
Research Article
Lifecycle-Based Swarm Optimization Method for
Numerical Optimization

Hai Shen,1,2 Yunlong Zhu,2 and Xiaodan Liang3

1College of Physics Science and Technology, Shenyang Normal University, Shenyang 110023, China
2Laboratory of Information Service and Intelligent Control, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang,
Shenyang 110016, China
3School of Computer Science & Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China

Correspondence should be addressed to Yunlong Zhu; ylzhusia@163.com

Received 19 October 2014; Revised 18 November 2014; Accepted 23 November 2014; Published 11 December 2014

Academic Editor: Muhammad Naveed Iqbal

Copyright © 2014 Hai Shen et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by
biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO). Biological
lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died,
the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect
evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition,
crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution.
Experiments were conducted on unconstrained benchmark optimization problems andmechanical design optimization problems.
Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance
and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable
performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization
techniques.

1. Introduction

In nature, biology species are divers and an organism is any
living thing (such as animal, plant, or microorganism) [1].
All their behaviors can show what kind of biological features
they have. Some features are universality, such as foraging,
reproduction, mutation, and metabolism. And for some org-
anisms, their features are uniqueness and intelligence [2].The
ant possesses division and cooperation behaviors. Bees have
special skills in the process of gathering honey. Birds have
unique flight principle. The bacterial flagellums play a role of
chemotaxis in their moving. Biologic features enable organ-
isms to adapt to the complex living environment in the best
way and long-term survival in nature. Real-world optimiza-
tion problems are similar to biologic survival environment;
they all have complex features. Therefore, with the purpose
of solving reality complex problem, researchers begin to

mimic the biologic phenomena via defining a set of rules and
realize those rules on computer [3]. Those rules are called
bioinspired optimization technique.

Currently, the bioinspired optimization techniques pos-
sessing abundant research results, and we divide all existing
algorithms into three major categories: evolutionary com-
putation, swarm intelligence, and others. Widely concerned
algorithms are as follows:

(1) evolutionary computation:

(i) genetic algorithm;
(ii) evolutionary programming;
(iii) evolutionary strategy;
(iv) genetic programming;
(v) differential evolution;
(vi) neuroevolution;

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 892914, 11 pages
http://dx.doi.org/10.1155/2014/892914



2 Discrete Dynamics in Nature and Society

(2) swarm intelligence (SI):

(i) particle swarm optimization;
(ii) ant colony optimization;
(iii) bacterial foraging optimization algorithm;
(iv) artificial bee colony;
(v) shuffled frog leaping algorithm;
(vi) glowworm swarm optimization;
(vii) cuckoo search;
(viii) firefly algorithm;
(ix) harmony search;
(x) bat algorithm;
(xi) wolf search;

(3) other algorithms:

(i) artificial immune algorithm;
(ii) artificial neural networks;
(iii) cellular automata;
(iv) cultural algorithm;
(v) membrane computers;
(vi) brain storm optimization;
(vii) ecoinspired evolutionary algorithm;
(viii) invasive weed optimization;
(ix) dolphin echolocation.

Moreover, these bioinspired optimization algorithms
have been widely applied to network optimization [4–7], data
mining [8–10], production scheduling [11–14], power system
[15, 16], pattern recognition [17, 18], robotics applications [19–
21] and so on.

All living organisms have lifecycle, either the common-
est ants, butterflies, goldfish around us or the uncommon
Antarctic penguins, arctic bear or either the ferocious beast
or the meek of poultry. Although different organisms have
different lifecycle lengths, they all undergo the process from
birth to death. When an original life ends, a new life will gen-
erate.The biology evolution of nature follows the “cycle relay”
pattern, which is a “life and death alternation” cycle process.
This process repeated continuously made the endless life on
earth, and biologic evolution becomemore andmore perfect.

Inspired by the idea of lifecycle, in 2002, Krink and
Løvbjerg introduced a hybrid approach called the lifecycle
model that simultaneously applies genetic algorithms (GAs),
particle swarm optimization (PSO), and stochastic hill climb-
ing to create a generally well-performing search heuristics
[22]. In this model, authors consider candidate solutions
and their fitness as individuals, which, based on their recent
search progress, can decide to become either a GA individual,
a particle of a PSO, or a single stochastic hill climber.

In 2008, Niu et al. proposed a lifecycle model (LCM)
to simulate bacterial evolution from a finite population of
Escherichia coli (E. coli) bacteria [23]. In this simulation study,
bacterial behaviors (chemotaxis, reproduction, extinction,
and migration) during their whole life cycle are viewed
as evolutionary operators used to find the best nutrient

concentration which is labeled as a potential global solution
of the optimization problem.

In 2011, borrowing the biologic lifecycle theory, the
Lifecycle-based swarm optimization (LSO) algorithm was
proposed for the first time [24]. Then, 7 unimodal uncon-
strained optimization test functions and constrained opti-
mization test functions as well as engineering problems that
include vehicle routing problem (VRP) and vehicle routing
problemwith TimeWindows (VRPTW)were adopted to test
LSO algorithm performance [24–26].The above experiments
demonstrate that LSO is a competitive and effective approach.
In order to evaluate the LSO performance accurately, this
paper uses 23 unconstrained benchmark functions to study
the effectiveness and stability of LSO.

The rest of this paper is organized as follows. Sections 2
and 3 describe the proposed Lifecycle-based swarmoptimiza-
tion (LSO) technique. Sections 4 and 5 present and discuss
computational results.The last section draws conclusions and
gives directions of future work.

2. Lifecycle-Based Swarm Optimization

2.1. Chemotaxis Operator. Based on the current location, the
next movement will be towards the better places.The optimal
individual of population selects this foraging strategy. Since
the optimal forager in the current iteration possesses the
greatest energy, so he has the ability to seek the better location
which withmore nutrient resources than previous location in
global search scope. And the seeking mode taken by optimal
foraging individual is not the same as the migration method
of nonoptimal individual and also is not a simple migration
or position moving, but a rather powerful foraging strategy,
such as chaos search. The better solution was found directly
using chaos variable.

(1) The current optimization variable is denoted by 𝑋
0
,

and its fitness value is 𝑓(𝑋
0
).

(2) Generate 𝑛 chaotic variables (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) by

logistic mapping:

𝑋
𝑖+1

= 4𝑋
𝑖
(1 − 𝑋

𝑖
) , 𝑖 = 0, 1, 2, . . . , 𝑛 − 1. (1)

(3) Transform the chaotic motion traverse range to opti-
mize variable domain:

𝑋
𝑖
= 𝐵lo + (𝐵up − 𝐵lo)𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑛, (2)

where 𝐵up and 𝐵lo are the upper and lower boundary
of the search space.

(4) Compute fitness values:

(𝑓 (𝑋
1
) , 𝑓 (𝑋

2
) , . . . , 𝑓 (𝑋

𝑛
)) of 𝑛 chaotic variables

(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) .

(3)

(5) If𝑓(𝑋
𝑖
) is better than𝑓(𝑋

0
), then𝑋

0
⇐ 𝑋
𝑖
,𝑓(𝑋
0
) ⇐

𝑓(𝑋
𝑖
).
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2.2. Transposition Operator. Individuals of selecting nonso-
cial foraging strategy will randomly migrate within their own
energy scope:

ub
𝑖
=

𝑋
𝑝

𝑋
𝑖

⋅ Δ,

lb
𝑖
= −ub

𝑖
,

𝜑 = 𝑟
2
(ub
𝑖
− lb
𝑖
) + lb
𝑖
,

𝑋
𝑖+1

= 𝑋
𝑖
+ 𝜑,

(4)

where 𝜑 is the migration distance of 𝑋
𝑖
, 𝑟
2
∈ 𝑅
𝑛 is a normal

distributed random number with mean 0 and standard
deviation 1, ub

𝑖
and lb

𝑖
are the search space boundary of the

𝑖th individual, and Δ is the range of the global search space.

2.3. Assimilation Operator. Individuals of selecting social
foraging strategy will perform assimilation operator. They
gain resource directly from the optimal individual in the way
of using a random step towards the optimal individual:

𝑋
𝑖+1

= 𝑋
𝑖
+ 𝑟
1
(𝑋
𝑝
− 𝑋
𝑖
) , (5)

where 𝑟
1
∈ 𝑅
𝑛 is a uniform random sequence in the range

(0, 1), 𝑋
𝑃
is the best individual of the current population, 𝑋

𝑖

is the position of an individual who performs assimilation
operator, and𝑋

𝑖+1
is the next position of this individual.

2.4. Crossover Operator. In LSO, the crossover operator
selects single-point crossover method. One crossover point is
selected, string from beginning of individual to the crossover
point is copied from one parent, and the rest is copied from
the second parent.

2.5. Selection Operator. According to “the survival of the
fittest” theory and for ensuring a fixed population size LSO
takes a certain method which can make some individuals
be retained and the others be eliminated. In this algorithm,
the selection operator performs elitist selection strategy. A
number of individuals with the best fitness values are chosen
to pass to the next generation.

2.6.MutationOperator. In this algorithm, themutation oper-
ator performs dimension-mutation strategy. Every individual
𝑋
𝑖

∈ 𝑅
𝑛, 𝑋
𝑖

= (𝑥
𝑖1
, 𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
), one dimension of an

individual who was selected according to the probability will
re-location in search space:

𝑥
𝑖𝑗
= rand (1) (ub − lb) + lb, (6)

where ub and lb are the lower and upper boundary of search
space. In the𝑁-dimension search space, the𝑥

𝑖𝑗
is the position

of the 𝑗th dimension of the 𝑖th individual; value 𝑗 is in [1,𝑁].

3. Algorithm Description

Lifecycle-based swarm optimization is a population-based
search technique, evaluation all individuals fitness value, and

Growth stage

Chemotactic
operator operator operator

Assimilation Transposition

Reproduction stage: crossover operator

Death stage: selection operator

Mutation stage: mutation operator

Birth stage: clumped distribution

Figure 1: LSO algorithm flowchart.

establishes an iterative process through implementation of
six operators proposed above. Each population is composed
of a certain number of individuals and meets the clumped
distribution. In each iteration, firstly, all individuals need
to select foraging strategy and execute foraging operator
based on individual’s fitness value and foraging probability
generated randomly; then, this is followed by the crossover
operation, selection operation, and the mutation operation.
Finally, generate the next population which can represent the
new solutions. In the optimization process, the optimization
operation is random, but the optimize performance shown
us are not entirely randomly. It can effectively utilize the
historical information to speculate the next solutions, which
has the possible of closer to optimum. Such process was
repeated from generation to generation and finally converges
to the individual and this was the most adaptable process to
environments and an optimal solution was obtained. Figure 1
shows LSO algorithm flowchart.

4. Experiments Setting

4.1. Illustrative Examples. To fully evaluate the performance
of the LSO algorithm without bias, we employed 23 bench-
mark functions which were tested widely in evolutionary
computation domain to show the quality solution and the
convergence rate [27]. These test functions were listed in
appendix. In those functions, functions𝑓

1
to𝑓
7
are unimodal

functions, functions 𝑓
8
to 𝑓
13
are multimodal functions with

many local minima, and functions 𝑓
14
to 𝑓
23
are multimodal

functions with few local minima.
In order to verify the efficiency of our approach to

settle practical problem and test the goodness of LSO, the
mechanical design optimization problem was selected as the
testing case, which included pressure vessel and schematic
diagram of welded beam problem. These are the hybrid
system optimization problems.
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Figure 3: Schematic diagram of welded beam.

(1) Pressure Vessel. As shown in Figure 2, pressure vessel was
designed to minimize the total pressure vessel weight. There
are four design variables: the shell thickness 𝑇

𝑠
= 𝑥
1
, the

thickness of the head 𝑇
ℎ
= 𝑥
2
, the inner radius 𝑅 = 𝑥

3
, and

the length of the cylindrical section 𝐿 = 𝑥
4
. 𝑥
1
and 𝑥

2
are

discrete values which are integermultiples of 0.0625 in and 𝑥
3

and 𝑥
4
are continuous. The pressure vessel problem is stated

as follows:

Minimize: 𝑓 (𝑋) = 0.6224𝑋
1
𝑋
3
𝑋
4
+ 1.7781𝑋

2
𝑋
2

3

+ 3.1661𝑋
2

1
𝑋
4
+ 19.84𝑋

2

1
𝑋
3

subject to: 𝑔
1
(𝑋) = 0.0193𝑋

3
− 𝑋
1
≤ 0

𝑔
2 (𝑥) = 0.00954𝑋

3
− 𝑋
2
≤ 0

𝑔
3
(𝑋) = 1, 296, 000 − 𝜋𝑋

2

3
𝑋
4

−
4

3
𝜋𝑋
3

3
≤ 0

𝑔
4
(𝑥) = 𝑋

4
− 240 ≤ 0

0.0625 ≤ 𝑋
1
, 𝑋
2
≤ 6.1875,

10 ≤ 𝑋
3
, 𝑋
4
≤ 200.

(7)

(2) Schematic Diagram of Welded Beam. As shown in Figure
3, schematic diagram of welded beam problem was designed
to minimize the total cost of welded beam materials. There
are four design variables: the welding thickness ℎ = 𝑋

1
, weld

joint length 𝑙 = 𝑋
2
, the width of the beam 𝑡 = 𝑋

3
, and the

thickness of the beam 𝑏 = 𝑋
4
. 𝑋
1
and 𝑋

2
are discrete values

which are integer multiples of 0.0625 in and 𝑋
3
and 𝑋

4
are

continuous.The schematic diagram of welded beam problem
is stated as follows:

Minimize: 𝑓 (𝑥) = 1.1047𝑥
2

1
𝑥
2

+ 0.04811𝑥
3
𝑥
4
(14.0 + 𝑥

2
)

subject to: 𝑔
1
(𝑋) = 𝜏 (𝑋) − 13000 ≤ 0

𝑔
2
(𝑋) = 𝜎 (𝑋) − 30000 ≤ 0

𝑔
3
(𝑋) = 𝑥

1
− 𝑥
4
≤ 0

𝑔
4 (𝑋) = 0.10471𝑥

2

1
+ 0.04811𝑥

3
𝑥
4

× (14.0 + 𝑥
2
) − 5 ≤ 0

𝑔
5
(𝑋) = 0.125 − 𝑥

1
≤ 0

𝑔
6
(𝑋) = 𝛿 (𝑋) − 0.25 ≤ 0

𝑔
7
(𝑋) = 6000 − 𝑃

𝐶
(𝑋) ≤ 0

𝜏 (𝑋) = √(𝜏󸀠)
2
+ 2𝜏󸀠𝜏󸀠󸀠

𝑥
2

2𝑅
+ (𝜏󸀠󸀠)

2
,

𝜏
󸀠
=

6000

√2𝑥
1
𝑥
2

, 𝜏
󸀠󸀠
=
𝑀𝑅

𝐽
,

𝑀 = 6000 (𝐿 +
𝑥
2

2
) ,

𝑅 = √
𝑥
2

2

4
+ (

𝑥
1
+ 𝑥
3

2
)

2

,

𝛿 (𝑋) =
504000

𝑥
3

3
𝑥
4

,

𝐽 = 2{
𝑥
1
𝑥
2

√2

[
𝑥
2

2

12
+ (

𝑥
1
+ 𝑥
3

2
)

2

]}

𝜎 (𝑋) =
2.1952

𝑥
4
𝑥
2

3

,

𝑃
𝑐 (𝑋) = 64746.022 (1 − 0.0282346𝑥

3
) 𝑥
3
𝑥
3

4

0.1 ≤ 𝑋
1
≤ 2.0, 0.1 ≤ 𝑋

2
≤ 10,

0.1 ≤ 𝑋
3
≤ 10, 0.1 ≤ 𝑋

4
≤ 2.0.

(8)

4.2. Settings for Involved Algorithms. We compared the opti-
mization performance of LSO with the well-known algo-
rithms: the standard PSO and the standard GA. In 2006, He
et al. proposed group search optimizer (GSO) inspired by
the scrounging strategies of house sparrows and employed
especially animal scanning mechanism [28]. This algorithm
appeared to be overpowering compared to the GA, PSO,
EP, and ES on 23 benchmark functions used in this paper.
Therefore, LSO was also compared with GSO.

The parameter settings of every algorithm were manually
tuned. Each of the experiments was repeated 30 runs, and
the max iterations in a run 𝑇max = 3000. In every run,
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Table 1: Results for all algorithms on benchmarks functions 𝑓
𝑙
to 𝑓
7
.

Fun. number
(𝑓min)

LSO GSO PSO GA
Mean best Std Mean best Std Mean best Std Mean Best Std
(Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)

1 1.20𝐸 − 11 4.14𝐸 − 11 9.37𝐸 − 07 4.70𝐸 − 06 3.33𝐸 + 02 1.83𝐸 + 03 1.58𝐸 + 00 6.14𝐸 − 01

(0) (1) (1) (2) (2) (4) (4) (3) (3)

2 8.60𝐸 − 08 8.09𝐸 − 08 4.09𝐸 − 04 1.82𝐸 − 03 1.24𝐸 + 01 1.16𝐸 + 01 4.48𝐸 − 01 8.82𝐸 − 02

(0) (1) (1) (2) (2) (4) (4) (3) (3)

3 5.95𝐸 − 09 1.40𝐸 − 08 1.27𝐸 + 02 1.59𝐸 + 02 9.93𝐸 + 03 9.78𝐸 + 03 2.88𝐸 + 03 1.15𝐸 + 03

(0) (1) (1) (2) (2) (4) (4) (3) (3)

4 4.72𝐸 − 07 5.33𝐸 − 07 3.10𝐸 + 00 1.96𝐸 + 00 1.85𝐸 − 01 8.21𝐸 − 02 3.74𝐸 − 01 6.00𝐸 − 02

(0) (1) (1) (2) (4) (3) (3) (4) (2)

5 2.76𝐸 + 01 1.84𝐸 − 01 1.57𝐸 + 01 1.37𝐸 + 01 1.52𝐸 + 04 3.41𝐸 + 04 1.92𝐸 + 02 9.77𝐸 + 01

(0) (2) (1) (1) (2) (4) (4) (3) (3)

6 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 3.44𝐸 + 02 1.82𝐸 + 03 1.53𝐸 + 00 1.38𝐸 + 00

(0) (1) (1) (1) (1) (3) (3) (2) (2)

7 5.81𝐸 − 04 5.28𝐸 − 04 5.74𝐸 − 01 2.79𝐸 − 01 3.60𝐸 + 00 7.97𝐸 + 00 5.02𝐸 − 01 3.06𝐸 − 01

(0) (1) (1) (3) (2) (4) (4) (2) (3)

Total rank 1 1 2 2 4 4 3 3

with the purpose of making the comparison fairly, the initia-
lization populations for all the considered algorithms were
generated using the same population which satisfied the
normal distribution. The same population size was 𝑆 = 50.
The other specific settings for each of the algorithms are des-
cribed below.

5. Results and Discussion

A lot of experimental data come fromprinted research papers
have shown that PSO and GA can find the optimum of
some functions. But in this paper, it becomes powerless. The
cause is that the way of generating initialization population is
changed from random distribution method to clumped dis-
tribution method. In a sense, the clumped distribution is the
special formof randomdistribution. But as stated before, ran-
dom distribution is rare in reality and clumped distribution
is the commonest. So, the finally optimum solution generated
via initialization population of random distribution cannot
be applied to illustrate the algorithms perform for solving
reality and complex optimization problems.

5.1. Unimodal Functions 𝑓
1
to 𝑓
7
. Table 1 presents the opti-

mization results for unimodal functions 𝑓
1
–𝑓
7
obtained by

all algorithms. Obviously, LSO performs best and finds the
global optimum or very near optimum in all cases expect
function 𝑓

5
. Functions 𝑓

1
–𝑓
4
have consistent performance

pattern across all algorithms. LSO is the best, GSO is almost
good, and PSO and GA failed. Function 𝑓

6
is the step

function and consists of plateaus, which has one minimum
and is discontinuous. It is obvious that finding the optimum
solution by LSO and GSO is easy, but it is difficult for PSO.
Function 𝑓

7
is a noisy quartic function, where random [0, 1)

is a uniformly distributed random variable in [0, 1). On this

function, LSO can find the exact optimum, whereas other
algorithms cannot do so.

Generally speaking, unimodal benchmark functions 𝑓
1

to 𝑓
7
are relatively easy to be optimized. They were mainly

used for testing the convergence rate of algorithm, and the
satisfactory accuracy is not a major issue. On this kind of
functions, LSO has the best optimization accuracy and the
fastest convergence rate. It can converge exponentially fast
toward the fitness optimum. This conclusion can be illus-
trated via Figure 4, which shows the progress of themean best
solutions found by these algorithms over 30 runs for all uni-
modal functions, expect for function 𝑓

5
. From Figures 4(a)

to 4(f), it can be seen that LSO has the best convergence
speed, followed by GSO, GA, and PSO. From the beginning
of iterations, the convergence rate of LSO is faster and the
convergence curve declined rapidly. At the 500th iteration,
LSO has found the optimum solution. Moreover, with
increasing the number of iterations, the optimum solution
was also approached continuously by LSO at a fast rate.
Either the convergence curve of other algorithms is much
slower or looks like a horizontal line and seems to stagnate.

5.2. Multimodal Functions with Many Local Minima 𝑓
8
to

𝑓
13
. Table 2 presents the optimization results on multimodal

functions with many local minima 𝑓
8
to 𝑓
13
. These functions

were mainly used to test the capability of global seeking opti-
mumand escaping from the local optimum.Thequality of the
final results is more crucial element. It can also be found from
Table 2 that, for 4 out of 6 functions, LSO generated better
results than the other four algorithms.The two exceptions are
functions 𝑓

8
and 𝑓

13
. On 𝑓

8
, although LSO performs slightly

worse than GA, the standard deviation of LSO is highly
superior to that of GA. On 𝑓

13
, GSO performs moderately

better than LSO. Figure 5 shows the convergence curves of
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Table 2: Results for all algorithms on benchmarks functions 𝑓
8
to 𝑓
13
.

Fun. number
(𝑓min)

LSO GSO PSO GA
Mean best Std Mean best Std Mean best Std Mean best Std
(Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)

8 −1.26𝐸 + 04 1.09𝐸 − 01 −1.23𝐸 + 04 9.01𝐸 + 02 −8.74𝐸 + 03 1.04𝐸 + 03 −1.28𝐸 + 04 4.57𝐸 + 02

(−12569.5) (2) (1) (3) (3) (4) (4) (1) (2)

9 1.17𝐸 − 23 3.73𝐸 − 23 2.28𝐸 + 01 8.64𝐸 + 01 1.00𝐸 + 03 6.13𝐸 + 02 1.67𝐸 − 01 1.99𝐸 − 01

(0) (1) (1) (3) (3) (4) (4) (2) (2)

10 3.09𝐸 − 07 2.78𝐸 − 07 6.61𝐸 − 01 3.62𝐸 + 00 3.23𝐸 + 00 5.12𝐸 + 00 5.45𝐸 − 01 1.45𝐸 − 01

(0) (1) (1) (3) (3) (4) (4) (2) (2)

11 5.02𝐸 − 04 2.75𝐸 − 03 5.36𝐸 − 02 1.59𝐸 − 01 3.04𝐸 − 02 3.97𝐸 − 02 9.58𝐸 − 01 9.83𝐸 − 02

(0) (1) (1) (3) (4) (2) (2) (4) (3)

12 2.16𝐸 − 01 5.43𝐸 − 05 2.27𝐸 − 01 6.04𝐸 − 02 1.27𝐸 + 01 1.25𝐸 + 01 4.30𝐸 − 01 1.48𝐸 − 01

(0) (1) (1) (2) (2) (4) (4) (3) (3)

13 1.11𝐸 − 03 5.76𝐸 − 04 3.32𝐸 − 10 1.69𝐸 − 09 4.75𝐸 − 01 1.04𝐸 + 00 9.14𝐸 − 01 3.68𝐸 − 01

(0) (2) (2) (1) (1) (3) (4) (4) (3)

Total rank 1 1 2 3 4 4 3 2

Table 3: Results for all algorithms on benchmarks functions 𝑓
14
to 𝑓
23
.

Fun. number
(𝑓min)

LSO GSO PSO GA
Mean best Std Mean best Std Mean best Std Mean best Std
(Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)

14 9.98𝐸 − 01 8.56𝐸 − 13 9.98𝐸 − 01 2.26𝐸 − 16 9.98𝐸 − 01 1.13𝐸 − 16 9.98𝐸 − 01 2.80𝐸 − 07

(1) (1) (2) (1) (1) (1) (1) (1) (3)

15 5.61𝐸 − 03 3.37𝐸 − 03 5.72𝐸 − 03 6.12𝐸 − 03 1.09𝐸 − 02 1.08𝐸 − 02 2.16𝐸 − 02 1.40𝐸 − 02

(3.075𝐸 − 4) (1) (1) (2) (2) (3) (3) (4) (4)

16 −1.03𝐸 + 00 1.04𝐸 − 08 −1.03𝐸 + 00 5.07𝐸 − 16 −1.03𝐸 + 00 6.78𝐸 − 16 −1.03𝐸 + 00 1.19𝐸 − 04

(−1.0316) (1) (2) (1) (1) (1) (1) (1) (3)

17 0.3984 1.20𝐸 − 02 0.4012 1.90𝐸 − 02 0.4396 3.73𝐸 − 02 0.4001 6.80𝐸 − 02

(0.398) (1) (1) (3) (2) (4) (3) (2) (4)

18 3.00𝐸 + 00 1.42𝐸 − 07 3.00𝐸 + 00 6.35𝐸 − 14 3.00𝐸 + 00 1.33𝐸 − 15 3.91𝐸 + 00 4.94𝐸 + 00

(3) (1) (3) (1) (1) (1) (2) (2) (4)

19 −3.86𝐸 + 00 2.75𝐸 − 09 −3.86𝐸 + 00 1.71𝐸 − 15 −3.86𝐸 + 00 1.44𝐸 − 03 −3.84𝐸 + 00 1.41𝐸 − 01

(−3.86) (1) (2) (1) (1) (1) (3) (2) (4)

20 −3.27𝐸 + 00 5.94𝐸 − 02 −3.29𝐸 + 00 5.56𝐸 − 02 −3.20𝐸 + 00 1.61𝐸 − 01 −3.29𝐸 + 00 5.56𝐸 − 02

(−3.32) (2) (2) (1) (1) (3) (3) (1) (1)

21 −1.02𝐸 + 01 2.90𝐸 − 07 −6.45𝐸 + 00 3.01𝐸 + 00 −7.11𝐸 + 00 2.99𝐸 + 00 −6.95𝐸 + 00 3.17𝐸 + 00

(−10) (1) (1) (4) (2) (2) (3) (3) (4)

22 −9.96𝐸 + 00 1.69𝐸 + 00 −7.24𝐸 + 00 3.09𝐸 + 00 −8.45𝐸 + 00 2.61𝐸 + 00 −6.05𝐸 + 00 3.00𝐸 + 00

(−10) (1) (1) (3) (4) (2) (2) (4) (3)

23 −9.64𝐸 + 00 2.32𝐸 + 00 −6.70𝐸 + 00 3.29𝐸 + 00 −8.39𝐸 + 00 2.93𝐸 + 00 −6.23𝐸 + 00 3.21𝐸 + 00

(−10) (1) (1) (3) (4) (2) (2) (4) (3)

Total rank 1 1 2 2 2 3 3 4
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Figure 4: Convergence results of unimodal functions 𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
6
, and 𝑓

7
.

functions 𝑓
8
to 𝑓
13
. LSO converges very fast to good values

near the optimum. In summary, the search performance of
the four algorithms tested here can be ordered as LSO >GSO
> GA > PSO.

5.3. Multimodal Functions with Few Local Minima 𝑓
14
to 𝑓
23
.

Functions 𝑓
14
to 𝑓
23
are multimodal functions with few local

minima and possess rather unique features, which can verify

the adaptation of algorithms to the different optimization
environment. Table 3 presents the optimization results for
functions 𝑓

14
to 𝑓
23
. It can be concluded from Table 3 that

the order of the search performance of these four algorithms
is LSO > GSO > PSO > GA.

For these ten functions, in terms of testing the indicators,
LSO was ranked the first on functions 𝑓

15
, 𝑓
17
, 𝑓
21
, 𝑓
22
, and

𝑓
23
. For example, the problem 𝑓

21
shown in Figure 6(a) has
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Figure 5: Convergence results of functions 𝑓
8
, 𝑓
9
, 𝑓
10
, 𝑓
11
, 𝑓
12
, and 𝑓

13
.

five extremes; the bottom point at the deepest hole is the
global optimal position and the other holes are deceptive.
Figure 6(b) shows convergence results of four algorithms.
All algorithms have been quickly in the early iterations. But
the GSO, PSO, and GA stagnate before finding the global
optimum, and LSO stagnates until it finds it. At the beginning
of the searching, there is a number of promising “fox holes,”
so the convergence rate of these algorithms is fast. But after

a short period, owing to lacking the ability of jumping out of
the local extreme, the solutions obtained by GSO, PSO, and
GA fall into the “fox holes” deeply, and the evolutionary curve
tends to stop.The optimization tacticsmake LSO escape from
the deceptive region and migrate towards the global one.
The properties of function 𝑓

22
and 𝑓

23
are similar to that of

function 𝑓
21
. Figure 7 shows the same convergence results on

functions 𝑓
22
and 𝑓

23
.
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Figure 6: Function 𝑓
21
. (a) Function graphs with a dimension of 2 and (b) convergence results of all algorithms.
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Figure 7: Convergence results of functions 𝑓
22
and 𝑓

23
.

Functions 𝑓
14
and 𝑓

16
are all easy problems, and all algo-

rithms can find the exact optimum solutions. On functions
𝑓
18

and 𝑓
19
, LSO, GSO, and PSO yield the exact optimum,

while GA yielded the approximate optimum. All algorithms
come very close to the global optimum on 𝑓

20
. Figures 8(a)

and 8(c) show the convergence results on functions 𝑓
14

and
𝑓
18
. Moreover, we can see that LSO has the fastest con-

vergence speed from Figures 8(b) and 8(d).

5.4. Mechanical Design Optimization Problem. Mechanical
design optimization plays an important role in engineering
and manufacturing enterprises. In this field, one of the most
difficult parts encountered is constraints handling and opti-
mization variables. First, on the test results of proposed algo-
rithm, the best feasible value on these two problems is 6059.72
and 1.7107, respectively. The best feasible solution found by
our approach is better than those solutions found by other

techniques, listed in other literature [29]. In addition, the
standard LSO employed a penalty function to preserve fea-
sibility of the encountered solutions. This proposed method
is relatively simple compared to other algorithms introduced
to solve constraint the problem, such as the multiobjective
evolutionary method, the collaborative evolutionary particle
swarm optimization algorithm, dynamic penalty function
method, annealing penalty function method, information
feedback adaptive penalty functionmethod, multilayer social
culture algorithm, and combination of global and local topo-
logy particle swarm algorithm.

6. Conclusions

This paper proposed a novel optimization algorithm, LSO,
which is based on biologic lifecycle theory. Based on these
features of lifecycle, LSOdesigned six optimization operators:
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Figure 8: Convergence results of functions 𝑓
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and 𝑓
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.

chemotactic, assimilation, transposition, crossover, selection,
and mutation. Population is the basic unit of biologic exis-
tence. Clumped distribution of population spatial is the com-
monest pattern.This paper borrows the clumped distribution
pattern to generate initialization population. A set of 23
unconstrained benchmark functions and mechanical design
optimization problems have been used to test LSO in com-
parison with GSO, PSO and GA, respectively.

It is worthmentioning that LSO cannot find the optimum
on function 𝑓

5
. Function 𝑓

5
is a nonconvex function; its

global minimum is inside a long, narrow, parabolic shaped
flat valley. However, even though the valley is easy to find,
convergence to the global minimum is difficult. So our future
work would study how tomake LSO has the ability of moving
quickly along the narrow valley in the local area to the objec-
tive functionminimum. For instance, gradient-basedmethod
is incorporated in the late stage of optimization.

As part of our future work, LSO also could be studied
and tested on real-world problems, such as location problem
of manufacturing systems, network routing problem of com-
puter engineering, parameter identification problemof indus-
trial engineering, electrical engineering problem, aerospace
engineering problem, and bioengineering problem.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper or financial conflict
of interests between the authors and the commercial identity.

Acknowledgments

This project is supported by the National Natural Sci-
ence Foundation of China (Grant nos. 61174164, 51205389,
61105067, 71001072, 71271140, and 71240015), the National
Natural Science Foundation of Liaoning province of China
(Grant no. 201102200), theGeneral ResearchProject of Liaon-
ing province of China (Grant no. L2012392), and the Natural
Science Foundation of Guangdong Province (Grant nos.
S2012010008668 and 9451806001002294).

References

[1] V. L. Avila, Biology: Investigating Life on Earth, Jones and Bart-
lett, Boston, Mass, USA, 1995.

[2] P.H. Raven andG. B. Johnson,Biology, Hill Companies, Boston,
Mass, USA, 5th edition, 1999.



Discrete Dynamics in Nature and Society 11

[3] G. W. Flake, The Computational Beauty of Nature: Computer
Explorations of Fractals, Complex Systems, and Adaptation, MIT
Press, Cambridge, Mass, USA, 1998.

[4] L. B. Ribeiro andM. F. de Castro, “BiO4SeL: a bio-inspired rout-
ing algorithm for sensor network lifetime optimization,” in Pro-
ceedings of the 17th International Conference on Telecommunica-
tions (ICT ’10), pp. 728–734, Doha, Qatar, April 2010.

[5] K. B. Swain, S. S. Solanki, and A. K. Mahakula, “Bio inspired
cuckoo search algorithm based neural network and its applica-
tion to noise cancellation,” in International Conference on Sig-
nal Processing and Integrated Networks (SPIN ’14), pp. 632–635,
Noida, India, February 2014.

[6] K. Saleem, N. Fisal, and J. Al-Muhtadi, “Empirical studies of
bio-inspired self-organized secure autonomous routing proto-
col,” IEEE Transactions on Sensors Journal, vol. 14, no. 7, pp.
2232–2239, 2014.

[7] A. Khalili, A. Rastegarnia, and M. K. Islam, “Bio-inspired
cooperative algorithm for distributed source localization with
mobile nodes,” in Proceedings of the International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 3515–
3518, 2013.

[8] J.-H. Qu, Z.-Z. Shao, and X.-Y. Liu, “PSO clustering algorithm
based on cooperative evolution,” Journal of Donghua University,
vol. 27, no. 2, pp. 285–288, 2010.

[9] L. Goel, D. Gupta, andV. K. Panchal, “Hybrid bio-inspired tech-
niques for land cover feature extraction: a remote sensing per-
spective,”Applied Soft Computing Journal, vol. 12, no. 2, pp. 832–
849, 2012.

[10] Y. Hendrawan andH.Murase, “Bio-inspired feature selection to
select informative image features for determining water content
of cultured Sunagoke moss,” Expert Systems with Applications,
vol. 38, no. 11, pp. 14321–14335, 2011.

[11] R. Chaukwale and S. S. Kamath, “A modified ant colony opti-
mization algorithm with load balancing for job shop schedul-
ing,” in Proceedings of the 15th International Conference on
Advanced Computing Technologies (ICACT ’13), pp. 1–5, Rajam-
pet, India, September 2013.

[12] K. Sun, G. Yang, and C. Pan, “Solving hot rolling scheduling
problem by a new population-based extremal optimization
algorithm,” in Proceedings of the IEEE 5th International Confer-
ence on Bio-Inspired Computing: Theories and Applications, pp.
1189–1193, September 2010.

[13] R. M. Chen and Y. A. Chen, “Heuristics based particle swarm
optimization for solving vehicle routing problems,” in Proceed-
ings of the International SymposiumonComputer, Consumer and
Control, pp. 360–363, 2014.

[14] F. A. Toader, “Production scheduling by using ACO and PSO
techniques,” in Proceedings of the International Conference on
Development and Application Systems, pp. 170–175, 2014.

[15] A. Mozaffari, M. Azimi, andM. Gorji-Bandpy, “Ensemble mut-
able smart bee algorithm and a robust neural identifier for opti-
mal design of a large scale power system,” Journal of Computa-
tional Science, vol. 5, no. 2, pp. 206–223, 2014.

[16] W. Peres, E. J. Oliveira, J. A. P. Filho, D. N. Arcanjo, I. C. Silva,
and L. W. Oliveira, “Power system stabilizers tuning using bio-
inspired algorithm,” in Proceedings of the IEEE Grenoble Con-
ference PowerTech (POWERTECH ’13), pp. 1–5, IEEE, Grenoble,
France, June 2013.

[17] E. Cuevas, V. Osuna-Enciso, D. Zaldivar, M. Pérez-Cisneros,
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