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We study a Hopfield-type network that consists of a pair of one-way rings each with three neurons and two-way coupling between
the rings.The rings have symmetric group Γ = 𝑍

3
×𝑍
2
, whichmeans the global symmetry𝑍

2
and internal symmetry𝑍

3
.We discuss

the spatiotemporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential
equations combined with representation theory of Lie groups. The existence of multiple branches of bifurcating periodic solution
is obtained. We also found that the spatiotemporal patterns of bifurcating periodic oscillations alternate according to the change
of the propagation time delay in the coupling; that is, different ranges of delays correspond to different patterns of neural network
oscillators. The oscillations of corresponding neurons in the two loops can be in phase, antiphase, 𝑇/3, 2𝑇/3, 4𝑇/3, 5𝑇/6, or 7𝑇/6
periods out of phase depending on the delay. Some numerical simulations support our analysis results.

1. Introduction

The theory of spatiotemporal pattern formation in systems
of coupled nonlinear oscillators with symmetry has grown
extensively in recent years. Its impact has been felt in a
wide variety of fields of applied science. Coupled networks
of nonlinear dynamical systems have become important
models for studying the behavior of large complex systems.
These models allow us to investigate fundamental features of
physical systems, biological systems, and so on. The central
question is to understand how specific properties of the
individual behavior and the coupling architecture can give
rise to the emergence of new collective phenomena [1–
5]. Couple can lead to oscillators’ synchronization, chaos,
symmetric bifurcation, and so on [6].

Networks with a ring topology, where locally coupled
oscillators or oscillatory populations form a closed loop of
signal transmission, appear to be relevant for many practical
situations. These systems sometimes show symmetric prop-
erties. In general, symmetric systems typically exhibit more
complicated bifurcations than nonsymmetric systems, and as

well they may increase the dimension of the space and the
number of variables involved. Some bifurcations can have
a smaller codimension in a class of systems with specified
symmetries. Other bifurcations, on the contrary, may not
occur in the presence of certain symmetries [7, 8].

Time delays have been incorporated into coupled models
by many authors, since in real systems the signal inevitably
propagates from one oscillator to the next over a finite
distance and with a finite speed; a time delay can not be
negligible. From themathematical point of view, the presence
of delays makes the problem harder to handle. In fact, the
state vector characterizing a nonlinear delayed system evolves
in an infinite dimensional functional space. Networks with
interacting loops and time delays are common in physiolog-
ical systems. For example, there are many interacting loops
and feedback systems in the model of brain’s motor circuitry
[9, 10].

In this paper, we focus on the simplest Hopfield network
with delays. This model consists of two coupling unidirec-
tional rings, each with three oscillators. See Figure 1.
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Figure 1: The architecture of the model (1).

The case leads to the following system of delay differential
equations:
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where 𝜏 ≥ 0 is the time delay. Let 𝑋 = (𝑥
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We will determine the effects of symmetric coupling
between parallel copies of a network structure in the presence
of delays. In the following, we focus on the symmetric
properties of (1). Let 𝐶([−𝜏, 0], 𝑅6) denote the Banach space
of continuous mapping from [−𝜏, 0] to 𝑅6 equipped with
the supremum norm 𝜑
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−𝜏≤𝜃≤0
|𝜑(𝜃)| for 𝜑 ∈
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6
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where 𝜑 ∈ 𝐶([−𝜏, 0], 𝑅6).

It is clear that (1) has symmetric group Γ = 𝑍
3
×𝑍
2
, which

means the global symmetry 𝑍
2
and internal symmetry 𝑍

3
.

In the next sectionwe focus on the linear stability analysis
of the trivial equilibrium. This then leads us to a discussion
of the bifurcations of the trivial equilibrium. In Section 3, we
present a characterization of all possible periodic solutions,
their twisted isotropy subgroups, and corresponding fixed-
point subspaces. We obtain some important results about
spontaneous bifurcations of multiple branches of periodic
solutions and their spatiotemporal patterns, which describe
the oscillatory mode of each neuron. Finally, some numerical
simulations are carried out to support the analysis results.

2. Elementary Analysis

It is clear that (0,0,0,0,0,0) is an equilibrium point of (1). The
linearization of (1) at the origin leads to
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The associated characteristic equation of (4) takes the form

det (Δ (𝜆, 𝜏)) = 0, (5)

where
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Rewrite (4) as
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The infinitesimal generator of the𝐶
0
-semigroup generated by

linear system (4) isA(𝜏) with

A (𝜏) 𝜙 = ̇𝜙, 𝜙 ∈ Dom (A (𝜏)) ,
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(9)
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Regarding 𝜏 as the parameter, we determine when the
infinitesimal generator 𝐴(𝜏) of the 𝐶0-semigroup generated
by linear system (7) has a pair of pure imaginary eigenvalues.

Using Lemma 2.1 in [11], the characteristic equation then
factors as

Δ (𝜆) = [𝜆 + 1 − 𝑏 − 𝑐𝑒
−𝜆𝜏
] [𝜆 + 1 − 𝑏𝑒

(2𝜋/3)𝑖
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]
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3
Δ
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Δ
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(10)

It is not difficult to verify that 𝑎 + 𝑏𝑖 is a root of Δ
2
= 0 or

Δ
5
= 0 if and only if 𝑎 − 𝑏𝑖 is a root of Δ

4
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In order to study the distribution of zeros of (10), it is
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We make the following assumption:

(𝐻
1
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1
), (𝐻
2
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2
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4
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5
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𝜏 = 0. In the sequel, we consider the distribution of zeros of
Δ = 0.

Case 1 (Δ
1
= 0). Let 𝑖𝜔 (𝜔 > 0) be a zero of Δ

1
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)] , 1 − 𝑏 > 0;

1

𝜔
1
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Next, we consider the generalized eigenspace corre-
sponding to pure imaginary eigenvalues ofA(𝜏).
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1
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For further analysis, we found that the transversality
conditions are met:
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The generalized eigenspace 𝑈
±𝑖𝜔
2

consisting of eigenvec-
tors ofA(𝜏𝑘±

2
) corresponding to ±𝑖𝜔±

2
is

𝑈
±𝑖𝜔
±

2

= {

4

∑

𝑟=1

𝑥
𝑟
𝜀
𝑟
, 𝑥
𝑟
∈ 𝑅} , (19)

where

𝜀
1
(𝜃) = cos (𝜔±

2
𝜃)Re {𝑉

2
} − sin (𝜔±

2
𝜃) Im {𝑉

2
} ,

𝜀
2
(𝜃) = sin (𝜔±

2
𝜃)Re {𝑉

2
} + cos (𝜔±

2
𝜃) Im {𝑉

2
} ,

𝜀
3
(𝜃) = cos (𝜔±

2
𝜃)Re {𝑉

3
} − sin (𝜔±

3
𝜃) Im {𝑉

2
} ,

𝜀
4
(𝜃) = sin (𝜔±

2
𝜃)Re {𝑉

3
} + cos (𝜔±

3
𝜃) Im {𝑉

3
} ,

𝑉
2
= (1, 𝑒

−2𝜋/3
𝑒
−4𝜋/3
, 1, 𝑒
−2𝜋/3
, 𝑒
−4𝜋/3
)
𝑇

,

𝑉
3
= (1, 𝑒

−4𝜋/3
, 𝑒
−8𝜋/3
, 1, 𝑒
−4𝜋/3
, 𝑒
−8𝜋/3
)
𝑇

,

𝜃 ∈ [−1, 0] .

(20)

In a similar manner it can be shown that, for the fourth
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)] ,

1 +
𝑏

2
> 0;

1

𝜔
+

5

[2𝑘𝜋 + arccos(1 + (𝑏/2)
−𝑐
)] ,

1 +
𝑏

2
< 0;

𝑘 = 0, 1, 2, . . . ,

𝜏
5−

𝑘
=

{{{{{{{{{{

{{{{{{{{{{

{

1

𝜔
−

5

[2𝑘𝜋 + 2𝜋 − arccos(1 + (𝑏/2)
−𝑐
)] ,

1 +
𝑏

2
> 0;

1

𝜔
−

5

[2𝑘𝜋 + 𝜋 + arccos(1 + (𝑏/2)
−𝑐
)] ,

1 +
𝑏

2
< 0;

𝑘 = 0, 1, 2, . . . ,

Re 𝑑𝜆
𝑑𝜏

𝜏=𝜏5+
𝑘
,𝜔=𝜔
+

5

=

𝜔
+

5
− (√3/2) 𝑏

𝜔
+

5
((1 + (𝑏/2))

2
+ (𝜔
+

5
− (√3/2) 𝑏)

2

)

> 0,

𝑘 = 0, 1, 2, . . . ,

Re 𝑑𝜆
𝑑𝜏

𝜏=𝜏5−
𝑘
,𝜔=𝜔
−

5

=

𝜔
−

5
− (√3/2) 𝑏

𝜔
−

5
((1 + (𝑏/2))

2
+ (𝜔
−

5
− (√3/2) 𝑏)

2

)

< 0,

𝑘 = 0, 1, 2, . . . .

𝑈
±𝑖𝜔
±

5

= {

4

∑

𝑟=1

𝑥
𝑟
𝜖
𝑟
, 𝑥
𝑟
∈ 𝑅} ,

(25)

where

𝜖
1 (𝜃) = cos (𝜔

±

5
𝜃)Re {𝑉

5
} − sin (𝜔±

5
𝜃) Im {𝑉

5
} ,

𝜖
2 (𝜃) = sin (𝜔

±

5
𝜃)Re {𝑉

5
} + cos (𝜔±

5
𝜃) Im {𝑉

5
} ,

𝜖
3
(𝜃) = cos (𝜔±

5
𝜃)Re {𝑉

6
} − sin (𝜔±

5
𝜃) Im {𝑉

6
} ,
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Table 1: The twisted isotropy subgroups for Γ-equivariant system (1).

𝜏 Group action Twisted isotropy subgroups Fixed-point subspaces
𝜏
1

𝑘 𝜌𝑧 = 𝑧; 𝜅𝑧 = 𝑧 ∑(𝜌, 𝜅) 𝜍
1
(𝜃), 𝜍
2
(𝜃)

𝜏
2±

𝑘

𝜌𝑧 = 𝑒
𝑖2𝜋/3
𝑧; 𝜅𝑧 = 𝑧;

𝜌𝑧 = 𝑒
𝑖4𝜋/3
𝑧; 𝜅𝑧 = 𝑧;

∑(𝜌𝑒
𝑖2𝜋/3
, 𝜅) ;

∑ (𝜌𝑒
𝑖4𝜋/3
, 𝜅) ;

𝜀
1
(𝜃), 𝜀
2
(𝜃), 𝜀
3
(𝜃), 𝜀
4
(𝜃).

𝜏
4±

𝑘 𝜌𝑧 = 𝑧; 𝜅𝑧 = −𝑧 ∑(𝜌, −𝜅) 𝜍
3
(𝜃), 𝜍
4
(𝜃)

𝜏
5±

𝑘

𝜌𝑧 = 𝑒
𝑖2𝜋/3
𝑧; 𝜅𝑧 = −𝑧;

𝜌𝑧 = 𝑒
𝑖4𝜋/3
𝑧; 𝜅𝑧 = −𝑧;

∑(𝜌𝑒
𝑖2𝜋/3
, −𝜅) ;

∑(𝜌𝑒
𝑖4𝜋/3
, −𝜅) ;

𝜖
1
(𝜃), 𝜖
2
(𝜃), 𝜖
3
(𝜃), 𝜖
4
(𝜃)

Table 2: Bifurcating periodic solutions.

Twisted isotropy subgroups ∑ Periodic solutions

∑(𝜌, 𝜅) (𝑥 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡))

∑(𝜌𝑒
𝑖2𝜋/3
, 𝜅) (𝑥 (𝑡) , 𝑥 (𝑡 +

𝑇

3
) , 𝑥 (𝑡 +

2𝑇

3
) , 𝑥 (𝑡) , 𝑥 (𝑡 +

𝑇

3
) , 𝑥 (𝑡
2𝑇

3
))

∑(𝜌𝑒
𝑖4𝜋/3
, 𝜅) (𝑥 (𝑡) , 𝑥 (𝑡 +

2𝑇

3
) , 𝑥 (𝑡 +

4𝑇

3
) , 𝑥 (𝑡) , 𝑥 (𝑡 +

2𝑇

3
) , 𝑥 (𝑡
4𝑇

3
))

∑(𝜌, −𝜅) (𝑥 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡) , −𝑥 (𝑡) , −𝑥 (𝑡) , −𝑥 (𝑡))

∑(𝜌𝑒
𝑖2𝜋/3
, −𝜅) (𝑥 (𝑡) , 𝑥 (𝑡 +

𝑇

3
) , 𝑥 (𝑡 +

2𝑇

3
) , 𝑥 (𝑡 +

𝑇

2
) , 𝑥 (𝑡 +

5𝑇

6
) , 𝑥 (𝑡
7𝑇

6
))

∑(𝜌𝑒
𝑖4𝜋/3
, −𝜅) (𝑥 (𝑡) , 𝑥 (𝑡 +

2𝑇

3
) , 𝑥 (𝑡 +

𝑇

3
) , 𝑥 (𝑡 +

𝑇

2
) , 𝑥 (𝑡 +

7𝑇

6
) , 𝑥 (𝑡 +

5𝑇

6
))

𝜖
4
(𝜃) = sin (𝜔±

5
𝜃)Re {𝑉

6
} + cos (𝜔±

5
𝜃) Im {𝑉

6
} ,

𝑉
5
= (1, 𝑒

−2𝜋/3
, 𝑒
−4𝜋/3
, −1, −𝑒

−2𝜋/3
, −𝑒
−4𝜋/3
)
𝑇

,

𝑉
6
= (1, 𝑒

−4𝜋/3
, 𝑒
−8𝜋/3
, −1, −𝑒

−4𝜋/3
, −𝑒
−8𝜋/3
)
𝑇

,

𝜃 ∈ [−1, 0] .

(26)

3. Multiple Hopf Bifurcations

In order to study the Hopf bifurcation of the origin, we
consider the action of Γ × 𝑆1, where Γ = 𝑍

2
× 𝑍
3
and 𝑆1 is

the temporal.The action of the group 𝑆1 is defined as follows:

𝜃 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
)

= (𝑒
𝑖𝜃
𝑥
1
, 𝑒
𝑖𝜃
𝑥
2
, 𝑒
𝑖𝜃
𝑥
3
, 𝑒
𝑖𝜃
𝑥
4
, 𝑒
𝑖𝜃
𝑥
5
, 𝑒
𝑖𝜃
𝑥
6
) ,

(27)

where 𝜃 ∈ 𝑆1. It is clear that
Γ = 𝑍

3
× 𝑍
2
= {1, 𝜌, 𝜌

2
, 𝜅, 𝜅𝜌, 𝜅𝜌

2
} . (28)

For fixed 𝑘, 𝑗, let 𝑇 = 2𝜋/𝜔
±
. Denote by 𝑃

𝑇
the Banach

space of all continuous 𝑇-periodic solutions.Then Γ× 𝑆1 acts
on 𝑃
𝑇
by

(𝛾, 𝜃) 𝑥 (𝑡) = 𝛾𝑥 (𝑡 + 𝜃) , (𝛾, 𝜃) ∈ Γ × 𝑆
1
, 𝑥 ∈ 𝑃

𝑇
. (29)

Denote by 𝑆𝑃
𝑇
the subspace of 𝑃

𝑇
consisting of all 𝑇-periodic

solutions of (4) with 𝜏 = 𝜏𝑗±
𝑘
(𝑗 = 1, 2, 4, 5). Then, for each

subgroup Σ ≤ Γ × 𝑆1,
Fix (Σ, 𝑆𝑃

𝑇
) = {𝑥 ∈ 𝑆𝑃

𝑇
; (𝑟, 𝜃) 𝑥 = 𝑥 ∀ (𝛾, 𝜃) ∈ Σ} (30)

is a subspace.

In the following, by discussing the isotropy subgroup and
fixed-point subspaces, we will give the possible bifurcating
solutions. From Section 2, we have obtained the generalized
eigenspace corresponding to pure imaginary eigenvalues of
A (𝜏
𝑗±

𝑘
, 𝑗 = 1, 2, 4, 5; 𝑘 = 0, 1, . . . .). Hence, we know their

corresponding isotropy subgroup; see Table 1.
The equivariant bifurcation theorem asserts the existence

of branches of small amplitude periodic solutions to system
(1), whose spatiotemporal symmetries can be completely
characterized by isotropy subgroup.

In case one, Δ
1
= 0 implies that the purely imaginary

eigenvalues associated with Hopf bifurcation are simple. It
follows that the action of𝑍

2
×𝑍
3
×𝑆
1 is given by 𝜌𝑧 = 𝑧; 𝜅𝑧 =

𝑧. Obviously, themaximal isotropy subgroup is𝑍
2
×𝑍
3
, which

corresponds to standard Hopf bifurcation and is preserved.
Thus, all neurons in two rings are synchronous:

(1) (𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡)).

Similar to the analysis in Case 2, Δ
2
= 0 implies

that the purely imaginary eigenvalues associated with Hopf
bifurcation are double. ∑(𝜌𝑒𝑖2𝜋/3, 𝜅) and ∑(𝜌𝑒𝑖4𝜋/3, 𝜅) are
maximal isotropy subgroups of 𝑍

2
× 𝑍
3
which are generated

by 𝜌𝑧 = 𝑒𝑖2𝜋/3𝑧; 𝜅𝑧 = 𝑧 and 𝜌𝑧 = 𝑒𝑖4𝜋/3𝑧; 𝜅𝑧 = 𝑧. Two types of
symmetric periodic solutions are generated:

(2) (𝑥(𝑡), 𝑥(𝑡 + (𝑇/3)), 𝑥(𝑡 + (2𝑇/3)), 𝑥(𝑡), 𝑥(𝑡 + (𝑇/3)),
𝑥(𝑡(2𝑇/3)));

(3) (𝑥(𝑡), 𝑥(𝑡 + (2𝑇/3)), 𝑥(𝑡 + (4𝑇/3)), 𝑥(𝑡), 𝑥(𝑡 + (2𝑇/3)),
𝑥(𝑡(4𝑇/3))).

For Case 3, Δ
4
= 0 means the purely imaginary eigen-

values associated with Hopf bifurcation are simple, and the
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Figure 2: Three adjacent neurons 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡) are 2𝑇/3 out of

phase with 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 3: Three adjacent neurons 𝑥
4
(𝑡), 𝑥
5
(𝑡), 𝑥
6
(𝑡) are 2𝑇/3 out of

phase with 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 4: Two neurons 𝑥
1
(𝑡), 𝑥
4
(𝑡) in different rings are 𝑇/2 out of

phase with 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).

maximal isotropy subgroup is ∑(𝜌, −𝜅) and the symmetric
periodic solutions have the form

(4) (𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡), −𝑥(𝑡), −𝑥(𝑡), −𝑥(𝑡)).

That means neurons in different rings are 𝑇/2 out
of phase with each other, and all neurons are 2𝑇/3 out of
phase with the adjacent behaving identically in the same ring.

The fourth case, Δ
5
= 0, gives purely imaginary with

double. The maximal isotropy subgroup has two types:
∑(𝜌𝑒
𝑖2𝜋/3
, −𝜅) and ∑(𝜌𝑒𝑖4𝜋/3, −𝜅), so the symmetric periodic

solutions have the form
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Figure 5: Two neurons 𝑥
2
(𝑡), 𝑥
5
(𝑡) in different rings are 𝑇/2 out of

phase with 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 6: Two neurons 𝑥
3
(𝑡), 𝑥
6
(𝑡) in different rings are 𝑇/2 out of

phase with 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 7: Neurons in different rings are 𝑇/2 out of phase with each
other, and each neuron is 2𝑇/3 out of phasewith the adjacent neuron
when 𝜏 = 1.45 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).

(5) (𝑥(𝑡), 𝑥(𝑡 + (𝑇/3)), 𝑥(𝑡 + (2𝑇/3)), 𝑥(𝑡 + (𝑇/2)), 𝑥(𝑡 +
(5𝑇/6)), 𝑥(𝑡(7𝑇/6)));

(6) (𝑥(𝑡), 𝑥(𝑡 + (2𝑇/3)), 𝑥(𝑡 + (𝑇/3)), 𝑥(𝑡 + (𝑇/2)), 𝑥(𝑡 +
(7𝑇/6)), 𝑥(𝑡 + (5𝑇/6))).

In summary, we write the results in Table 2.

4. Computer Simulation

To illustrate the analytical results found, in the following we
consider the following particular case of (1).



Discrete Dynamics in Nature and Society 7

0 10 20 30 40 50 60 70 80 90 100

0
2
4

8
6

−2

−4

−6

x1
x2
x3

t

x
(1
),
x
(2
),
x
(3
)

Figure 8: Three adjacent neurons 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡) are 2𝑇/3 out of

phase with 𝜏 = 3.3 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 9: Three adjacent neurons 𝑥
4
(𝑡), 𝑥
5
(𝑡), 𝑥
6
(𝑡) are 2𝑇/3 out of

phase with 𝜏 = 3.3 and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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Figure 10: Two neurons 𝑥
1
(𝑡), 𝑥

4
(𝑡) in different rings behave

identically with 𝜏 = 3.3 and initial condition (2, 1.5, −1, −0.4, −1.5,
1.8).

Let 𝑏 = −0.5, 𝑐 = 2. Then 𝜔+
2
= 𝜔
+

5
= 1.421, 𝜏2+

0
=

3.585, 𝜏
5+

0
= 1.375.

From Table 2, the spatiotemporal patterns of bifurcating
periodic oscillations alternate according to the change of the
propagation time delay. See Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, and 13.
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Figure 11: Two neurons 𝑥
2
(𝑡), 𝑥

5
(𝑡) in different rings behave

identically with 𝜏 = 3.3 and initial condition (2, 1.5, −1, −0.4, −1.5,
1.8).
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Figure 12: Two neurons 𝑥
3
(𝑡), 𝑥

6
(𝑡) in different rings behave

identically with 𝜏 = 3.3 and initial condition (2, 1.5, −1, −0.4, −1.5,
1.8).
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Figure 13: Neurons in different rings behave identically, and each
neuron is 2𝑇/3 out of phase with the adjacent neuron when 𝜏 = 3.3
and initial condition (2, 1.5, −1, −0.4, −1.5, 1.8).
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