑥, 𝑡) , 𝑥 ∈ 𝑆, 𝑡 > 𝑡

0
,

V (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕𝑆, 𝑡 ≥ 𝑡
0

V (𝑥, 𝑡
0
) = 𝑘𝜙

0
(𝑥) , 𝑥 ∈ 𝑆,

(60)

where 𝜙
0
is the eigenfunction corresponding to the first

eigenvalue 𝜆
0
> 0. Then the initial data V(𝑥, 𝑡

0
) satisfies

−
1

2
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨V (𝑥, 𝑡0) − V (𝑦, 𝑡0)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦) + 𝜆∑

𝑥∈𝑆

V𝑝 (𝑥, 𝑡
0
)

= 𝑘
𝑝
(𝜆 − 𝜆

0
) ∑

𝑥∈𝑆

𝜙
𝑝

0
(𝑥) > 0.

(61)

Then, byTheorem 8, the solution V(𝑥, 𝑡) is positive and blows
up in a finite time. Since

𝑢 (𝑥, 𝑡) = 0 = V (𝑥, 𝑡) , 𝑥 ∈ 𝑆, 𝑡 ≥ 𝑡
0
,

𝑢 (𝑥, 𝑡
0
) > V (𝑥, 𝑡

0
) = 𝑘𝜙

0
(𝑥) , 𝑥 ∈ 𝑆

(62)

for a small 𝑘 > 0, the comparison principle enables us to see

0 < V (𝑥, 𝑡) ≤ 𝑢 (𝑥, 𝑡) 𝑥 ∈ 𝑆, 𝑡 ≥ 𝑡
0
, (63)

which completes the proof.

Remark 11. According to Remark 9 (iv) to Theorem 8, the
blow-up time for the solution to (36) is estimated by

0 < 𝑇
∗
≤

𝑝 (1 + √𝑝/2)
2

𝑘𝑝−2 (𝑝 − 2)
2

(𝜆 − 𝜆
0
)

[

[

∑

𝑥∈𝑆

𝜙
2

0
(𝑥)]

]

2

. (64)

We now derive the lower bound for the maximum
function of blow-up solutions.

Theorem 12. Let 𝑢 be the solutions to (36) blowing up at finite
time 𝑇. Then it follows that

max
𝑥∈𝑆

𝑢 (𝑥, 𝑡) ≥ [(𝑝 − 2) (𝜆 − 𝜆
0
) (𝑇 − 𝑡)]

−(1/(𝑝−2))

(65)

for all 𝑡 > 0.

Proof. For each 𝑡 > 0, let 𝑥
𝑡
∈ 𝑆 be the node such that

𝑢 (𝑥
𝑡
, 𝑡) = max

𝑥∈𝑆

𝑢 (𝑥, 𝑡) . (66)

In fact, we note that 𝑢(𝑥
𝑡
, 𝑡) is continuous on [0,∞) and

differentiable for almost all 𝑡 > 0. Then (36) can be written
as

𝑢
𝑡
(𝑥
𝑠
, 𝑠) = Δ

𝑝,𝜔
𝑢 (𝑥
𝑠
, 𝑠) + 𝜆𝑢

𝑝−1
(𝑥
𝑠
, 𝑠)

= ∑

𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑠) − 𝑢 (𝑥𝑠, 𝑠)
󵄨󵄨󵄨󵄨
𝑝−2

× [𝑢 (𝑦, 𝑠) − 𝑢 (𝑥
𝑠
, 𝑠)] 𝜔 (𝑥

𝑠
, 𝑦)

+ 𝜆𝑢
𝑝−1
(𝑥
𝑠
, 𝑠)

(67)

for almost all 𝑠 > 0.
Now define a function V : 𝑆 × [0,∞) → [0,∞) by

V (𝑥, 𝑡) := {
𝑢 (𝑥
𝑡
, 𝑡) , 𝑥 ∈ 𝑆, 𝑡 ≥ 0,

0, 𝑥 ∈ 𝜕𝑆, 𝑡 ≥ 0.
(68)

Then V(𝑥, 𝑡) = V(𝑦, 𝑡), 𝑡 > 0, if 𝑥, 𝑦 ∈ 𝑆. Multiplying (67) by
𝑢(𝑥
𝑠
, 𝑠) and summing over 𝑆, we obtain, for almost all 𝑡 > 0,

∑

𝑥∈𝑆

V
𝑡
(𝑥, 𝑡) V (𝑥, 𝑡)

= ∑

𝑥∈𝑆

V (𝑥, 𝑡) Δ
𝑝,𝜔

V (𝑥, 𝑡) + 𝜆∑
𝑥∈𝑆

V𝑝 (𝑥, 𝑡)

≤ (𝜆 − 𝜆
0
) ∑

𝑥∈𝑆

V𝑝 (𝑥, 𝑡)

(69)

or, equivalently,

V
𝑡
(𝑥, 𝑡) ≤ (𝜆 − 𝜆

0
) V𝑝−1 (𝑥, 𝑡) , 𝑥 ∈ 𝑆. (70)

Integrating over [𝑡, 𝑇], we have

V (𝑥, 𝑡) ≥ [(𝑝 − 2) (𝜆 − 𝜆
0
) (𝑇 − 𝑡)]

−(1/(𝑝−2))

, (71)

which is desired.

Now, we state the global existence of the solutions.

Theorem 13. For 𝑝 > 2 and 𝜆 ≤ 𝜆
0
, the solution to (36) is

global for every nonnegative initial data 𝑢
0
.

Proof. Consider an eigenvalue 𝜆
0
> 0 and eigenfunction

𝜙
0
(𝑥) > 0 in Lemma 3 and V(𝑥, 𝑡) := 𝐾𝜙

0
(𝑥), 𝑥 ∈ 𝑆, 𝑡 ≥ 0.

Then by taking 𝐾 large enough to be 𝐾𝜙
0
(𝑥) ≥ 𝑢

0
(𝑥), 𝑥 ∈ 𝑆,

we have

V (𝑥, 0) ≥ 𝑢 (𝑥, 0) , 𝑥 ∈ 𝑆,

V
𝑡
(𝑥, 𝑡) − Δ

𝑝,𝜔
V (𝑥, 𝑡) − 𝜆V𝑝−1 (𝑥, 𝑡)

= (𝜆
0
− 𝜆)𝐾

𝑝−1
𝜙
0
(𝑥) ≥ 0

(72)

for all 𝑡 > 0 and 𝑥 ∈ 𝑆. Then by the comparison principle,
we see that 0 ≤ 𝑢(𝑥, 𝑡) ≤ 𝐾𝜙

0
(𝑥), 𝑥 ∈ 𝑆, 𝑡 ≥ 0, which is

desired.
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We have so far discussed the blow-up or the global
existence (35) for the case 𝑝 ≥ 2. Now, we discuss the case
1 < 𝑝 ≤ 2. Here, we note that when 1 < 𝑝 < 2, the solution
to the equation may not have unique positive solution.

Theorem 14. For 1 < 𝑝 ≤ 2, the nonnegative solution to

𝑢
𝑡
(𝑥, 𝑡) = Δ

𝑝,𝜔
𝑢 (𝑥, 𝑡) + 𝜆𝑢

𝑝−1
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝑆 × (0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝑆 × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0

(73)

is global for every 𝜆 > 0. In particular, when 1 < 𝑝 < 2 and
𝜆 < 𝜆

0
, then there exists 𝑇 (extinction time) such that 𝑢(𝑥, 𝑡) ≡

0 for 𝑡 ≥ 𝑇.

Proof. First, consider ODE

𝑑

𝑑𝑡
𝑧 (𝑡) = 𝜆𝑧

𝑝−1
, 𝑡 > 0,

𝑧 (0) = 𝑢
0
+ 1,

(74)

where 𝑢
0
= max

𝑥∈𝑆
𝑢
0
(𝑥) > 0. Then

𝑧 (𝑡) = {
[(2 − 𝑝) 𝑡 + 𝜆𝑧

2−𝑝
(0)]
1/(2−𝑝)

, 1 < 𝑝 < 2,

𝜆𝑧 (0) 𝑒
𝑡
, 𝑝 = 2.

(75)

Then by the comparison principle (Theorem 6), we see that

0 ≤ 𝑢 (𝑥, 𝑡) ≤ 𝑧 (𝑡) , 𝑥 ∈ 𝑆, 𝑡 ≥ 0, (76)

which implies that 𝑢(𝑥, 𝑡)must be global.
Now, assume 1 < 𝑝 < 2 and 𝜆 < 𝜆

0
. When 𝑢 is a

trivial solution, then we are done. So now we assume that 𝑢 is
nontrivial. Multiplying (73) by 𝑢, as done in (40), we have

1

2

𝑑

𝑑𝑡
∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡)

= −
1

2
∑

𝑥,𝑦∈𝑆

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑡)
󵄨󵄨󵄨󵄨
𝑝

𝜔 (𝑥, 𝑦)

+ 𝜆∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡)

≤ − (𝜆
0
− 𝜆) ∑

𝑥∈𝑆

𝑢
𝑝
(𝑥, 𝑡)

≤ − (𝜆
0
− 𝜆)[

[

∑

𝑥∈𝑆

𝑢
2
(𝑥, 𝑡)]

]

𝑝/2

,

(77)

where the last inequality follows from the elementary ine-
quality

[

[

𝑛

∑

𝑗=1

𝑡
𝑝

𝑗

]

]

1/𝑝

≥ [

[

𝑛

∑

𝑗=1

𝑡
2

𝑗
]

]

1/2

, 1 < 𝑝 < 2 (78)

•

• •

x
2

0.05

1
x
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x
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1

x
1

0.1

0.05
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3

1

Figure 1: Graph 𝑆.

for 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
≥ 0. Now suppose 𝑦(𝑡) := ∑

𝑥∈𝑆
𝑢
2
(𝑥, 𝑡) > 0

for 𝑡 ≥ 0, on the contrary. Since 𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕𝑆, 𝑡 ≥ 0, we
obtain

𝑦
󸀠
(𝑡) ≤ −2 (𝜆

0
− 𝜆) 𝑦

𝑝/2
, 𝑡 > 0,

𝑦 (0) = ∑

𝑥∈𝑆

𝑢
2

0
(𝑥) > 0.

(79)

Integrating (79) over [0, 𝑡], we obtain

0 < 𝑦
(1−(𝑝/2))

(𝑡) ≤ 𝑦
(1−(𝑝/2))

(0) − (2 − 𝑝) (𝜆
0
− 𝜆) 𝑡, (80)

which is absurd for large 𝑡 > 0. Hence, 𝑦(𝑇) = 0 for some
𝑇 > 0 and, therefore, we can conclude that 𝑦(𝑡) = 0, 𝑡 > 𝑇,
for some 𝑇 > 0, since 𝑦󸀠(𝑡) ≤ 0 in inequality (79).

Remark 15. (i) When 𝑝 = 2 in the above, we do not
need the assumption that 𝑢 is nonnegative, which follows
automatically from the comparison principle (Theorem 4).

(ii) In fact, inequality (80) gives us the extinction time 𝑇,
estimated by

0 < 𝑇 ≤
[∑
𝑥∈𝑆
𝑢
2

0
(𝑥)]
(1−(𝑝/2))

(2 − 𝑝) (𝜆
0
− 𝜆)

. (81)

4. Examples and Numerical Illustrations

In this section, we show numerical illustrations to exploit our
results in the previous section.

Now, consider a graph 𝑆 = {𝑥
1
, 𝑥
2
, 𝑥
3
} with the boundary

𝜕𝑆 = {𝑥
4
, 𝑥
5
} and the weight

𝜔 (𝑥
1
, 𝑥
2
) = 𝜔 (𝑥

2
, 𝑥
3
) = 0.05,

𝜔 (𝑥
1
, 𝑥
3
) = 0.1

𝜔 (𝑥
1
, 𝑥
4
) = 𝜔 (𝑥

2
, 𝑥
5
) = 𝜔 (𝑥

3
, 𝑥
5
) = 1

(82)

as in Figure 1.

Example 1. For (36) on (Figure 1) graph 𝑆with 𝑝 = 3, 𝜆 = 1.1,
consider initial data given by 𝑢

0
(𝑥
1
) = 20, 𝑢

0
(𝑥
2
) = 30,

and 𝑢
0
(𝑥
3
) = 10. Then by easy calculation, we get the first

eigenvalue 𝜆
0
= 1 < 𝜆 = 1.1 and the corresponding

eigenfunction 𝜙
0
(𝑥
1
) = 𝜙

0
(𝑥
2
) = 𝜙

0
(𝑥
3
) ≒ 0.6934. Figure 2

shows that the solution to (36) blows up and the computed
blow-up time 𝑇 is estimated as 𝑇 ≒ 0.4433079.

On the other hand, consider the same equation (36) with
𝑝 = 3, 𝜆 = 0.9 and the same initial data. Then 𝜆 = 0.9 < 𝜆

0
=

1 and Figure 3 shows that the solution to (36) is global.
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Figure 2: Behavior of each node for 𝑝 = 3 and 𝜆 = 1.1.
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Figure 3: Behavior of each node for 𝑝 = 3 and 𝜆 = 0.9.
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Figure 4: Behavior of each node for 𝑝 = 1.5.

Example 2. For (36) on (Figure 1) graph 𝑆 with 𝑝 = 1.5,
𝜆 = 0.5, and the same initial data 𝑢

0
given by 𝑢

0
(𝑥
1
) = 20,

𝑢
0
(𝑥
2
) = 30, and 𝑢

0
(𝑥
3
) = 10, then Figure 4 shows that the

solution to (36) is global and extinctive.
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