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With the objective of tackling the problem of inaccurate long-term western pacific subtropical high (WPSH) forecasts, based on
the concept of dynamical model reconstruction and improved self-memorization principle, a new dynamical forecasting model
of WPSH area (SI) index is developed. To overcome the problem of single initial prediction value, the largest Lyapunov exponent
is introduced to improve the traditional self-memorization function, making it more appropriate to describe the chaotic systems,
such asWPSH; the equation reconstruction by actual data is used as its dynamical core to overcome the problem of relatively simple
dynamical core.The developed dynamical forecastingmodel of SI index is used to predictWPSH strength in the long term.Through
10 experiments of the WPSH abnormal years, forecast results within 25 days are found to be good, with a correlation coefficient of
about 0.80 and root mean square error under 8%, showing that the improved model has satisfactory long-term forecasting results.
In particular the aberrance of the subtropical high can be drawn and forecast. It is acknowledged thatmechanism for the occurrence
and development of WPSH is complex, so the discussion in this paper is therefore exploratory.

1. Introduction

The western pacific subtropical high (WPSH) is one of the
most important components of the East Asian Summer
Monsoon (EASM) system [1]. The intensity and position of
WPSH show complex seasonal evolutions and the changes in
them greatly affect the occurrence of rainy season in China,
including floods, droughts, and heavy rains [1]. For example,
when WPSH reaches the northernmost position, especially
in summer, it significantly influences rainfall over China and
Japan [2].

Owing to its dominance on the East Asian climate,
WPSH has become one of the leading topics of interest in
atmospheric sciences [3–5]. Over the past decades, much
effort has gone into uncovering the forecast of the WPSH
[6], especially the forecast of abnormalWPSH [7, 8]. Current

forecasts for the WPSH can be divided into two categories:
numerical forecasts and statistical forecasts. Numerical fore-
casts are widely used throughout the world; examples include
the numerical forecast products of the European Centre
for Medium-Range Weather Forecasts Model [9] and the
Japanese FUFE502 numerical forecast products. However,
numerical forecasts require field boundaries and the complex
computations and low efficiency mean that the results are
very unstable. Numerical forecast products have better results
for large-scale weather systems, but for mesoscale weather
systems, such as the WPSH, the results are less good and the
forecast time is short.

Statistical methods, in contrast, have achieved some suc-
cess in forecasting the WPSH. These methods can use his-
torical data and the computation is simple. However, there
are some inherent flaws in statistical methods. Using neural
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networks as an example, it is difficult to objectively determine
the number of hidden layer neurons and the training process
tends to predict a local optimum, which will limit the forecast
accuracy [10]. Moreover, the reliability of all these methods
is gradually reduced with increasing forecast time, so the
forecast results and credibility become very low after two
weeks [11]. Statistical forecasting products and numerical
forecasting products both have some degrees of bias. In par-
ticular, error is more obvious in WPSH anomalies and long-
term forecasting [3]. So the prediction of unusual activities
of WPSH within season and the long-term trend forecast of
WPSH has become difficult problems in recent years.

A statistical-dynamical model of a weather system is
reconstructed from actual data and can be used to describe
the physical mechanisms of a complex weather system.
Concerning the questions of local convergence of errors,
Zhang et al. [12] introduced genetic algorithms (GA),which is
widely used in a lot of fields [13, 14], to improve the determi-
nation of root efficiency of model parameters. On that basis,
Bai et al. [15, 16] carried out research on the reconstruction
of a nonlinear statistical-dynamical forecast model of the
WPSH and achieved good results.

However, the dynamical prediction equations derived by
Zhang et al. [12] and Bai et al. [15, 16] greatly depend on the
initial value, so the long-term forecast over 15 days diverged
significantly and the results were not satisfactory. For the
long-term forecast, the model should be improved. Cao [17]
proposed the self-memorization principle, transforming the
dynamical equation intomemorization equation in a broader
sense, named a differential-integral equation, wherein the
memory coefficients can also be determined by actual data.
This method has been widely used in prediction problems
in meteorology, hydrology, and environmental field [18–20].
Because this method avoids the problem of initial condition
in differential equations, it can be introduced to improve the
proposed dynamical forecast model.

The set of self-memory function is relatively simple [17]
and is suitable for cyclical and linear systems. For nonlin-
ear systems, especially chaotic systems, forecast results are
unsatisfactory [20]. As the atmosphere and ocean are non-
linear systems, the self-memory function is needed to be
modified for nonlinear system modeling. The largest Lya-
punov exponent is introduced to improve the traditional
self-memorization function. Finally, the improved dynamical
forecasting model of WPSH with a new self-memorization
function is developed. The improved function not only takes
into account the chaotic characteristics of the nonlinear
system, but also absorbs the information of past observations.

In our study, we firstly define the WPSH area index (SI)
as a measurement of the scope and form of the WPSH. The
rest of this paper is organized as follows. Section 2 introduces
data and factors. Three summer Monsoon factors which
have higher correlation with SI are chosen. The dynamical
model of SI and three factors is reconstructed in Section 3.
In Section 4, self-memorization dynamics is introduced to
improve the reconstructed model. The improved self-
memorization functions for chaotic systems are investigated
and discussed in Section 5. Forecast experiment of 2010 and
further forecast tests of an additional nine WPSH abnormal
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Figure 1: SI of summer half-year (fromMay to October) from 1982
to 2011.

years are described in Section 6, and results are summarized
in Section 7.

2. Research Data and Factors

2.1. Data. The daily data fromMay to October of the past 30
years from 1982 to 2011 were obtained from theNational Cen-
ters for Environmental Prediction (NECP) Climate Forecast
System Reanalysis (CFSR), including horizontal wind field
and geopotential height field at 850 hPa and 200 hPa; geopo-
tential height field at 500 hPa; sea level pressure field with a
resolution of 0.5∘ × 0.5∘; and sensible heat flux, latent heat
flux, and precipitation rate in the Gaussian grid.

Observed long-wave radiation (OLR) fromMay to Octo-
ber of the 30 years from 1982 to 2011 of National Oceanic
and Atmospheric Administration (NOAA) satellites, with a
resolution of 0.5∘ × 0.5∘. Unit is Wm−2.

These data are primarily used to calculate the SI and
summer Monsoon impact factors in Section 2.3.

2.2. The Basic Facts of WPSH Activity in the Summer of 2010.
Change of WPSH within seasons in various years is very
different compared with the average, especially the “abnor-
mal” activities of the WPSH, which often lead to East Asia
subtropical circulation anomalies and extreme weather
events in China in some years, such as 1998, 2003, 2006, and
2010 [21, 22].

In order to better describe the changes in the WPSH, SI
is used, which has been defined by the Central Meteorolog-
ical Observatory [23] to characterize the WPSH range and
intensity, that is, the average grid points of 500 hPa geopo-
tential height greater than 588 gpm in the range [10∘–90∘N,
110∘E–180∘E]. The higher the value is, the wider the range
represented is, or the greater the intensity is.

SI of summer half-year (fromMay to October) from 1982
to 2011 can be calculated, and changes of SI in different years
are shown in Figure 1. In Figure 1, the straight line represents
the average SI in the observed years. SI varied widely in
different years, representing irregular activities of theWPSH;
particularly, in some years, SI showed dramatic changes. For
example, in 2010 SI is 32, while in 1984 SI is just 6, which
indicates that WPSH activities behaved abnormally in these
particular years. If we use the average data of several years,
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Figure 2: The average monthly geopotential height field at 500 hPa
of July and August in 2010.

these exceptions will not be apparent. So we should choose
an abnormal SI year to study.

From Figure 1, 2010 is the most prominent year of WPSH
anomalies as shown by the arrow. From May to October in
2010, SI is above the mean and it is the peak of nearly 30
years. The anomaly of WPSH strength resulted in a very
unusual climate in China in 2010. Extreme heat and heavy
precipitation events occurred frequently. The strength and
wide range of these events are rarely seen in history. In
particular, the most powerful WPSH happened from June to
August and is to date the strongest one in the meteorolog-
ical records (Figure 2). This most powerful WPSH directly
resulted in rare flood disasters in the eastern part of south
China, the Yangtze River, and northeast and northwest of
China.Therefore, we selected the summer of 2010 as a typical
case to analyze the relevance between the enhanced WPSH
and the members of the Monsoon system.

2.3. Selection of Three Factors. According to previous studies
[21, 22], there are many members of the summer Monsoon
system, 21 of which are closely related to the WPSH. If all
are used for modeling, the equation would be too complex.
Therefore, the correlation analysis method is used to analyze
the correlation between these factors and SI. (Specific defini-
tion of each factor can be seen in Xue et al. [24] and Yu et al.
[22]. Values of these factors can be calculated fromCFSR data
as in Section 2 and are not described in detail here.)

Based on the above correlation analysis, three factors with
the best correlation with the SI are filtered out for further
study, which are

(1) Mascarene cold high strength index (MH): the aver-
age grid points of sea level pressure within [40–60∘E,
20–10∘S] region;

(2) Tibetan high (eastern type) activity index (TH): the
average grid points of 200 hPa geopotential height
within [95–105∘E, 25–30∘N] range;

(3) Monsoon circulation index at Bay of Bengal (J1V): the
average grid point J1V = V850 − V200 within [80–
100∘E, 0–20∘N] region.

The correlation coefficients between the above three
factors and SI are 0.77, −0.80, and 0.86, all of which can reach
above 0.75.

TheMascarene high in the southern hemisphere enhances
theWPSHearly in the year, which is a positive correlation and
a very close relationship, consistent with previous research
[24]. The close relationships among TH, J1V, and SI are
basically consistent with previous research [22, 25].

3. Reconstruction of the Dynamical
Model Based on GA

Takens [26] set forth and tested the basic idea of reconstruct-
ing the dynamical system from the time series of observed
data in his phase space reconstruction theory. Hence, non-
linear dynamics research has entered a new stage, where
the evolution information of the dynamical system can be
extracted from the time series, such as the calculation of frac-
tal dimension and Lyapunov exponent [27]. However, these
studies help understandwhat a chaotic system is andwhat the
periodic system is. Dynamical models for practical problems
have not yet been developed fully. Huang and Yi [28] pro-
posed a method of nonlinear dynamic model reconstruction
from the actual data and tested it with the Lorenz system, the
result of which was satisfactory. Therefore, we introduce this
idea and improve it for reconstructing a dynamical model of
the SI and three factors.

The principle of dynamical model reconstruction has
been introduced in the previous studies [12, 15, 16] and is not
described in detail here but can be found in Appendix A.

The existing parameter estimation methods (such as
neighborhood search method and least square estimation)
are mostly one-way search which needs to travel the entire
parameter space, so the searching efficiency is low. Because
of the limitation of the error gradient convergence and its
dependence on initial solution, parameter estimation is prone
to fall into local optimum, rather than global optimum. GA
is a method extensively used as a global optimizationmethod
which has developed in recent years. GA has been found to
be excellent in global search and parallel computing, and
error convergence rate is greatly improved, so it is helpful in
parameter optimization.

We can use a simplified second-order nonlinear dynamic
model to depict the basic characteristics of the atmosphere
and the ocean interactions [29]. In our paper, 𝑥
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The idiographic operating steps include coding and creating
of initial population, calculation of fitness, male individual
choice, crossover, and variation. For a complete theoretical
explanation, one can refer to the literature [30]. During
calculation, the step length is one day. After about 35 times
of genetic operations and optimization search, it is possible to
converge to the target adaptive value rapidly and retrieve each
optimized parameter of the dynamical equations. After elim-
inating weak items with little dimension coefficient, the
nonlinear dynamic model of SI and three factors are inverted
as follows:
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(2)

The dynamical reconstruction model should be tested.
So we chose the data of August 1 in 2010 of SI, MH, TH,
and J1V which do not participate in the modeling as the
forecast initial data. Then the Runge-Kutta method is used to
carry out numerical integration of the above equations and
every step of integration can be regarded as a day forecasting
result. The forecast results of four time series within 25 days
can be obtained.The correlation coefficients between forecast
results and actual results of SI, MH, TH, and J1V within 25
days are, respectively, 0.5659, 0.5746, 0.6091, and 0.5023 and
root mean square errors (RMSE) are 36.22%, 34.54%, 32.71%,
and 36.78%. This indicates that the results of long-term
forecast within 25 days are unsatisfactory for the dynamical
reconstruction model. That is because the integration results
may diverge significantly with time, as well as our initial data
for integration being relatively simple. Therefore, we should
improve the model to get better long-term forecast results.

Following these analyses, correlation coefficients (𝑟) were
evaluated using the 𝑡-test (𝛼 = 0.05). All resulting coefficients
were found to be statistically significant at the 95% confidence
level and were thus deemed to be statistically acceptable.

4. Introduction of Self-Memorization
Dynamics to Improve the Reconstructed
Model

From the above discussion, we know that the accuracy of
forecast results of the dynamical reconstructionmodel within
25 days is unsatisfactory. Literature suggests that introducing
the principle of self-memorization into thematuremodel can
improve long-term forecasting results [18, 20]. So the self-
memorization principle is introduced to improve the model.

Following the study of Cao [17] and Feng et al. [19],
themathematical principle of self-memorization dynamics of
systems is shown in Appendix B.

Using (2) as the dynamical kernel, the improved
model based on the self-memorization equation (B.12) in
Appendix B can be expressed as
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Because we predict the value of SI, the first formula in (3)
is used to get results of our final prediction. That is,
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If we can get the value of 𝑎, 𝜃, (4) can be used for predic-
tion. Values of 𝑎, 𝜃 are associated with the self-memorization
function 𝛽, which is defined in the next section.

We make a prediction with the self-memorization equa-
tion (4); the model uses the 𝑝 values before 𝑡

0
, therefore 𝛽(𝑡)

in the self-memorization equation (4) inmemorizing the𝑝+1
values of 𝑥. This explains the reason why we call 𝛽(𝑡) the self-
memorization function. This is the mathematical basis for
introducing the self-memorization principle.

The physical basis for introducing the self-memorization
principle is that the thermodynamic equation is one of
atmospheric motion equations, which implies that the atmo-
spheric motion is an irreversible process. An important con-
tribution to the study of irreversible process is to introduce
the memory concept to physics. So the atmospheric develop-
ment in the future is not only related to the state at the initial
time, but also related to states in the past, which means the
atmosphere does not forget its past.

5. Improved Self-Memorization
Functions for Chaotic Systems

Cao [17] referred to the problem of self-memorization func-
tion assignment. Based on experience and tests, he found the
memory level gradually decreased with the distance of initial
prediction time, so the memory function can be expressed as
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It shows that the self-memorization function (5) indicated
by Cao only considers the characteristics of memory level
gradually decreasing with the distance of initial predic-
tion time and ignores nonlinear characteristics of the self-
memorization function. So wemodify the self-memorization
function as

𝛽 (𝑖) =

{
{

{
{

{

0 𝑡
𝑖
< 𝑡
𝑁−𝑃

,

𝑒
−𝑎(𝑡𝑁−𝑡𝑖)

𝑡
𝑖

(1−𝑟)

𝑡
𝑁−𝑃

≤ 𝑡
𝑖
< 𝑡
𝑁
,

1 𝑡
𝑖
≥ 𝑡
𝑁
.

(6)

Term 𝑒
−𝑎(𝑡𝑁−𝑡𝑖) represents the characteristics of memory level

gradually decreasing with the distance of initial prediction

time, while 𝑡
𝑖

(1−𝑟) reflects the nonlinear characteristics of self-
memorization function. 𝑟 and 𝑎 are the parameters to be
determined, and they are important for the specification of
the assigned self-memorization function 𝛽(𝑖). In Cao’s study,
he found no good way to determine parameters 𝑟 and 𝑎, only
believing that they had powerful connection with the past
observational data.

The Lyapunov exponent (LE) has long been used to
study atmospheric and oceanic predictability [31]. In chaotic
dynamical systems theory, the largest Lyapunov exponent can
be portrayed as a whole (long-term) average forecast error
growth rate, which generally describes the divergence of non-
linear chaotic systems. So it is often introduced in the forecast
study of chaotic systems such as atmospheric and oceanic sys-
tems [32, 33]. The traditional self-memorization function is
useful in the linear periodic system forecast, but not appro-
priate in the forecast of nonlinear chaotic systems.The largest
Lyapunov exponent (LLE) is one of the indexes which can
represent the characteristics of chaotic systems. So here 𝑟 can
be considered as LLE of the system, which can be calculated
from the reconstructed dynamical equation in Section 3. And
𝑎 can be obtained through GA from historical data.

5.1. Determination of Parameter 𝑟. Based on the above anal-
ysis, the solution of 𝑟 requires the solution of the LLE in
dynamical equation (2).

5.1.1. Definition of LLE. The definition of the Lyapunov
spectrum and the largest Lyapunov exponent (LLE) can be
referred to the literature [34] and are not described in detail
here. The LLE determines the notion of predictability for a
dynamical system. A positive LLE is usually taken as an
indication that the system is chaotic (provided some other
conditions are met, e.g., phase space compactness).

5.1.2. The Principle of Lyapunov Exponent Spectrum Calcu-
lations. If the dynamic differential equations are known,
through theoretical derivation or using a numerical iterative
algorithm to discretize differential equations, the exact
Lyapunov exponents of known dynamical systems can be
obtained. First, we work out the solution of the ordinary
differential equations and get the Jacobi matrix. Then, we
decompose the Jacobi matrix by QR while necessary orthog-
onal reformings in a multiple of small time intervals are
performed. Finally, the Lyapunov spectrum of the system can
be obtained by iterative calculations. The specific calculation
principle of the Lyapunov exponents spectrum is not shown
here, which can be referred to von Bremen et al. [35].

5.1.3. Lyapunov Spectrum of Dynamical Systems and Determi-
nation of 𝑟. According to the above calculation method, the
Lyapunov spectrum of the reconstruction dynamical model
(see Figure 3) of SI and three factors can be obtained as
in Figure 2which shows that convergence speed and volatility
are not too large and they are relatively stable. Final Lyapunov
exponents are [0.3816, 0.0016, −0.5715], containing both
negative Lyapunov exponent and two positive Lyapunov
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Figure 3: The Lyapunov spectrum of the reconstructed dynamical
model.

exponents, which demonstrate our dynamical system is
indeed a chaotic system.

Finally, 𝑟 is taken as the LLE, and 𝑟 = 0.3816.

5.2. Determination of Parameters 𝑎. Not only should the
nonlinear characteristics of chaotic system be considered, but
also the impact of the past actual data on self-memorization
function should be taken into account. So parameter 𝑎 should
be optimized.

Equation (4) is written as

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥, 𝛽) . (7)

The initial value is 𝑥(𝑡
𝑖
) = 𝑥
𝑖
, 𝑖 = 𝑁,𝑁 − 1, . . . , 𝑁 − 𝑝.

Our goal is to make the smallest error between the fitting
values and the observed values of 𝑝 periods before; that is,
secondary quality index reaches a minimum:

𝐽 (𝑢) =

𝑁

∑

𝑖=𝑝+1

(𝑥 (𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
2

󳨀→ min, (8)

where 𝑥 is the estimated value of the prediction model. 𝑥 is
the actual value. When further constraint is added, the self-
memorization function should be taken as

󵄨
󵄨
󵄨
󵄨
𝛽 (𝑡
𝑖
)
󵄨
󵄨
󵄨
󵄨
≤ 1. (9)

Parameter 𝑟 can be obtained by solving for the optimal
solution of (8) in the constraint condition of (9). Setting
𝐽(𝑢) = ∑

𝑁

𝑖=𝑝+1

(𝑥(𝑡
𝑖
) − 𝑥(𝑡

𝑖
))
2 as the objective function of GA,

putting |𝛽(𝑡
𝑖
)| ≤ 1 as a constraint, the specific process of GA

is discussed in Section 3.
We can see that the value of parameter 𝑎 is related with

the 𝑝 data before forecasting time 𝑡. The forecasting value is
preserved as the early data for the next prediction. With the
change of data, the value of parameter 𝑎 is varied. The first
calculation is 𝑎

1
= 0.244 through 39 iterations of GA, and

then in next prediction step, parameter 𝑎 is varied, which we

do not list one by one here. In fact, the continuous adjustment
of parameter 𝑎 is more accurate.

Self-memorization function 𝛽 is determined, and then it
is substituted into (4), which can be used to do prediction.

6. Model Prediction Experiments

6.1. Effective Steps andMaximumEffective Computation Time.
In order to further study the improved model, the algorithm
to solve for effective steps and maximum effective computa-
tion time should be given, based on the dynamic core (2) of
the improved model. Currently the optimal search method is
used, which is achieved based on the size of the differences
among many numerical solutions. Its principles can be seen
in Kirkpatrick [36].

In step interval [ℎmin, ℎmax], (ℎmin is a very small num-
ber), 𝑛 steps are selected, ℎ

𝑖
= ℎmin + 𝑖 ∗ 𝑑𝑡

𝑡
< ℎmax (𝑖 =

1, 2, . . . , 𝑛), and 𝑑𝑡
𝑡
is known as the time increment. The 𝑛

steps are integral to 𝑡 at the same time, getting the 𝑛 number
of numerical solutions, denoted by 𝑦

𝑡
(𝑛). If their differences

𝑉
𝑠
(𝑡) are less than the given tolerance limit 𝜀, it means that

they are relatively close to the true solution at 𝑡 time. At that
time the effective time step interval is [ℎmin, ℎmax] and the
width is𝑊

ℎ
(𝑡) = lg ℎmax− lg ℎmin. Otherwise, if𝑉

𝑠
(𝑡) > 𝜀, that

means values between some steps show larger deviations, so
removing these steps from 𝑦

𝑡
(𝑛) will make the difference of

the remaining 𝑛
1
(𝑛
1
< 𝑛) solutions less than 𝜀. The optimum

is to exclude the least number.
The effective step intervals which meet such conditions

can be gotten. Given integral step, we continue to do integral
calculation to 𝑡 + 𝑁𝑑

𝑡
; here, 𝑁 is an integer. Integral

operation continues until there are only two adjacent steps
ℎ
𝑗
(𝑡
1
), ℎ
𝑗+1
(𝑡
1
) left. Then step interval [ℎ

𝑗
(𝑡
1
), ℎ
𝑗+1
(𝑡
1
)] is

divided into𝑚parts for a another round of integral operation,
until the difference of the solution in𝑚+1 step is smaller than
𝜀. In this case, themaximumeffective computation time of the
dynamical kernel of the improvedmodel (2) can be obtained,
as shown in Figure 4.

From Figure 4, when 𝜀 is certain, for our system, the
maximum effective computation time increases with the
increment of 𝑑𝑡

𝑡
and finally remains at 28.7, which is the

maximum effective computation time (Figure 4(a)). When
𝑑𝑡
𝑡
remains constant, the maximum effective computation

time oscillates with 𝜀 (Figure 4(b)).

6.2. Prediction Experiment of 2010. The period from August
2 to September 5 in 2010 is selected to do predictions (35 days
in total). August contains abnormal activities ofWPSH.Here,
the forecasting result is obtained by the sum of (4), which
is called as step-by-step forecast. The specific procedure is
shown as follows.

Step-by-step forecasts are made after retrospective order
𝑝 is fixed.Thatmeans whenwe forecast the SI value of August
2, we must get 𝑦

𝑖
based on the previous 𝑝+1 time SI data and

𝐹(𝑥
1𝑖
, 𝑥
2𝑖
, 𝑥
3𝑖
, 𝑥
4𝑖
) based on the previous 𝑝 time SI, MH, TH,

and J1V data (because 𝑥
2
, 𝑥
3
, and 𝑥

4
are MH, TH, and J1V).

Then using them in (4) can obtain the SI value of August 2.
Then, taking the SI value ofAugust 2 as the initial value for the
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Figure 4: The maximum effective computation time changing with time increment 𝑑𝑡
𝑡

(a) and tolerance limit 𝜀 (b).

next prediction step, the SI value ofAugust 3 can be generated,
and so on.

6.2.1. Determination of 𝑝. When the principle of self-
memorization is introduced, the retrospective order 𝑝 is
related with self-memorization of the system [17]. If the
system “forgets” slowly, which means parameters 𝑎 and 𝑟 are
smaller, a high level of 𝑝 should be used. WPSH abnormal
activities are on ten-day scale [22, 24], which is a slow
process in contrast to the large-scale atmospheric motion. So
parameters 𝑎 and 𝑟 are smaller, and generally 𝑝 is in the range
of 5 to 15.

The correlation coefficients and root mean square errors
(RMSE) between forecast value and real value can be calcu-
lated with different retrospective order, as shown in Table 1.

From the table, we can see when 𝑝 = 8, the correlation
coefficient is the largest, and the root mean square error is
the smallest. So we choose 𝑝 = 8.

After 𝑝 is determined, the improved self-memorization
equation (4) can be used for prediction experiments. Short-,
medium-, and long-term integration forecasts of 15 days, 25
days, and 35 days are carried out. Retrospective order 𝑝 = 8

means that earlier observational data (𝑝 + 1 = 9) are used for
integration to begin. The integral result per day is preserved
as preliminary information and will be used for integration
in the next period.

6.2.2. Prediction Results of 2010. The forecast results within
35 days are shown in Figure 5, which show that the forecast
result of SI is better.

As can be seen in Figure 5, forecast performance of
the first 15 days is better. The correlation coefficient has
reached 0.9542 and the root mean square errors (RMSE) are
2.45%. Two peaks and one valley of SI are also forecast very
accurately. The forecast time series from 15 days to 25 days
gradually diverges, but the trend is accurate. The correlation
coefficient reaches 0.9254 and the RMSE is 6.37%. Forecast
rate is still accurate.The peak of SI inAugust 18 is also forecast
accurately.
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Figure 5: The 35-day forecast results of the subtropical high area
index.

After nearly 25 days, the RMSE begins to increase: the
forecast trend is still accurate with correlation coefficient of
0.8136. Forecast curve from 25 days to 35 days is accurate
compared with the actual situation. But the peaks and valleys
are not forecast accurately. In particular after 28 days, the
error has started to increase significantly. For example, the
forecast value of August 28 is nearly 100 more than the
actual value, resulting in a false peak. The root mean square
error increases to 19.18%, but it is still controlled within 20%.
Figure 5 shows that the forecast results after 28 days are
obviously unsatisfactory with the occurrence of greater oscil-
lations.The effective forecast period (within 28 days) happens
to be in accordance with themaximum integration time (28.7
units) calculated in Section 6.1.

In brief, from Figure 5, we can see that the short-term
forecast within 28 days is accurate, and the average RMSEs are
less than 8%, which indicates that the reconstruction model
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Table 1: The correlation coefficient (C.C.) and root mean square errors (RMSE) when the retrospective order 𝑝 is different.

𝑝 1 5 6 7 8 9 10 11 12
C.C. 0.38 0.72 0.78 0.81 0.94 0.92 0.87 0.86 0.84
RMSE 27.53% 14.33% 13.76% 13.06% 3.72% 4.63% 5.01% 6.77% 7.01%
𝑝 13 14 15 20 30 40 50 60 70
C.C. 0.83 0.71 0.67 0.44 0.36 0.32 0.28 0.21 0.17
RMSE 10.98% 13.24% 15.50% 24.13% 28.91% 30.22% 39.11% 42.18% 50.24%
𝑝 1 5 6 7 8 9 10 11 12
C.C. 0.38 0.72 0.78 0.81 0.94 0.92 0.87 0.86 0.84
RMSE 27.53% 14.33% 13.76% 13.06% 3.72% 4.63% 5.01% 6.77% 7.01%
𝑝 13 14 15 20 30 40 50 60 70
C.C. 0.83 0.71 0.67 0.44 0.36 0.32 0.28 0.21 0.17
RMSE 10.98% 13.24% 15.50% 24.13% 28.91% 30.22% 39.11% 42.18% 50.24%

Table 2: The correlation coefficients (C.C.) and root mean square errors (RMSE) between forecast value and real value of different events of
WPSH abnormal years.

Forecast events
Statistical tests

Short term (1∼15 days) Medium term (16∼25 days) Long term (26∼35 days)
C.C. RMSE C.C. RMSE C.C. RMSE

SI bigger event 1 (1998.06.21 as
initial values to forecast) 0.957 2.92% 0.812 4.51% 0.723 11.91%

SI bigger event 2 (2006.07.18 as
initial values to forecast) 0.936 2.88% 0.877 4.72% 0.776 10.98%

SI bigger event 3 (1987.07.08 as
initial values to forecast) 0.942 3.16% 0.881 3.97% 0.718 11.48%

SI bigger event 4 (1983.08.05 as
initial values to forecast) 0.958 3.40% 0.820 4.06% 0.729 10.90%

SI smaller event 1 (1984.07.28 as
initial values to forecast) 0.951 3.12% 0.815 3.43% 0.789 11.21%

SI smaller event 2 (2000.06.29 as
initial values to forecast) 0.892 3.47% 0.825 4.97% 0.708 10.76%

SI smaller event 3 (1994.08.17 as
initial values to forecast) 0.914 4.52% 0.755 3.83% 0.698 11.87%

SI smaller event 4 (1999.06.12 as
initial values to forecast) 0.809 3.97% 0.873 3.89% 0.777 11.70%

SI smaller event 5 (1985.07.11 as
initial values to forecast) 0.926 2.07% 0.882 4.85% 0.737 10.17%

The average 0.921 3.28% 0.838 4.25% 0.739 11.22%

can perform accurate predictions of the changing trends of
indices.

6.3. More Forecasting Experiments of WPSH Abnormal Years.
To further test the forecasting performance of the improved
model, cross testing of more experiments is performed. From
Figure 2 discussed in Section 2.2, we choose another four
years (1998, 2006, 1987, and 1983) in which WPSH intensity
is abnormally strong (bigger SI) and five years (1984, 2000,
1994, 1999, and 1985) in whichWPSH intensity is abnormally
weak (smaller SI) to carry out integral forecast experiments
of SI. In accordance with the previous idea, the common 2010
model which is reconstructed in Section 4 is used to carry out

the cross testing. Forecast results of different time periods (1–
15 days as short term, 16–25 days as medium term, and 26–
35 days as long term) are compared with the actual situation.
Cross test results are displayed in Table 2. From the table, we
can see the forecast results of the short term and the medium
term are accurate, and those of the long term (>26 days) can
also be accepted.The results of MH, FLH, and TH are similar
to those of SI.

7. Summary and Discussion

7.1. Summary. Although in recent years the WPSH has
become one of the leading topics of atmospheric sciences, it
is still difficult to be forecast. Combining dynamical system
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reconstruction idea with the improved self-memorization
principle, a new dynamical forecasting model of SI index
is developed. The approach of this paper consists of the
following steps.

(1) We use correlation analysis method to discuss con-
tributions and impact of the key members of EASM to
the abnormal WPSH in 2010 and identify the three most
significant factors: the Mascarene high, the Tibetan high
(eastern type), and Monsoon circulation index at Bay of
Bengal.

(2) Take the SI, MH, XZ, and J1V time series and consider
them as trajectories of a set of 4 coupled quadratic differential
equations based on the dynamic system reconstruction idea.
Parameters of this dynamical model are estimated by a
genetic algorithm (GA).

(3) Apply the “principle of self-memorization” in order to
improve the forecasting results of the above dynamicalmodel.
This involves a manipulation of the time series using an
exponentially decaying (in time) function 𝛽(𝑟), which also
depends on the largest Lyapunov exponent of the above
dynamical system. A second free parameter of 𝛽(𝑎) is
determined by minimizing the distance of the modified
reconstructed time series.

(4) The improved model is used to forecast the SI index.
Through 2010 experiments and other 9 experiments ofWPSH
abnormal years, we find that forecast results within 25 days
are good, which proves that our improved model has better
long-term forecasting results. Given the complexity of the
mechanism of the WPSH [3], the new dynamical forecasting
model has some scientific significance and practical value.

Based on the discussion in Section 1, we know that the
forecast results and credibility of the previous methods are
very low after two weeks [11]. So our improved statistical-
dynamical model represents an exploration of and supple-
ment to the traditional numerical forecasting and statistical
forecasting methods and also extends the prediction time.

7.2. Discussion. Why are the forecasting results of our
improved model especially good? (1) Previous studies have
showed that the long-term forecasting results of dynamical
system reconstructed model are unsatisfactory; thus, we
introduce the self-memorization principle to improve the
long-term forecasting results. Previous studies have proved
that this approach is feasible. For example, Gu [18] used
the self-memorization principle to improve the traditional
T42 model. And Wang et al. [25] also carried out dynamical
prediction of building subsidence deformation with self-
memorization model. Long-term forecasting results of their
models were very good. Our study also shows that intro-
ducing the self-memorization principle to improve a mature
model can bring better long-term forecasting results. (2) The
largest Lyapunov exponent is firstly introduced to improve
the traditional self-memorization function, making it more
appropriate to describe the chaotic systems, such as WPSH.
(3) In developing the improved model, the parameters are
obtained from the historical data, which contain sufficient
information of WPSH abnormal process. Statistical data

combining with improved dynamical model makes forecast-
ing results more reliable.

Although the forecast results of improved model are
better, there are still some issues which are needed for further
research.

(1) The physical meaning of the factors in the model is
not clear, so its dynamical characteristics should be
further analyzed.

(2) The forecast accuracy has a great relationship with
self-memorization functions. Maybe we can find a
better self-memorization function to improve fore-
cast accuracy for long term in the future.

These two items are the focus of our next work.

Appendices

A. Principle of Dynamical
Model Reconstruction

Suppose that the finite difference form of the physical law of
any nonlinear system evolving with time can be expressed as
follows:

𝑞
(𝑗+1)Δ𝑡

𝑖

− 𝑞
(𝑗−1)Δ𝑡

𝑖

2Δ𝑡

= 𝑓
𝑖
(𝑞
𝑗Δ𝑡

1

, 𝑞
𝑗Δ𝑡

2

, . . . , 𝑞
𝑗Δ𝑡

𝑖

, . . . , 𝑞
𝑗Δ𝑡

𝑁

) ,

𝑗 = 2, 3, . . . ,𝑀 − 1,

(A.1)

where 𝑓
𝑖
is the generalized nonlinear function of 𝑞

1
, 𝑞
2
, . . . ,

𝑞
𝑖
, . . . , 𝑞

𝑁
, 𝑁 is the number of state variables, and 𝑀 is

the length of time series of observed data. We assume
that 𝑓

𝑖
(𝑞
𝑗Δ𝑡
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𝑖
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are real numbers (𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, 𝑘 =
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The matrix form of (A.2) is𝐷 = 𝐺𝑃, in which
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Coefficients of the above generalized unknown equation
can be identified through inverting the observed data. Given a
vector𝐷, vector𝑃 can be solved to satisfy the above equation.
It is a nonlinear system with respect to 𝑞; however it is a
linear systemwith respect to𝑃 (assume𝑃 is unknown). So the
classical least square method can be introduced to estimate
the equation and the regular equation 𝐺𝑇𝐺𝑃 = 𝐺

𝑇

𝐷 can be
derived by making the residual sum of squares 𝑆 = (𝐷 −

𝐺𝑃)
𝑇

(𝐷 − 𝐺𝑃)minimum.
Based on the above approach, coefficients of the nonlinear

dynamical systems can be determined and the nonlinear
dynamical equations of observed data can be established.

B. Mathematical Principle of
Self-Memorization Dynamics of Systems

In general, dynamical equations of a system can be written as

𝜕𝑥
𝑖

𝜕𝑡

= 𝐹
𝑖
(𝑥, 𝜆, 𝑡) , 𝑖 = 1, 2, . . . , 𝐽, (B.1)

where 𝐽 is an integer, 𝑥
𝑖
the 𝑖th variable of the system state,

and𝜆 the parameter. Equation (B.1) expresses the relationship
between a local change of 𝑥 and a source function 𝐹.
Obviously, 𝑥 is scalar function at the space 𝑟

0
and the time 𝑡.

Consider a set of time 𝑇 = [𝑡
−𝑝
⋅ ⋅ ⋅ 𝑡
0
⋅ ⋅ ⋅ 𝑡
𝑞
], where 𝑡

0
is an

initial time, and a set of space𝑅 = [𝑟
𝑎
⋅ ⋅ ⋅ 𝑟
𝑖
⋅ ⋅ ⋅ 𝑟
𝛽
], where 𝑟

𝑖
is a

spatial point considered. An inner product in space 𝐿2 : 𝑇×𝑅
is defined by

(𝑓, 𝑔) = ∫

𝑏

𝑎

𝑓 (𝜉) 𝑔 (𝜉) 𝑑𝜉, 𝑓, 𝑔 ∈ 𝐿
2

. (B.2)

Accordingly, define a norm

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
= [∫

𝑏

𝑎

𝑓(𝜉)
2

𝑑𝜉]

1/2

. (B.3)

Making a completion for 𝐿2, it becomes a Hilbert space
𝐻. A solution of the multitime model can be regarded as a
generalized one in 𝐻. Dropping 𝑖 in (B.1) and applying an
operation of the inner product defined in (B.2), by introduc-
ing a memorial function 𝛽(𝑟, 𝑡), we obtain

∫

𝑡

𝑡0

𝛽 (𝜏)

𝜕𝑥

𝜕𝜏

𝑑𝜏 = ∫

𝑡

𝑡0

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏, (B.4)

where 𝑟 in 𝛽(𝑟, 𝑡) is dropped because of fixing on the spatial
point 𝑟

0
. Supposing variable 𝑥 and function 𝛽(𝑟, 𝑡), and

so forth, are all continuous, differentiable, and integrable,
following the calculus, making an integration by parts for the
left of (B.4) yields

∫

𝑡

𝑡0

𝛽 (𝜏)

𝜕𝑥

𝜕𝜏

𝑑𝜏 = 𝛽 (𝑡) 𝑥 (𝑡)

− 𝛽 (𝑡
0
) 𝑥 (𝑡
0
) − ∫

𝑡

𝑡0

𝑥 (𝜏) 𝛽
󸀠

(𝜏) 𝑑𝜏,

(B.5)

where 𝛽
󸀠

(𝑡) = 𝜕𝛽(𝑡)/𝜕𝑡. Apply the median theorem in
calculus to the third term in the right-hand side of (B.5).That
is, the following is obtained:

−∫

𝑡

𝑡0

𝑥 (𝜏) 𝛽
󸀠

(𝜏) 𝑑𝜏 = −𝑥
𝑚

(𝑡
0
) [𝛽 (𝑡) − 𝛽 (𝑡

0
)] , (B.6)

where the median 𝑥𝑚(𝑡
0
) ≡ 𝑥(𝑡

𝑚
), 𝑡
0
< 𝑡
𝑚
< 𝑡. Substituting

(B.5) and (B.6) for (B.4) and performing algebraic operation,
we get

𝑥 (𝑡) =

𝛽 (𝑡
0
)

𝛽 (𝑡)

𝑥 (𝑡
0
) +

𝛽 (𝑡) − 𝛽 (𝑡
0
)

𝛽 (𝑡)

𝑥
𝑚

(𝑡
0
)

+

1

𝛽 (𝑡)

∫

𝑡

𝑡0

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏.

(B.7)

As the first and second terms in (B.7) relate to the 𝑥 value
only on the fixed point 𝑟

0
itself at the initial time 𝑡

0
and the

middle time 𝑡
𝑚
, they are called a self-memory term.Naturally,

call the third term an exogenous effect, that is, total effect
contributed by other spatial points to point 𝑟

0
in an interval

[𝑡
0
, 𝑡].
For multitime 𝑡

𝑖
, 𝑖 = −𝑝, −𝑝 + 1, . . . , 𝑡

0
, 𝑡, similar to (B.5),

we have

∫

𝑡−𝑝+1

𝑡−𝑝

𝛽 (𝜏)

𝜕𝑥

𝜕𝜏

𝑑𝜏 + ∫

𝑡−𝑝+2

𝑡−𝑝+1

𝛽 (𝜏)

𝜕𝑥

𝜕𝜏

𝑑𝜏

+ ⋅ ⋅ ⋅ + ∫

𝑡

𝑡0

𝛽 (𝜏)

𝜕𝑥

𝜕𝜏

𝑑𝜏 = ∫

𝑡

𝑡−𝑝

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏.

(B.8)

By eliminating the same term 𝛽(𝑡
𝑖
)𝑥(𝑡
𝑖
), 𝑖 = −𝑝 + 1, −𝑝 +

2, . . . , 0, it gives

𝛽 (𝑡) 𝑥 (𝑡) − 𝛽 (𝑡
−𝑝
) 𝑥 (𝑡
−𝑝
)

−

0

∑

𝑖=−𝑝

[𝛽 (𝑡
𝑖+1
) − 𝛽 (𝑡

𝑖
)] 𝑥
𝑚

(𝑡
𝑖
)

− ∫

𝑡

𝑡−𝑝

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏 = 0.

(B.9)

For simplicity, setting 𝛽
𝑡
≡ 𝛽(𝑡), 𝛽

0
≡ 𝛽(𝑡

0
), 𝑥
𝑡
≡

𝑥(𝑡), 𝑥
0
≡ 𝑥(𝑡

0
), similar notations are used in the following

context. Then, (B.9) can be written as

𝛽
𝑡
𝑥
𝑡
− 𝛽
−𝑝
𝑥
−𝑝
−

0

∑

𝑖=−𝑝

𝑥
𝑚

𝑖

(𝛽
𝑖+1

− 𝛽
𝑖
)

− ∫

𝑡

𝑡−𝑝

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏 = 0.

(B.10)

Setting 𝑥
−𝑝
≡ 𝑥
𝑚

−𝑝−1

, 𝛽
−𝑝−1

= 0, we rewrite (B.10) as

𝑥
𝑡
=

1

𝛽
𝑡

0

∑

𝑖=−𝑝−1

𝑥
𝑚

𝑖

(𝛽
𝑖+1

− 𝛽
𝑖
)

+

1

𝛽
𝑡

∫

𝑡

𝑡−𝑝

𝛽 (𝜏) 𝐹 (𝑥, 𝜏) 𝑑𝜏 = 𝑆
1
+ 𝑆
2
.

(B.11)
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We call 𝑆
1
a self-memory term and 𝑆

2
an exogenous effect

term.
For the convenience of calculations, to discretize

self-memorization equation, the integration in (B.11) in
Appendix B is replaced by summation and the differential
by difference, and the median 𝑥

𝑚

𝑖

is simply replaced
by the mean of two values at adjoining times; that is,
𝑥
𝑚

𝑖

≈ (1/2)(𝑥
𝑖+1

+ 𝑥
𝑖
) ≡ 𝑦
𝑖
.

By sampling an equal time intervalΔ𝑡, that is, 𝑡
𝑖
= 𝑡
0
+𝑖Δ𝑡,

𝑖 = 1, 0, −1, −2, . . . , −𝑝, taking an equal time interval Δ𝑡
𝑖
=

𝑡
𝑖+1

− 𝑡
𝑖
= 1, where 𝑡

0
is initial time, 𝑡

0
+ Δ𝑡 is forecast

time, 𝑝 is retrospective order, and, incorporating 𝛽
𝑖
and 𝛽

𝑡
,

a discretized self-memorization equation is obtained:

𝑥
𝑡
=

−1

∑

𝑖=−𝑝−1

𝛼
𝑖
𝑦
𝑖
+

0

∑

𝑖=−𝑝

𝜃
𝑖
𝐹 (𝑥, 𝑖) , (B.12)

where 𝐹 is the dynamic core of the self-memorization
equation; 𝛼

𝑖
= (𝛽
𝑖+1

− 𝛽
𝑖
)/𝛽
𝑡
; 𝜃
𝑖
= 𝛽
𝑖
/𝛽
𝑡
.

We call a technique with which one makes forecast and
computation based on (B.12) a self-memorization principle.
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