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To tackle the QoS-based service selection problem, a hybrid artificial bee colony algorithm called ℎ-ABC is proposed, which
incorporates the ant colony optimizationmechanism into the artificial bee colony optimization process. In this algorithm, a skyline
query process is used to filter the candidates related to each service class, which can greatly shrink the search space in case of
not losing good candidates, and a flexible self-adaptive varying construct graph is designed to model the search space based on a
clustering process. Then, based on this construct graph, different foraging strategies are designed for different groups of bees in the
swarm. Finally, this approach is evaluated experimentally using different standard real datasets and synthetically generated datasets
and compared with some recently proposed related service selection algorithms. It reveals very encouraging results in terms of the
quality of solutions.

1. Introduction

With the proliferation of the cloud computing and software
as a service (SaaS) concepts, more and more web services
will be offered on the web at different levels of quality [1].
There may be multiple service providers competing to offer
the same functionality with different quality of service.
Quality of service (QoS) has become a central criterion for
differentiating these competing service providers and plays
a major role in determining the success or failure of the
composed application. Therefore, a service level agreement
(SLA) is often used as a contractual basis between service
consumers and service providers on the expected QoS level.
The QoS-based service selection problem aims at finding
the best combination of web services that satisfies a set of
end-to-end QoS constraints in order to fulfill a given SLA,
which is an NP-hard problem [2].

This problembecomes especially important and challeng-
ing as the number of functionally equivalent services offered
on the web at different QoS levels increases exponentially [3].
As the number of possible combinations can be very huge,
based on the number of subtasks comprising the composite
process and the number of alternative services for each
subtask, using the proposed exact search algorithms [4, 5] to

perform an exhaustive search to find the best combination
that satisfies a certain composition level, SLA is impractical.
So, the most researches are concentrated on heuristic-based
algorithms especially the metaheuristic approaches aiming
at finding near-optimal compositions. In [5], the authors
propose heuristic algorithms that can be used to find a
near-optimal solution more efficiently than exact solutions.
The authors propose two models for the QoS-based service
composition problem and introduce a heuristic for each
model. In [6], a memetic algorithm is used for the service
selection problem. In [7], the authors present a genetic
algorithm for this problem, including the design of a special
relation matrix coding scheme of chromosomes, evolution
function of population, and population diversity handling
with simulated annealing. In [8], a new cooperative evolution
(coevolution) algorithm consists of stochastic particle swarm
optimization (SPSO) and simulated annealing (SA) is
presented to solve this problem. In [9], the basic principle of
ACO is expounded and the service selection problem based
on the QoS is transformed into the problem of finding the
optimization path. In [10], a services composition graph is
applied to model this problem and an extended ant colony
systemusing a novel ant clone rule is applied to solve it. In [11],
an algorithm named as multipheromone and dynamically
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updating ant colony optimization algorithm (MPDACO) are
put forward to solve this problem which includes one global
optimization process and a local optimizing process. But the
performance of these existing service selection algorithms is
not satisfying when the number of candidates becomes large.
This is mainly because many redundant candidates exist. If
they are not filtered beforehand, lots of search efforts will be
wasted at running. Moreover, the used construction graphs
of the existing ACO based service selection algorithms are
static and their information granularities for this problem
are too coarse, which make these algorithms excessively
rely on their local search processes. Furthermore, as a
novel metaheuristic approach, the artificial bee colony
(ABC) algorithm is defined by Karaboga and Basturk [12],
motivated by the intelligent foraging behavior of honey bees.
It has been applied to solve many problems and obtained
satisfying results [13]. But no research of its applications for
service selection has been done.

To tackle these problems, a hybrid artificial bee colony
algorithm called ℎ-ABC is proposed in this paper. In this
algorithm, an unsupervised clustering process based on IS
[14] algorithm is used for building a directed dynamic con-
struct graph to guide the employed bees making exploration.
A strategy inspired from the ants search mechanism of
ACO is designed and used for the employed bees to forage,
and an efficient greedy local search strategy is designed
for the onlookers to make exploitation for the promising
area identified by the obtained current global information.
Then a self-adaptive reflecting process is used to adjust
the construct graph based on the obtained local search
information. To further improve the solving efficiency, a
skyline query process based on the multicriteria dominance
relationships [15] is used to filter the candidates of each
service class, which can greatly shrink the search space
without losing any good candidate.This approach is evaluated
experimentally using different standard real datasets and
synthetically generated datasets, and the best one is compared
with some recently proposed service selection algorithms,
DiGA [7], SPSO [8], MA [6], and MPDACO [11]. The
computational results demonstrate the effectiveness of our
approach in comparison to these algorithms. This paper is
organized as follows. In Section 2,we give the definition of the
QoS-based service selection problem and the basic artificial
bee colony algorithm. The details of the hybrid artificial
bee colony algorithm for service selection including search
space representation and searching strategies are provided
in Section 3. The evaluations of this approach including its
parameters tuning and comparative studies based ondifferent
standard real datasets and synthetically generated datasets
are given in Section 4. Finally, Section 5 summarizes the
contribution of this paper along with some future research
directions.

2. Problem Definition and
Ant Colony Algorithm

2.1. The QoS-Based Service Selection Problem. For a com-
posite application that is specified as abstract workflow I

composed of a set of abstract servicesS, each abstract service,
𝑆
𝑖

= {𝑠
𝑖1
, 𝑠

𝑖2
, . . . , 𝑠

𝑖𝑛
}, 𝑖 ∈ [0, ‖S‖ − 1], consists of all

services that deliver the same functionality but potentially
differ in terms of QoS values. The QoS attributes which
are published by the service provider may be positive or
negative. We use the vector 𝑄

𝑠
= {𝑞

1
(𝑠), 𝑞

2
(𝑠), . . . , 𝑞

𝑟
(𝑠)} to

represent the 𝑟 QoS values of service 𝑠, and 𝑞
𝑖
(𝑠) denotes the

published value of the 𝑖th attribute of the service 𝑠. Then,
the QoS vector, for a composite service consisting of 𝑛, 𝑛 ∈

[1, ‖S‖], service components CS = {𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑛
}, is defined

as𝑄CS = {𝑞


1
(CS), 𝑞

2
(CS), . . . , 𝑞

𝑟
(CS)}, where the 𝑞

𝑖
(CS) is the

estimated end-to-end value of the 𝑖thQoS attribute. Although
many different service composition structures may exist in
the workflow, we only focus on the sequential structure,
since the other structures can be reduced or transformed
to the sequential structure, using, for example, techniques
for handling multiple execution paths and unfolding loops
[16]. So the 𝑞



𝑖
(CS) can be computed by aggregating the

corresponding values of component services.

Definition 1 (abstract metaworkflow). For an abstract work-
flow I, it is an abstract metaworkflow if all its contained
abstract services need to bind with a candidate service.

Definition 2 (abstract subworkflow). For an abstract meta-
workflow I

⊆ I, it is an abstract subworkflow of I if the
solution of composite application corresponding toI is also
a solution of composite application corresponding to I.

Definition 3 (feasible selection). For a given abstract work-
flow I and a vector of global QoS constraints, 𝐶


=

{𝑐


1
, 𝑐



2
, . . . , 𝑐



𝑚
}, 1 ≤ 𝑚 ≤ 𝑟, which refer to the user’s

requirements and are expressed in terms of a vector of upper
(or lower) bounds for different QoS criteria, we consider a
selection of concrete services CS to be a feasible selection, if
and only if it contains exactly one service for each service class
𝑆
𝑖
of a subworkflow ofI and its aggregated QoS values satisfy

the global QoS constraints.

In order to evaluate the overall quality of a given feasible
selection CS, a utility function 𝑈

 is used which maps the
quality vector 𝑄CS into a single real value and is defined as
follows:

𝑈

(CS) =

𝑟

∑

𝑘=1

𝑄


max (𝑘) − 𝐹
𝑛

𝑗=1
(𝑞

𝑘
(𝑠

𝑗
))

𝑄

max (𝑘) − 𝑄

min (𝑘)
⋅ 𝑤

𝑘
(1)

with𝑤
𝑘
∈ 𝑅

+

0
,∑𝑟

𝑘=1
𝑤
𝑘
= 1 being the weight of 𝑞

𝑘
to represent

user’s priorities,

𝑄


min (𝑘) = 𝐹
𝑛

𝑗=1
(min
∀𝑠∈𝑆𝑗

𝑞
𝑘 (𝑠)) ,

𝑄


max (𝑘) = 𝐹
𝑛

𝑗=1
(max
∀𝑠∈𝑆𝑗

𝑞
𝑘 (𝑠)) ,

(2)

being the minimum and maximum aggregated values of the
𝑘th QoS attribute for composite service CS, and 𝐹 denotes an
aggregation function that depends on QoS criteria as shown
in Table 1.
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Table 1: The considered attributes, their priorities, and aggregation functions.

Type Attributes (priority) Function

Summation

Response time (0.2)
Latency (0.1) 𝑞


(CS) =

𝑛

∑
𝑗=1

𝑞 (𝑠
𝑗
)

Compliance (0.1)
Best practices (0.1)
Documentation (0.1)

𝑞

(CS) = 1

𝑛

𝑛

∑
𝑗=1

𝑞 (𝑠
𝑗
)

Multiplication
Availability (0.1)
Reliability (0.1)
Success ability (0.1)

𝑞

(CS) =

𝑛

∏
𝑗=1

𝑞 (𝑠
𝑗
)

Minimum Throughput (0.1) 𝑞

(CS) =

𝑛

min
𝑗=1

𝑞 (𝑠
𝑗
)

Definition 4 (service selection). For a given abstract process
I and a vector of global QoS constraints,𝐶

= {𝑐


1
, 𝑐



2
, . . . , 𝑐



𝑚
},

1 ≤ 𝑚 ≤ 𝑟, the service selection is to find the feasible selection
that maximizes the overall utility function 𝑈

 value.

2.2. The Artificial Bee Colony Optimization Algorithm. Arti-
ficial bee colony (ABC) is one of the most recently defined
algorithms by Karaboga and Basturk [12], motivated by the
intelligent forage behavior of honey bees. In ABC algorithm,
the colony of artificial bees consists of three groups of
bees: employed bees, onlookers, and scouts. A food source
represents a possible solution to the problem to be optimized.
Thenectar amount of a food source corresponds to the quality
of the solution represented by that food source. For every
food source, there is only one employed bee. In other words,
the number of employed bees is equal to the number of
food sources around the hive. The employed bee whose food
source has been abandoned by the bees becomes a scout.

As other social foragers, bees search for food sources
in a way that maximizes the ration 𝐸/𝑇 where 𝐸 is the
energy obtained and 𝑇 is the time spent for foraging. In
the case of artificial bee swarms, 𝐸 is proportional to the
nectar amount of food sources discovered by bees. In a
maximization problem, the goal is to find the maximum of
the objective function 𝐹(𝜃), 𝜃 ∈ 𝑅

𝑃. Assume that 𝜃
𝑖
is the

position of the 𝑖th food source; 𝐹(𝜃
𝑖
) represents the nectar

amount of the food source located at 𝜃
𝑖
and is proportional to

the energy 𝐸(𝜃
𝑖
). Let 𝑃(𝑐) = {𝜃

𝑖
(𝑐) | 𝑖 = 1, 2, . . . , 𝑆} (𝑐: cycle, 𝑆:

number of food sources being visited by bees) represent the
population of food sources being visited by bees.

As mentioned before, the preference of a food source
by an onlooker bee depends on the nectar amount 𝐹(𝜃)

of that food source. As the nectar amount of the food
source increases, the probability with the preferred source
by an onlooker bee increases proportionally. Therefore, the
probability with the food source located at 𝜃

𝑖
will be chosen

by an onlooker and can be expressed as

𝑃
𝑖
=

𝐹 (𝜃
𝑖
)

∑
𝑆

𝑘=1
𝐹 (𝜃

𝑘
)
. (3)

After watching the dances of employed bees, an onlooker
bee goes to the region of food source located at 𝜃

𝑖
by this

probability and determines a neighbor food source to take its

nectar depending on some visual information, such as signs
existing on the patches. In other words, the onlooker bee
selects one of the food sources after making a comparison
among the food sources around 𝜃

𝑖
. The position of the

selected neighbor food source can be calculated as 𝜃
𝑖
(𝑐 + 1) =

𝜃
𝑖
(𝑐) ± 𝜙

𝑖
(𝑐). 𝜙

𝑖
(𝑐) is a randomly produced step to find a

food source with more nectar around 𝜃
𝑖
. 𝜙(𝑐) is calculated by

taking the difference of the same parts of 𝜃
𝑖
(𝑐) and 𝜃

𝑘
(𝑐) (𝑘

is a randomly produced index) food positions. If the nectar
amount 𝐹(𝜃

𝑖
(𝑐 + 1)) at 𝜃

𝑖
(𝑐 + 1) is higher than that at 𝜃

𝑖
(𝑐),

then the bee goes to the hive and shares its information with
others and the position 𝜃

𝑖
(𝑐) of the food source is changed to

be 𝜃
𝑖
(𝑐 + 1); otherwise 𝜃

𝑖
(𝑐) is kept as it is.

Every food source has only one employed bee. Therefore,
the number of employed bees is equal to the number of food
sources. If the position 𝜃

𝑖
of the food source 𝑖 cannot be

improved through the predeterminednumber of trials “limit,”
then that food source 𝜃

𝑖
is abandoned by its employed bee

and then the employed bee becomes a scout. The scout starts
to search a new food source, and, after finding a new source,
the new position is accepted to be 𝜃

𝑖
. Every bee colony has

scouts that are the colony’s explorers. The explorers do not
have any guidance while looking for food. They are primarily
concerned with finding any kind of food source. As a result
of such behavior, the scouts are characterized by low search
costs and a low average in food source quality. Occasionally,
the scouts can accidentally discover rich, entirely unknown
food sources. In the case of artificial bees, the artificial scouts
could have the fast discovery of the group of feasible solutions
as a task.

It is clear from the above explanation that there are four
control parameters used in the ABC algorithm: the number
of food sources which is equal to the number of employed
bees (𝑆), the value of limit, and the maximum cycle number
(MCN). The main steps of the algorithm can be described as
follows.

Step 1. Initialize the population of solutions 𝜃
𝑖
, 𝑖 = 1, . . . , 𝑆,

and evaluate them.

Step 2. Produce new solutions for the employed bees, evalu-
ate them, and apply the greedy selection process.

Step 3. Calculate the probabilities of the current sources with
which they are preferred by the onlookers.
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Step 4. Assign onlooker bees to employed bees according to
probabilities, produce new solutions, and apply the greedy
selection process.

Step 5. Stop the exploitation process of the sources aban-
doned by bees and send the scouts in the search area for
discovering new food sources randomly.

Step 6. Memorize the best food source found so far.

Step 7. If the termination condition is not satisfied, go to
Step 2; otherwise stop the algorithm.

After each candidate source position being produced and
evaluated by the artificial bee, its performance is compared
with that of its old one. If the new food has an equal or better
nectar amount than the old one, it is replaced with the old
one in the memory. Otherwise, the old one is retained in the
memory. In other words, a greedy selection mechanism is
employed as the selection operation between the old one and
the candidate one.

3. The ℎ-ABC Algorithm

When the number of functionally equivalent services offered
becomes large, how to effectively shrink the solution space
and make the search quickly go towards the right direction is
very important. So, in this hybrid algorithm, a skyline query
process is used to filter the candidates related to each service
class, and an unsupervised clustering process is introduced to
partition the skyline services per service class.Then a directed
clustering graph is constructed based on clustering result to
abstract the search space and is used to guide the bees global
searching.

Definition 5 (skyline services). The skyline of a service class 𝑆,
denoted by SLS, comprises the set of those services in 𝑆 that
are not dominated by any other service; that is, SLS = {𝑖 ∈

𝑆 | ¬∃𝑗 ∈ 𝑆; 𝑗 ≺ 𝑖}. We regard these services as the skyline
services of 𝑆.

Definition 6 (dominance). Consider a service class 𝑆, and two
services, 𝑖, 𝑗 ∈ 𝑆, characterized by a set of𝑄 ofQoS attributes.
𝑖 dominates 𝑗, denoted by 𝑖 ≺ 𝑗, if 𝑖 is as good as or better than
𝑗 in all parameters in 𝑄 and better in at least one parameter
in 𝑄; that is, ∀𝑘 ∈ [1, |𝑄|] : 𝑞

𝑘
(𝑥) ⩽ 𝑞

𝑘
(𝑦) and ∃𝑘 ∈ [1, |𝑄|] :

𝑞
𝑘
(𝑥) < 𝑞

𝑘
(𝑦).

Since not all services are potential candidates for the
solution, a skyline query can be performed on the services
in each class to distinguish between those services that are
potential candidates for the composition and those that can-
not possibly be the part of the composition. In the proposed
ℎ-ABC algorithm, the skyline query process is implemented
using the sequential online archiving process in [17] which
is a hypervolume based archiving process and can update
the skylines online. This makes it able to be extended and
used to tackle the candidate changes. If the candidate services
number in the skyline 𝑙

𝑖
⊂ 𝑆

𝑖
of a service class 𝑆

𝑖
is more than

𝑇, which is a predefined threshold value, an unsupervised
clustering process based on IS [14] is used to discover the
similar candidate services, 𝐶𝐶

𝑖,𝑗
is used to represent the 𝑗th

cluster center, and use 𝐶
𝑖,𝑗

is used to represent the service
candidates in this cluster. Then a directed clustering graph
CG(𝑉, 𝐸) is formed as 𝑉 = {V

𝑖,𝑗
| V

𝑖,𝑗
= 𝐶𝐶

𝑖,𝑗
, 𝑖 ∈ [0, ‖S‖ − 1],

𝑗 ∈ [0, ‖𝑆
𝑖
‖ − 1]} ∨ {V

𝑠
, V

𝑑
} and 𝐸 = {⟨V

𝑖,𝑗
, V

𝑘,ℎ
⟩ | (⟨𝑆

𝑖
, 𝑆

𝑘
⟩ ∈

I) ∧ (V
𝑖,𝑗

∈ 𝑉) ∧ (V
𝑘,ℎ

∈ 𝑉), 𝑘 ∈ [0, ‖S‖ − 1], ℎ ∈ [0, ‖𝑆
𝑘
‖ −

1]}∨{⟨V
𝑠
, V

𝑖,𝑗
⟩ | 𝑓in(V𝑖,𝑗) = 0, V

𝑖,𝑗
∈ 𝑉}{⟨V

𝑖,𝑗
, V

𝑑
⟩ | 𝑓out(V𝑖,𝑗) = 0,

V
𝑖,𝑗
∈ 𝑉}, where V

𝑠
, V

𝑑
represent the start point and end point

and 𝑓in(V𝑖,𝑗) and 𝑓out(V𝑖,𝑗) are the in-degree and out-degree of
node V

𝑖,𝑗
.When binding each vertex V

𝑖,𝑗
except the V

𝑠
and V

𝑑
in

CG with a candidate service, 𝑐
𝑖,𝑗
∈ 𝐶

𝑖,𝑗
, a binding mode of the

clustering graph is generated. Based on this binding mode,
the following definition can be given.

Definition 7 (feasible path). Given a path 𝑝 from the vertex V
𝑠

to V
𝑑
of a clustering graph with a specified binding mode, it is

a feasible path if and only if the composite service CS formed
by the current services binding with the vertexes between V

𝑠

and V
𝑑
in this path satisfies all the globalQoS constraints,𝐶

=

{𝑐


1
, 𝑐



2
, . . . , 𝑐



𝑚
}, 1 ≤ 𝑚 ≤ 𝑟. That is, 𝑞

1
(CS) ≤ 𝑐



𝑘
, ∀𝑘 ∈ [1,𝑚].

The fitness of a path 𝑝 is computed as follows:

fit (𝑝) =
{

{

{

1 − 𝑈

(CS) , if 𝑣cons (CS) = 0

2 −
1

(1 + 𝑣cons (CS))
, otherwise, (4)

where 𝑣cons(CS) denotes the number of the constraints
violated by CS. By this way, the more constraints a path
violates, the bigger its fitness value will be. We can see that
the evaluation does not only depend on its utility but also
depend on how many constraints have been violated. Based
on this fitness definition, for the current obtained paths (food
sources), 𝐹 = {𝑝

0
, 𝑝

1
, . . . , 𝑝

𝑛−1
}, the attractive probability 𝑃

𝑖

for 𝑝
𝑖
∈ 𝐹 is computed as follows:

𝑃
𝑖
=

1 − fit (𝑝
𝑖
)

∑
|𝐹|−1

𝑗=0
(1 − fit (𝑝

𝑗
))

. (5)

To cover all possible service combinations, a dynamic
construction graph is used in this framework, which can
self-adaptively vary from one binding mode to another
through dynamically changing the binding relationship of
candidate services and vertex. In the ℎ-ABC algorithm, the
employed bees and scouts are responsible for searching in
the current binding mode CBM, and its transition to the next
binding mode NBM is incorporated into the send onlooker
process and determined by the obtained paths 𝐹 and the
exploitation results of onlookers. If the onlookers number is
num onlooker, then the process of sending onlookers can be
detailed as shown in Procedure 1.

By this process, the binding mode will be self-adaptively
converted to another containing a feasible path with smaller
fitness value. Obviously, the information granularities are
fractionized further by the dynamic construction graph.
Furthermore, since all binding modes of a dynamic con-
struction graph have the same topology and scale, which are
determined by the built clustering graph, the mechanism of
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Begin
for each current food source 𝑝

𝑖
∈ 𝐹 do

Compute its attractive probability 𝑃
𝑖
according to (5);

endfor;
int 𝑘 = 0;
int 𝑐𝑜𝑢𝑛𝑡 = 0;
while (count < 𝑛𝑢𝑚 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟) do

repeat
𝑘 = 𝑘 mod |𝐹|;
generate a random value rand ∈ (0, 1);
if (rand > 𝑃

𝑘
) then 𝑘++; endif;

until (rand < 𝑃
𝑘
);

//make exploitation for the food source 𝑝
𝑘
, and adjust the binding mode

bool improved= true;
int 𝑟 = 1;
trial

𝑘
++; //increment the trial number of food source 𝑝

𝑘
, by 1

while (improved ) do
𝑟 = randomInt(1, 𝑝

𝑘
.length-1); /∗Generate a random number between 1 and 𝑝

𝑘
.length-1∗/

𝑝

= 𝑝

𝑘
;

Random select a candidate 𝑠 from the cluster containing the current binding service 𝑠;
Bind 𝑠

 with the vertex 𝑟 of 𝑝 to replace 𝑠;
if (𝑓𝑖𝑡(𝑝

𝑘
) < 𝑓𝑖𝑡(𝑝


)) then

improved= false;
trial

𝑘
= 0;

else
𝑝
𝑘
= 𝑝

;
endif ;

endwhile;
𝑐𝑜𝑢𝑛𝑡++;

endwhile
End.

Procedure 1: Send onlookers.

ACO algorithm can be introduced and used by employed
bees to make exploration, and the pheromone information
needed to store is controllable. In the ℎ-ABC algorithm, the
employed bees communicate by laying pheromone on graph
vertices like the ants in ACO. The amount of pheromone on
vertex V

𝑖,𝑗
is denoted by 𝜏(V

𝑖,𝑗
). Intuitively, this amount of

pheromone represents the learnt desirability moving towards
the service class 𝑆

𝑖
binding with its 𝑗th service instance. The

way by which an employed bee discovers a food source (path)
in the current binding mode is outlined in Procedure 2.

For a given employed bee 𝑘 that is building a path 𝐴
𝑘

and is currently at the vertex V
𝑖𝑗
, its feasible neighborhood

in the current binding mode is defined as Nbr
𝑘
(V

𝑖,𝑗
) =

{V
𝑝,𝑞

| ⟨V
𝑖𝑗
, V

𝑝,𝑞
⟩ ∈ 𝐸 ∧ V

𝑝,𝑞
∈ 𝑉}. In this paper, the

roulette wheel selection (RS) rule is used for an employed bee
selecting a vertex in its feasible neighborhood. In this rule, the
probability of this employed bee to select the vertex V

𝑝,𝑞
in its

feasible neighborhood is computed as follows:

pro (⟨V
𝑝,𝑞
, 𝐴

𝑘
, V

𝑖,𝑗
⟩) =

[𝜏 (V
𝑝,𝑞
)]

𝛼

[𝜂 (V
𝑝,𝑞
)]

𝛽

∑V∈Nbr𝑘(V𝑖,𝑗) [𝜏 (V)]
𝛼
[𝜂 (V)]𝛽

, (6)

where 𝜏(V
𝑝,𝑞
) is the pheromone factor of vertex V

𝑝,𝑞
, 𝜂(V

𝑝,𝑞
)

is its heuristic factor, and 𝛼 and 𝛽 are the parameters that

determine their relative weights. In this paper, the heuristic
factor 𝜂(V

𝑝,𝑞
) depends on the whole current set of visited

vertices in 𝐴
𝑘
. It is inversely proportional to the number

of new violated constraints when adding V
𝑝,𝑞

to 𝐴
𝑘
and is

computed as follows:

𝜂 (V
𝑝,𝑞
) =

1

1 + Vcons (𝐴
𝑘
∪ V

𝑝,𝑞
) − Vcons (𝐴

𝑘
)
. (7)

The details of sending the employed bees for making explo-
ration are given in Procedure 3.

In order to simulate evaporation and allow employed bees
to forget bad assignments, all pheromone trails are decreased
uniformly, and the chosen employed bees of the cycle deposit
pheromones. More formally, after sending the employed bees
and onlookers in each cycle, the quantity of pheromone on
each vertex is updated as in Procedure 4.

In Procedure 4 𝜌 is the evaporation rate, 0 ≤ 𝜌 ≤ 1. The
set ElitistsofCycle contains all the paths remembered by the
employed bees in the current iteration. The Δ𝜏(𝐴

𝑘
, V) is the

quantity of pheromone that should be deposited on vertex V
and is defined as follows:

Δ𝜏 (𝐴
𝑘
, V) =

{

{

{

1

1 + fit (𝐴
𝑘
)
, if V ∈ 𝐴

𝑘

0, otherwise.
(8)
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Begin
𝐴

𝑘
= {V

𝑠
};

repeat
Select a vertex V from the its feasible neighborhood based on the used selection rule;
Move the employed bee to this vertex, 𝐴

𝑘
= 𝐴

𝑘
∨ {V};

until (V == V
𝑑
)

End

Procedure 2: Construct a path by an employed bee 𝑘.

Begin
for each employed bee 𝑘 do

generate a new path 𝐴
𝑘
through the Procedure 2;

if (𝑓𝑖𝑡(𝐴
𝑘
) < 𝑓𝑖𝑡(𝐵

𝑘
)) then //𝐵

𝑘
is the remember food source by the employed bee 𝑘

𝐵
𝑘
= 𝐴

𝑘
;

trial
𝑘
= 0; //set its trial as 0;

else
trial

𝑘
++; //increment its trial number by 1

endif ;
endfor

End

Procedure 3: Send employed bees.

Begin
for each vertex V in the current binding mode do

𝜏 (V) = (1 − 𝜌) ⋅ 𝜏 (V) + ∑

𝐴𝑘∈𝐸𝑙𝑖𝑡𝑖𝑠𝑡𝑜𝑓𝐶𝑦𝑐𝑙𝑒

Δ𝜏(𝐴
𝑘
, V)

if 𝜏(V) < 𝜏min then 𝜏(V) = 𝜏min;
if 𝜏(V) > 𝜏max then 𝜏 (V) = 𝜏max;

endfor
End

Procedure 4: Update the pheromone trails.

If a food source has not been improved when its trial
number is bigger than the predefined threshold value “limit,”
the employed bee related to it will be search as a scout.
Different from the onlookers and employed bees, the scouts
search in the current binding mode randomly. When con-
structing path, a scout randomly selects a next vertex tomove.
Furthermore, to clear up the effects of the abandoned food
sources, the phonemes of related vertexes are reset as their
initial values. The details of the employed bees search as
scouts are given in Procedure 5.

In Procedure 5, the 𝜏min and 𝜏max are the explicitly
imposed lower and upper bounds of pheromone trails and
their values are set as 1.0 and 4.0, respectively. The goal is
to favor a larger exploration of the search space by prevent-
ing the relative differences between pheromone trails from
becoming two extremes during processing. Furthermore, the
pheromone trails are set to (𝜏min + 𝜏max)/2 for all vertexes
at the beginning of the proposed ℎ-ABC algorithm for
balancing the exploitation and exploration ability during the
first cycle. Based on the above definitions and descriptions,

the ℎ-ABC algorithm for service selection can be formulated
as shown in Algorithm 1.

In Algorithm 1, we can see that the binding mode scale
of the dynamic construction graph can be controlled by the
parameters Max cluster number and Min cluster number.
After building the clustering graph, the candidate service
𝑐
𝑖,𝑗

∈ 𝑆
𝑖
nearest to the center of cluster 𝐶

𝑖,𝑗
is chosen

to be bound with the vertex V
𝑖,𝑗

to form the initialized
bindingmode. At each generation, a promising area is located
by the employed bees, and then the onlookers are used
to make further exploitation for this area and switch the
binding mode. Moreover, the numbers of employed bees
and onlookers are both set as half of the colony size in this
algorithm.

4. Experimental Evaluations

In this part, we present an experimental evaluation of our
approaches, focusing on the solving quality in terms of
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Begin
for each employed bee 𝑘 do

if (trial
𝑘
> 𝑙𝑖𝑚𝑖𝑡) then

//reinitialize the phonemes of related vertexes
for each vertex V in the 𝐵

𝑘
do

𝜏 (V) = (𝜏min + 𝜏max) /2;
endfor;
generate a path 𝑝

𝑟
from the V

𝑠
to V

𝑑
randomly;

𝐵
𝑘
= 𝑝

𝑟
;

trial
𝑘
= 0;

endif ;
endfor

End

Procedure 5: Send scouts.

Parameter
int Max cluster number;
int Min cluster number;
int C size; //The colony size

Begin
for each service class s class do

Use the skyline query process to identify its skyline services SL
𝑠 𝑐𝑙𝑎𝑠𝑠

;
if (SL𝑠 𝑐𝑙𝑎𝑠𝑠

 > Min cluster number)
Use the IS process partitioning the skyline services into 𝐾 clusters, 𝐾 <= Max cluster number;

endif
endfor
Build the clustering graph CG;
Establish an initialized binding mode;
Initialize pheromone trails;
Initialize the global best food source G best randomly;
repeat

Send the employed bees by the Procedure 3;
Send the onlookers and adjust the binding mode by the Procedure 1;
Update the pheromone trails by the Procedure 4;
Send the scouts by the Procedure 5;
for each current food source 𝑝 ∈ 𝐹 do

if𝑓𝑖𝑡(𝑝) < 𝑓𝑖𝑡(𝐺 𝑏𝑒𝑠𝑡) then 𝐺 𝑏𝑒𝑠𝑡 = 𝑝; endif ;
endfor;

until the maximum evaluation number is arrived or
the other termination condition is satisfied;

return G best;
End

Algorithm 1: ℎ-ABC.

the obtained best solution utility values, and compare the pro-
posed ℎ-ABC algorithm with the recently proposed related
algorithms DiGA [7], and SPSO [8], MA [6], and MPDACO
[11] on 12 different scale test cases. All algorithms are
implemented in C++ language and executed on a Core(i7),
2.93GHZ, 2GB RAM computer.

4.1. Test Cases. In our evaluation, we experimented with
four datasets. The first is the publicly available updated data
set called QWS (http://www.uoguelph.ca/∼qmahmoud/qws/
index.html), which comprises measurements of nine QoS
attributes for 2507 real-world web services. These attributes,

priorities, and their aggregation functions are shown in
Table 1. These services were collected from public sources
on the web, including UDDI registries, search engines, and
service portals, and their QoS values were measured using
commercial benchmark tools. More details about this dataset
can be found in [3]. We also experimented with other three
synthetically generated datasets in order to test our approach
with larger number of services and different distributions
through a publicly available synthetic generator (http://rand-
dataset.projects.postgresql.org/): (a) a correlated data set
(cQoS), in which the values of QoS parameters are positively
correlated, (b) an anticorrelated (aQoS) data set, in which
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Table 2: The used test cases.

Dataset Case
number

Composition
scale

Candidate
scale

QWS2
1 5 500
2 10 250
3 20 125

a data
(anticorrelation)

4 10 10000
5 20 5000
6 40 2500

c data
(correlation)

7 10 10000
8 20 5000
9 40 2500

i data
(independence)

10 10 10000
11 20 5000
12 40 2500

the values of the QoS parameters are negatively correlated,
and (c) an independent dataset, in which the QoS values
are randomly set. Each dataset contains 40000 QoS vectors,
and each vector represents the nine QoS attributes of a web
service. Based on these datasets, twelve test cases are created,
which are shown in Table 2. In this table, the composition
scale is defined as the number of the abstract services
included, and the candidate scale is defined as the number
of the candidate services related to each abstract service.
Since all other models can be reduced or transformed to the
sequential model using the techniques for handling multiple
execution paths and unfolding loops [18], the sequential
composition models are focused on in this paper. We then
created several QoS vectors of up to 9 random values to
represent the user end-to-end QoS constraints. Each QoS
vector corresponds to one QoS-based composition request,
for which one concrete service needs to be selected from each
class, such that the overall utility value ismaximized, while all
end-to-end constraints are satisfied.

4.2. Parameter Tuning. In order to set an appropriate ter-
minate condition for this algorithm on each test case, this
algorithm is run ten times on the test selected cases 5, 8, and
11. Since they have different composition scale and candidate
scale, they are considered as being representative. Each run
is terminated when the obtained best fitness value is not
updated during 100 consecutive time intervals. Each time
interval is set as 1000 milliseconds. The colony size C Size is
set as 50 and the other parameters are set as the default value
in Table 3. We found that all the obtained best solutions of
these runs do not change after 1.5 ∗ 10

5 milliseconds. So, for
a test case, the termination condition for a run of an algorithm
is set as [(𝐶𝑜 ∗𝐶𝑎)/2500] ∗ 1.5 ∗ 10

5 milliseconds during the
following experiments conveniently, where Co andCa denote
the composition scale and candidate scale, respectively.

In the proposed algorithm, since the the Max cluster
number, Min cluster number are used to control the binding
mode scale of the dynamic construction graph, their value

Table 3: The tuned parameters.

Parameter Default Range
Limit 30 From 10 to 50 with increment 10
𝛼 1.50 From 0.50 to 2.50 with increment 0.50
𝛽 1.50 From 0.50 to 2.50 with increment 0.50
𝜌 0.35 From 0.25 to 0.45 with increment 0.05

settings mainly depend on the running platform configu-
rations. If the parameter Max cluster number is set too big
and the Min cluster number is set too small, large space
will be needed to store the phoneme trial information for
some problem. Based on our used running environments, we
let the Min cluster number = 50 and Max cluster number =
Ca/min culster number. The influence of parameter C-Size
to the algorithms’ performance is obvious if not taking the
complexity into account; the larger the problem scale is, the
bigger its value is. So we set it as 50 for convenience. Except
for the above parameters, there are some other more complex
and sensitive parameters in this algorithm. Their ranges are
shown in Table 3.

In order to perform parameter exploration studies, we
select three representative test cases 5, 8, and 11, which are
characterized by the correlated, anticorrelated, and indepen-
dent property, respectively. To set appropriate values for these
parameters, we tuned them in the sequential order limit, 𝛼,
𝛽, and 𝜌. For the parameter limit, we vary its value one at
a time, while setting the values of the other parameters to
their default values. For the next untuned parameter 𝛼, we
vary its value one at a time while setting the values of tuned
parameters to the obtained most appropriate ones and the
values of the other untuned parameters to their default values.
Then the other two parameters are tuned in the same way as
the parameter 𝛼. During this process, the ℎ-ABC algorithm
with each parameter configuration is run ten times on each
used test case and the results are shown as in Figure 1. From
Figure 1(a), we can see that the maximum average utility
values for case 8 and case 11 are obtained when 𝑙𝑖𝑚𝑖𝑡 =

20. From Figure 1(b), we can see that the maximum average
utility values for instance 5 and case 11 are obtained when 𝛼 =

1.0. From Figure 1(c), we can see that the maximum average
utility values for case 5 and instance 8 are obtained when 𝛽 =

2.0. The maximum average utility values for instance 8 and
case 11 are obtained when 𝜌 = 0.25 as shown in Figure 1(d).
So, the comparatively better settings for these parameters are
𝑙𝑖𝑚𝑖𝑡 = 20, 𝛼 = 1.0, 𝛽 = 2.0, and 𝜌 = 0.25 for the proposed
algorithm.

4.3. Compared with the Recently Proposed Related Algorithms.
In this part, we compare the ℎ-ABC algorithm with the
recently proposed related algorithms DiGA [7], SPSO [8],
MA [6], andMPDACO [11] on the 12 different scale test cases
in Table 2. The parameters of the ℎ-ABC and the termination
condition for all these algorithms are set as in Section 4.2.
The parameters of other compared algorithms except the
termination condition are set as in their original researches.
We run each algorithm twenty times on each test case. The
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Figure 1: The effects of different parameter configurations.

maximum utility, minimum utility, mean value, and the
standard deviation obtained by each compared algorithm in
the twenty runs on each case are given in Table 4. We can
see that the maximum utility, minimum utility, and mean
value obtained by the ℎ-ABC algorithm for each test case
are larger than those obtained by compared other algorithms.
Moreover, the results on the cases based on QWS dataset are
generally higher. This is mainly because the constraints used
by the test cases related to QWS dataset are less restrictive
than others. Tightening the constraints canmake the test case
more difficult to some extent. So, we make the constraints
more and more restrictive in the experiments. It also has
achieved the smallest deviation values for the case 1, case 2,
case 3, case 4, case 8, and case 10. The MPDACO algorithm
obtained the smallest deviation values for the other test cases.

It may be because a local search process is combined with the
ant colony optimization process in the MPDACO algorithm,
and the performance of the used ant colony process for global
search is limited for these test cases. The deviation values
obtained by the DiGA, SPSO, and MA for all test cases are
all bigger than the values obtained by the ℎ-ABC. Therefore,
we can clearly get that the ℎ-ABC ismore stable than the other
compared algorithms except the MPDACO algorithm and
can perform better than all the compared other algorithms.
This can be further proved by Figure 2, which explicitly shows
the statistical results using the boxplot based on the utilities
obtained by the compared algorithms on each test instance.
It gives the distribution of the utilities obtained by each
algorithm, including the smallest observation, lower quartile,
median, mean, upper quartile, and the largest observation.
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Figure 2: Continued.
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Figure 2: The statistical results of the obtained utilities by the compared algorithms on different cases.

We can see that the minimum utility obtained by the ℎ-ABC
on each case is still larger than the biggest utility obtained by
other compared algorithms. Furthermore, the superiority of
the ℎ-ABC is more obvious for the test cases generated from
the data set QWS2 and 𝑖 data. This is mainly because these
two datasets are not correlated or anticorrelated, and many
candidate services can be filtered by the skyline query process
included in the defined framework. So, we can conclude that
the ℎ-ABC outperforms the compared methods in terms of
the utility score and possesses competitive performance for
the large scale service selection problem.

5. Conclusions

To tackle the large scale service problem, a hybrid artificial
bee colony algorithm is proposed. In this algorithm, a self-
adaptive dynamic cluster graph is constructedwhich provides
insight into the large scale service selection problem and
is exploited to predict the subspace crucial to search. It
provides a useful way to solve the service selection problem
and can give a reference for solving other optimization
problems. There are a number of research directions that can
be considered as useful extensions of this research. We can
combine it with some local search strategy or hybrid it with
other metaheuristic algorithms. Furthermore, how to tackle
the QoS uncertainty during service selection in this designed
framework is our next studying problem.
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