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We study the following initial-boundary value problem {𝑢𝑡−(𝜇(𝑡)+𝛼(𝑡)(𝜕/𝜕𝑡))(𝜕2𝑢/𝜕𝑥2+(𝛾/𝑥)(𝜕𝑢/𝜕𝑥))+𝑓(𝑢)=𝑓1(𝑥, 𝑡), 1 < 𝑥 < 𝑅,𝑡 > 0; 𝑢(1, 𝑡) = 𝑔1(𝑡), 𝑢(𝑅, 𝑡) = 𝑔𝑅(𝑡); 𝑢(𝑥, 0) = 𝑢̃0(𝑥)}, where 𝛾 > 0, 𝑅 > 1 are given constants and 𝑓, 𝑓1, 𝑔1, 𝑔𝑅, 𝑢̃0, 𝛼, and 𝜇 are
given functions. In Part 1, we use the Galerkin method and compactness method to prove the existence of a unique weak solution
of the problem above on (0, 𝑇), for every 𝑇 > 0. In Part 2, we investigate asymptotic behavior of the solution as 𝑡 → +∞. In Part 3,
we prove the existence and uniqueness of a weak solution of problem {𝑢𝑡 − (𝜇(𝑡) + 𝛼(𝑡)(𝜕/𝜕𝑡))(𝜕2𝑢/𝜕𝑥2 + (𝛾/𝑥)(𝜕𝑢/𝜕𝑥)) + 𝑓(𝑢) =𝑓1(𝑥, 𝑡), 1 < 𝑥 < 𝑅, 𝑡 > 0; 𝑢(1, 𝑡) = 𝑔1(𝑡), 𝑢(𝑅, 𝑡) = 𝑔𝑅(𝑡)} associated with a “(𝜂, 𝑇)-periodic condition” 𝑢(𝑥, 0) = 𝜂𝑢(𝑥, 𝑇), where0 < |𝜂| ≤ 1 is given constant.

1. Introduction

In this paper, we consider the following nonlinear pseu-
doparabolic equation:

𝑢𝑡 − (𝜇 (𝑡) + 𝛼 (𝑡) 𝜕𝜕𝑡)(𝜕2𝑢𝜕𝑥2 + 𝛾𝑥 𝜕𝑢𝜕𝑥) + 𝑓 (𝑢)
= 𝑓1 (𝑥, 𝑡) , 1 < 𝑥 < 𝑅, 𝑡 > 0, (1)

associated with the boundary conditions

𝑢 (1, 𝑡) = 𝑔1 (𝑡) ,𝑢 (𝑅, 𝑡) = 𝑔𝑅 (𝑡) (2)

and the initial condition𝑢 (𝑥, 0) = 𝑢̃0 (𝑥) , (3)

or the “(𝜂, 𝑇)-periodic condition”𝑢 (𝑥, 0) = 𝜂𝑢 (𝑥, 𝑇) , (4)

where 𝛾 > 0, 𝑅 > 1, and 0 < |𝜂| ≤ 1 are given constants
and 𝑓, 𝑓1, 𝑔1, 𝑔𝑅, 𝑢̃0, 𝛼, and 𝜇 are given functions satisfying
conditions specified later.

In the case of 𝛾 = 1, 𝜇(𝑡) = 𝜇 > 0, and 𝛼(𝑡) = 𝛼 > 0
being the constants, the initial-boundary value problems (1)–
(3) are classical and have a long history of applications and
mathematical development. We refer to the monographs of
Al’shin et al. [1] and ofCarroll and Showalter [2] for references
and results on pseudoparabolic or Sobolev type equations.
We also refer to [3] for asymptotic behavior and to[4] for
nonlinear problems. Problems of this type arise in material
science and physics, which have been extensively studied, and
several results concerning existence, regularity, and asymp-
totic behavior have been established.

Equation (1) arises within frameworks of mathematical
models in engineering and physical sciences (see [5–11] for
references therein and interesting results on second grade
fluids or a fourth grade fluid or other unsteady flows). It is
well known that fluid solid mixtures are generally considered
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as second-grade fluids and aremodeled as fluids with variable
physical parameters; thus, an analysis is performed for a
second-grade fluid with space dependent viscosity, elasticity,
and density.

In [9], some unsteady flow problems of a second-grade
fluid were considered. The flows are generated by the sudden
application of a constant pressure gradient or by the impulsive
motion of a boundary. Here, the velocities of the flows
are described by the partial differential equations and exact
analytic solutions of these differential equations are obtained.
Suppose that the second-grade fluid is in a circular cylinder
and is initially at rest, and the fluid starts suddenly due to
the motion of the cylinder parallel to its length. The axis of
the cylinder is chosen as the 𝑧-axis. Using cylindrical polar
coordinates, the governing partial differential equation is

𝜕𝑤𝜕𝑡 = (] + 𝛼 𝜕𝜕𝑡)( 𝜕2𝜕𝑟2 + 1𝑟 𝜕𝜕𝑟)𝑤 (𝑟, 𝑡) − 𝑁𝑤,
0 < 𝑟 < 𝑎, 𝑡 > 0,

𝑤 (𝑎, 𝑡) = 𝑊, 𝑡 > 0,
𝑤 (𝑟, 0) = 0, 0 ≤ 𝑟 < 𝑎,

(5)

where𝑤(𝑟, 𝑡) is the velocity along the 𝑧-axis, ] is the kinematic
viscosity, 𝛼 is the material parameter, and 𝑁 is the imposed
magnetic field. In the boundary and initial conditions, 𝑊
is the constant velocity at 𝑟 = 𝑎 and 𝑎 is the radius of the
cylinder.

In [6], two types of time-dependent flows were investi-
gated. An eigenfunction expansion method was used to find
the velocity distribution. The obtained solutions satisfy the
boundary and initial conditions and the governing equation.
Remarkably, some exact analytic solutions are possible for
flows involving second-grade fluid with variable material
properties in terms of trigonometric and Chebyshev func-
tions.

In [5], Mahmood et al. have considered the longitudinal
oscillatorymotion of second-grade fluid between two infinite
coaxial circular cylinders, oscillating along their common
axis with given constant angular frequencies Ω1 and Ω2.
Velocity field and associated tangential stress of the motion
were determined by using Laplace and Hankel transforms. In
order to find exact analytic solutions for the flow of second-
grade fluid between two longitudinally oscillating cylinders,
the following problem was studied:

𝜕V𝜕𝑡 = (𝜇 + 𝛼 𝜕𝜕𝑡)( 𝜕2𝜕𝑟2 + 1𝑟 𝜕𝜕𝑟) V (𝑟, 𝑡) ,
𝑅1 < 𝑟 < 𝑅2, 𝑡 > 0,

V (𝑅1, 𝑡) = 𝑉1 sin (Ω1𝑡) ,
V (𝑅2, 𝑡) = 𝑉2 sin (Ω2𝑡) ,
V (𝑟, 0) = 0, 𝑅1 ≤ 𝑟 ≤ 𝑅2,

(6)

where 0 < 𝑅1 < 𝑅2, 𝜇, 𝛼, 𝑉1, 𝑉2, Ω1, and Ω2 are positive
constants. The solutions obtained have been presented under

series form in terms of Bessel functions 𝐽0(𝑥), 𝑌0(𝑥), 𝐽1(𝑥),𝑌1(𝑥), 𝐽2(𝑥), and𝑌2(𝑥), satisfying the governing equation and
all imposed initial and boundary conditions.

The nonlinear parabolic problems of the form (1)–(3),
with/without the term 𝑢𝑟𝑟 + (𝛾/𝑟)𝑢𝑟, were also studied in
[12, 13] and references therein. In [12], by using the Galerkin
and compactness method in appropriate Sobolev spaces with
weight, the authors proved the existence of a unique weak
solution of the following initial and boundary value problem
for nonlinear parabolic equation:

𝑢𝑡 − 𝑎 (𝑡) (𝑢𝑟𝑟 + 𝛾𝑟 𝑢𝑟) + 𝐹 (𝑟, 𝑢) = 𝑓 (𝑟, 𝑡) ,
0 < 𝑟 < 1, 0 < 𝑡 < 𝑇,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 lim𝑟→0+𝑟𝛾/2𝑢𝑟 (𝑟, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < +∞,
𝑢𝑟 (1, 𝑡) + ℎ (𝑡) (𝑢 (1, 𝑡) − 𝑢0) = 0,

𝑢 (𝑟, 0) = 𝑢0 (𝑟) .

(7)

Furthermore, asymptotic behavior of the solution as𝑡 → +∞ was studied. In [13], the following nonlinear
heat equation associatedwithDirichlet-Robin conditionswas
investigated:

𝑢𝑡 − 𝜕𝜕𝑥 [𝜇 (𝑥, 𝑡) 𝑢𝑥] + 𝑓 (𝑢) = 𝑓1 (𝑥, 𝑡) ,
(𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇) ,

𝑢𝑥 (0, 𝑡) = ℎ0𝑢 (0, 𝑡) + 𝑔0 (𝑡) ,−𝑢𝑥 (1, 𝑡) = ℎ1𝑢 (1, 𝑡) + 𝑔1 (𝑡) ,𝑢 (𝑥, 0) = 𝑢0 (𝑥) .

(8)

Condition (4), which we call “(𝜂, 𝑇)-periodic condition,”
is known as a drifted periodic condition (see [14]). Indeed, if𝑢(𝑡) = 𝜂𝑢(𝑡 + 𝑇), ∀𝑡 ≥ 0, in the case of 0 < |𝜂| ≤ 1, then we
have

𝑢 (𝑡 + 𝑇) = 1𝜂𝑢 (𝑡) = 𝑢 (𝑡) + (1𝜂 − 1) 𝑢 (𝑡) , ∀𝑡 ≥ 0, (9)

which means

𝑢 (𝑡 + 𝑇) = 𝑢 (𝑡) + 𝛿 (𝑡) , ∀𝑡 ≥ 0, (10)

with 𝛿(𝑡) = (1/𝜂 − 1)𝑢(𝑡) satisfying the condition
𝛿 (𝑡) = 𝜂𝛿 (𝑡 + 𝑇) , ∀𝑡 ≥ 0. (11)

Note that (11) holds by the fact that

𝜂𝛿 (𝑡 + 𝑇) = 𝜂 [(1𝜂 − 1) 𝑢 (𝑡 + 𝑇)] = (1𝜂 − 1) 𝑢 (𝑡)
= 𝛿 (𝑡) , ∀𝑡 ≥ 0. (12)

With 𝜂 = 1, (4) leads to 𝑇-periodic condition
𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇) , (13)
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and with 𝜂 = −1, we have the antiperiodic condition
𝑢 (𝑥, 0) = −𝑢 (𝑥, 𝑇) . (14)

The present paper is concerned with the second-grade
fluid in a circular cylinder associated with the initial condi-
tion (3) or a drifted periodic condition (10). The extensive
study of such flows is motivated by both their fundamental
interest and their practical importance (see [9]).

This paper is a continuation of paper [15] dealing with
the nonlinear pseudoparabolic equation (1) associated with
the mixed inhomogeneous condition, in the case of 𝛾 = 1,𝜇(𝑡) = 𝜇 > 0, 𝛼(𝑡) = 𝛼 > 0 being the constants. It consists
of five sections. First, preliminaries are done in Section 2.
Under appropriate conditions, the existence of a unique weak
solution of problems (1)–(3) is proved in Section 3. Next,
an asymptotic behavior of the solution of problems (1)–(3),
as 𝑡 → +∞, is discussed in Section 4. Finally, Section 5 is
devoted to the establishment, the existence, and uniqueness
of a weak solution of problems (1), (2), and (4).

Because of mathematical context, the results obtained
here generalize relatively the ones in [12, 13, 15], by improving
the techniques used as before and with appropriate modifica-
tions.

2. Preliminaries

Put Ω = (1, 𝑅), 𝑄𝑇 = Ω × (0, 𝑇), 𝑇 > 0. We omit the
definitions of the usual function spaces: 𝐶𝑚(Ω), 𝐿𝑝(Ω), and𝑊𝑚,𝑝(Ω). We define 𝑊𝑚,𝑝 = 𝑊𝑚,𝑝(Ω), 𝐿𝑝 = 𝑊0,𝑝(Ω) and𝐻𝑚 = 𝑊𝑚,2(Ω), 1 ≤ 𝑝 ≤ ∞, 𝑚 = 0, 1, . . .. The norm in 𝐿2 is
denoted by ‖ ⋅ ‖.We also denote by (⋅, ⋅) the scalar product in𝐿2. We denote by ‖ ⋅ ‖𝑋 the norm of a Banach space𝑋 and by𝑋󸀠 the dual space of 𝑋. We denote by 𝐿𝑝(0, 𝑇;𝑋)1 ≤ 𝑝 ≤ ∞
for the Banach space of the real functions 𝑢 : (0, 𝑇) → 𝑋
measurable, such that

‖𝑢‖𝐿𝑝(0,𝑇;𝑋) = (∫𝑇
0
‖𝑢 (𝑡)‖𝑝𝑋 𝑑𝑡)1/𝑝 < ∞

for 1 ≤ 𝑝 < ∞,
‖𝑢‖𝐿∞(0,𝑇;𝑋) = ess sup

0<𝑡<𝑇

‖𝑢 (𝑡)‖𝑋 for 𝑝 = ∞.
(15)

Let 𝑢(𝑡), 𝑢󸀠(𝑡) = 𝑢𝑡(𝑡), 𝑢󸀠󸀠(𝑡) = 𝑢𝑡𝑡(𝑡), 𝑢𝑥(𝑡), and 𝑢𝑥𝑥(𝑡)
denote 𝑢(𝑥, 𝑡), (𝜕𝑢/𝜕𝑡)(𝑥, 𝑡), (𝜕2𝑢/𝜕𝑡2)(𝑥, 𝑡), (𝜕𝑢/𝜕𝑥)(𝑥, 𝑡),(𝜕2𝑢/𝜕𝑥2)(𝑥, 𝑡), respectively.

On𝐻1, we shall use the following norm:

‖V‖𝐻1 = (‖V‖2 + 󵄩󵄩󵄩󵄩V𝑥󵄩󵄩󵄩󵄩2)1/2 . (16)

We put

𝐻10 = {V ∈ 𝐻1 (Ω) : V (1) = V (𝑅) = 0} . (17)

𝐻10 is a closed subspace of𝐻1 and on𝐻10 , two norms ‖V‖𝐻1
and ‖V𝑥‖ are equivalent.

Note that 𝐿2 and 𝐻1 are also the Hilbert spaces with
respect to the corresponding scalar products

⟨𝑢, V⟩ = ∫𝑅
1
𝑥𝛾𝑢 (𝑥) V (𝑥) 𝑑𝑥, ⟨𝑢, V⟩ + ⟨𝑢𝑥, V𝑥⟩ , (18)

respectively. The norms in 𝐿2 and 𝐻1 induced by the cor-
responding scalar products are denoted by ‖ ⋅ ‖0 and ‖ ⋅ ‖1,
respectively.𝐻10 is continuously and densely embedded in 𝐿2.
Identifying 𝐿2 with (𝐿2)󸀠 (the dual of 𝐿2), we have 𝐻10 󳨅→𝐿2 󳨅→ (𝐻10 )󸀠 = 𝐻−1; on the other hand, the notation ⟨⋅, ⋅⟩
is used for the pairing between𝐻10 and𝐻−1.

We then have the following lemmas, the proofs of which
can be found in [16].

Lemma 1. We have the following inequalities:

(i) ‖V‖ ≤ ‖V‖0 ≤ √𝑅𝛾 ‖V‖ , ∀V ∈ 𝐿2,
(ii) ‖V‖𝐻1 ≤ ‖V‖1 ≤ √𝑅𝛾 ‖V‖𝐻1 , ∀V ∈ 𝐻1. (19)

Lemma 2. The imbedding𝐻1 󳨅→ 𝐶0(Ω) is compact.

Lemma 3. The imbedding𝐻10 󳨅→ 𝐶0(Ω) is compact and

(i) ‖V‖𝐶0(Ω) ≤ √𝑅 − 1 󵄩󵄩󵄩󵄩V𝑥󵄩󵄩󵄩󵄩 ∀V ∈ 𝐻10 ,
(ii) ‖V‖ ≤ 𝑅 − 1√2 󵄩󵄩󵄩󵄩V𝑥󵄩󵄩󵄩󵄩 ∀V ∈ 𝐻10 ,
(iii) ‖V‖0 ≤ √𝑅𝛾2 (𝑅 − 1) 󵄩󵄩󵄩󵄩V𝑥󵄩󵄩󵄩󵄩0 ∀V ∈ 𝐻10 .

(20)

Remark 4. On 𝐿2, two norms V 󳨃→ ‖V‖ and V 󳨃→ ‖V‖0 are
equivalent. So there are two norms V 󳨃→ ‖V‖𝐻1 and V 󳨃→ ‖V‖1
on 𝐻1 and four norms V 󳨃→ ‖V‖𝐻1 , V 󳨃→ ‖V‖1, V 󳨃→ ‖V𝑥‖, and
V 󳨃→ ‖V𝑥‖0 on𝐻10 .

Consider 𝑎(⋅, ⋅) is the symmetric bilinear form on𝐻10 ×𝐻10
defined by

𝑎 (𝑢, 𝑤) = ⟨𝑢𝑥, 𝑤𝑥⟩ , ∀𝑢, 𝑤 ∈ 𝐻10 . (21)

Then, the symmetric bilinear form 𝑎(⋅, ⋅) is continuous on𝐻10 × 𝐻10 and coercive on𝐻10 .
We have also the following lemma.

Lemma 5. There exists the Hilbert orthonormal base {𝑤𝑗} of𝐿2 consisting of the eigenfunctions 𝑤𝑗 corresponding to the
eigenvalue 𝜆𝑗 such that

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑗 ≤ 𝜆𝑗+1 ≤ ⋅ ⋅ ⋅ ,
lim
𝑗→+∞

𝜆𝑗 = +∞,
𝑎 (𝑤𝑗, 𝑤) = 𝜆𝑗 ⟨𝑤𝑗, 𝑤⟩ ∀𝑤 ∈ 𝐻10 , 𝑗 = 1, 2, . . . .

(22)

Furthermore, the sequence {𝑤𝑗/√𝜆𝑗} is also the Hilbert
orthonormal base of𝐻10 with respect to the scalar product 𝑎(⋅, ⋅).
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On the other hand, we also have𝑤𝑗 satisfying the following
boundary value problem:

−(𝑤𝑗𝑥𝑥 + 𝛾𝑥𝑤𝑗𝑥) = 𝜆𝑗𝑤𝑗, in (1, 𝑅) ,
𝑤𝑗 (1) = 𝑤𝑗 (𝑅) = 0, 𝑤𝑗 ∈ 𝐶∞ ([1, 𝑅]) . (23)

The proof of Lemma 5 can be found in [17, p. 87,Theorem7.7], with𝐻 = 𝐿2 and 𝑉 = 𝐻10 and 𝑎(⋅, ⋅) as defined by (21).

3. The Existence and the Uniqueness

Now, we consider problems (1)–(3) in which 𝛾 is a positive
constant and make the following assumptions:

(𝐻1) 𝑢̃0 ∈ 𝐻1.(𝐻2) 𝑔1, 𝑔𝑅 ∈ 𝑊1,1(0, 𝑇), 𝑢̃0(1)−𝑔1(0) = 𝑢̃0(𝑅)−𝑔𝑅(0) = 0.(𝐻3) 𝛼 ∈ 𝑊1,1(0, 𝑇), 𝛼(𝑡) ≥ 𝛼∗ > 0, ∀𝑡 ∈ [0, 𝑇].(𝐻4) 𝜇 ∈ 𝑊1,1(0, 𝑇), 𝜇(𝑡) ≥ 𝜇∗ > 0, ∀𝑡 ∈ [0, 𝑇].(𝐻5) 𝑓1 ∈ 𝐿1(0, 𝑇; 𝐿2).(𝐻6) 𝑓 ∈ 𝐶0(R;R) satisfies the condition that there exists
positive constant 𝛿 such that (𝑦 − 𝑧)(𝑓(𝑦) − 𝑓(𝑧)) ≥−𝛿|𝑦 − 𝑧|2, for all 𝑦, 𝑧 ∈ R.

In case 𝑔1 ̸= 0 or 𝑔𝑅 ̸= 0, it is clearly that problems
(1)–(3) reduce to a problem with homogeneous boundary
conditions by the suitable transformation. Indeed, putting𝜑(𝑥, 𝑡) = ((𝑥 − 1)/(𝑅 − 1))𝑔𝑅(𝑡) + ((𝑅 − 𝑥)/(𝑅 − 1))𝑔1(𝑡), by
the transformation V(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)−𝜑(𝑥, 𝑡), problems (1)–(3)
reduce to the following problem:

V𝑡 − (𝜇 (𝑡) + 𝛼 (𝑡) 𝜕𝜕𝑡)( 𝜕2V𝜕𝑥2 + 𝛾𝑥 𝜕V𝜕𝑥) + 𝑓 (V + 𝜑)
= 𝑓1 (𝑥, 𝑡) , 1 < 𝑥 < 𝑅, 𝑡 > 0,

V (1, 𝑡) = V (𝑅, 𝑡) = 0,
V (𝑥, 0) = Ṽ0 (𝑥) ,

(24)

where

𝑓1 (𝑥, 𝑡) = 𝑓1 (𝑥, 𝑡) − 1𝑅 − 1 [(𝑥 − 1) 𝑔󸀠𝑅 (𝑡)
+ (𝑅 − 𝑥) 𝑔󸀠1 (𝑡)]
+ 𝛾(𝑅 − 1) 𝑥 [𝜇 (𝑡) (𝑔𝑅 (𝑡) − 𝑔1 (𝑡))
+ 𝛼 (𝑡) (𝑔󸀠𝑅 (𝑡) − 𝑔󸀠1 (𝑡))] ,

Ṽ0 (𝑥) = 𝑢̃0 (𝑥) − 𝜑 (𝑥, 0) , Ṽ0 ∈ 𝐻10

(25)

and 𝑢̃0,𝑔1, and𝑔𝑅 satisfy the condition 𝑢̃0(1)−𝑔1(0) = 𝑢̃0(𝑅)−𝑔𝑅(0) = 0.
The weak formulation of the initial-boundary value

problem (24) can be given in the following manner: Find

V ∈ 𝐿∞(0, 𝑇;𝐻10 ) with 𝑡V𝑡 ∈ 𝐿2(0, 𝑇;𝐻10 ), such that V satisfies
the following variational equation:

𝑑𝑑𝑡 [⟨V (𝑡) , 𝑤⟩ + 𝛼 (𝑡) 𝑎 (V (𝑡) , 𝑤)]
+ (𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 𝑎 (V (𝑡) , 𝑤)
+ ⟨𝑓 (V (𝑡) + 𝜑 (𝑡)) , 𝑤⟩ = ⟨𝑓1 (𝑡) , 𝑤⟩ ,

∀𝑤 ∈ 𝐻10 , a.e., 𝑡 ∈ (0, 𝑇) ,
V (0) = Ṽ0,

(26)

where 𝑎(⋅, ⋅) is the symmetric bilinear form on 𝐻10 × 𝐻10
defined by (21).

Then, we have the following theorem.

Theorem 6. Let 𝑇 > 0 and (𝐻1)–(𝐻6) hold. Then, problem
(24) has a unique weak solution V such that

V ∈ 𝐿∞ (0, 𝑇;𝐻10) ,
𝑡V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) . (27)

Moreover, if (𝐻5) is replaced by 𝑓1 ∈ 𝐿2(𝑄𝑇), then the
solution V satisfies

V ∈ 𝐿∞ (0, 𝑇;𝐻10) ,
V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) . (28)

Proof. The proof consists of several steps.

Step 1 (the Faedo-Galerkin approximation (introduced by
Lions [18])). Consider the basis {𝑤𝑗} for 𝐻10 as in Lemma 5.
We find the approximate solution of problem (24) in the form

V𝑚 (𝑡) = 𝑚∑
𝑗=1

𝑐𝑚𝑗 (𝑡) 𝑤𝑗, (29)

where the coefficients 𝑐𝑚𝑗 satisfy the system of linear differen-
tial equations

⟨V󸀠𝑚 (𝑡) , 𝑤𝑗⟩ + 𝛼 (𝑡) 𝑎 (V󸀠𝑚 (𝑡) , 𝑤𝑗)
+ 𝜇 (𝑡) 𝑎 (V𝑚 (𝑡) , 𝑤𝑗)
+ ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , 𝑤𝑗⟩ = ⟨𝑓1 (𝑡) , 𝑤𝑗⟩ ,

1 ≤ 𝑗 ≤ 𝑚,
V𝑚 (0) = V0𝑚,

(30)

where

V0𝑚 = 𝑚∑
𝑗=1

𝛼𝑚𝑗𝑤𝑗 󳨀→ Ṽ0 strongly in 𝐻10 . (31)



Discrete Dynamics in Nature and Society 5

The system of (30) can be rewritten in the form

𝑐󸀠𝑚𝑗 (𝑡) + 𝜆𝑗𝜇 (𝑡)
1 + 𝜆𝑗𝛼 (𝑡) 𝑐𝑚𝑗 (𝑡)

+ 11 + 𝜆𝑗𝛼 (𝑡) ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , 𝑤𝑗⟩
= 11 + 𝜆𝑗𝛼 (𝑡) ⟨𝑓1 (𝑡) , 𝑤𝑗⟩ ,

𝑐𝑚𝑗 (0) = 𝛼𝑚𝑗, 1 ≤ 𝑗 ≤ 𝑚.

(32)

It is clear that for each 𝑚 there exists a solution V𝑚(𝑡) in
the form of (29) which satisfies (30) almost everywhere on0 ≤ 𝑡 ≤ 𝑇̃𝑚 for some 𝑇̃𝑚, 0 < 𝑇̃𝑚 ≤ 𝑇.The following estimates
allow one to take 𝑇̃𝑚 = 𝑇 for all𝑚.

Step 2 (a priori estimates)

(a) The First Estimate. Multiplying the 𝑗th equation of (30)
by 𝑐𝑚𝑗(𝑡) and summing up with respect to 𝑗, afterwards,
integrating by parts with respect to the time variable from 0
to 𝑡, we get after some rearrangements:

󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
= 󵄩󵄩󵄩󵄩V0𝑚󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩V0𝑚𝑥󵄩󵄩󵄩󵄩20

− ∫𝑡
0
(2𝜇 (𝑠) − 𝛼󸀠 (𝑠)) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

− 2∫𝑡
0
⟨𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , V𝑚 (𝑠)⟩ 𝑑𝑠

+ 2∫𝑡
0
⟨𝑓1 (𝑠) , V𝑚 (𝑠)⟩ 𝑑𝑠.

(33)

By V0𝑚 → Ṽ0 strongly in𝐻10 , we have
󵄩󵄩󵄩󵄩V0𝑚󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩V0𝑚𝑥󵄩󵄩󵄩󵄩20 ≤ 𝑆0, ∀𝑚, (34)

where 𝑆0 always indicates a bound depending on Ṽ0.
Put

𝑆𝑚 (𝑡) = 󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼∗ 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 . (35)

By the assumptions (𝐻3)–(𝐻6), we estimate without
difficulty the following terms in (33) as follows:

− ∫𝑡
0
(2𝜇 (𝑠) − 𝛼󸀠 (𝑠)) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

≤ 1𝛼∗ ∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨2𝜇 (𝑠) − 𝛼󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑆𝑚 (𝑠) 𝑑𝑠;

− 2∫𝑡
0
⟨𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , V𝑚 (𝑠)⟩ 𝑑𝑠

≤ 2𝛿∫𝑡
0

󵄩󵄩󵄩󵄩V𝑚 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠
+ 2∫𝑡
0

󵄩󵄩󵄩󵄩𝑓 (𝜑 (𝑠))󵄩󵄩󵄩󵄩0 󵄩󵄩󵄩󵄩V𝑚 (𝑠)󵄩󵄩󵄩󵄩0 𝑑𝑠
≤ (2𝛿 + 1) ∫𝑡

0

󵄩󵄩󵄩󵄩V𝑚 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠 + ∫𝑇
0

󵄩󵄩󵄩󵄩𝑓 (𝜑 (𝑠))󵄩󵄩󵄩󵄩20 𝑑𝑠;
2 ∫𝑡
0
⟨𝑓1 (𝑠) , V𝑚 (𝑠)⟩ 𝑑𝑠

≤ 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩𝐿1(0,𝑇;𝐿2) + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑠)󵄩󵄩󵄩󵄩󵄩0 󵄩󵄩󵄩󵄩V𝑚 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠
≤ 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩𝐿1(0,𝑇;𝐿2) + ∫𝑡

0

󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑠)󵄩󵄩󵄩󵄩󵄩0 𝑆𝑚 (𝑠) 𝑑𝑠.
(36)

Hence, it follows from (33), (34), and (36) that

𝑆𝑚 (𝑡) ≤ 𝐶(1)𝑇 + ∫𝑡
0
𝑑(1)𝑇 (𝑠) 𝑆𝑚 (𝑠) 𝑑𝑠, (37)

where

𝐶(1)𝑇 = 𝑆0 + 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩𝐿1(0,𝑇;𝐿2) + ∫𝑇
0

󵄩󵄩󵄩󵄩𝑓 (𝜑 (𝑠))󵄩󵄩󵄩󵄩20 𝑑𝑠,
𝑑(1)𝑇 (𝑠) = 1 + 2𝛿 + 󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑠)󵄩󵄩󵄩󵄩󵄩0 + 1𝛼∗ 󵄨󵄨󵄨󵄨󵄨2𝜇 (𝑠) − 𝛼󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 ,

𝑑(1)𝑇 ∈ 𝐿1 (0, 𝑇) .
(38)

By Gronwall’s lemma, we obtain from (37) that

𝑆𝑚 (𝑡) ≤ 𝐶(1)𝑇 exp(∫𝑡
0
𝑑(1)𝑇 (𝑠) 𝑑𝑠) ≤ 𝐶𝑇, (39)

for all𝑚 ∈ N, for all 𝑡, 0 ≤ 𝑡 ≤ 𝑇̃𝑚 ≤ 𝑇; that is, 𝑇̃𝑚 = 𝑇, where𝐶𝑇 always indicates a bound depending on 𝑇.
(b) The Second Estimate.Multiplying the 𝑗th equation of (30)
by 2𝑡2𝑐󸀠𝑚𝑗(𝑡) and summing up with respect to 𝑗, we have

2 󵄩󵄩󵄩󵄩󵄩𝑡V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 2𝛼 (𝑡) 󵄩󵄩󵄩󵄩󵄩𝑡V󸀠𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩20
+ 𝑑𝑑𝑡 [𝜇 (𝑡) 󵄩󵄩󵄩󵄩𝑡V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]

= (𝑡2𝜇 (𝑡))󸀠 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
− 2𝑡2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , V󸀠𝑚 (𝑡)⟩
+ 2𝑡2 ⟨𝑓1 (𝑡) , V󸀠𝑚 (𝑡)⟩ .

(40)
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Integrating (40), we get

2∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠 + 2∫𝑡
0
𝛼 (𝑠) 󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠

+ 𝜇 (𝑡) 󵄩󵄩󵄩󵄩𝑡V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
= ∫𝑡
0
(𝑠2𝜇 (𝑠))󸀠 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

− 2∫𝑡
0
⟨𝑠𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , 𝑠V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

+ 2∫𝑡
0
⟨𝑠𝑓1 (𝑠) , 𝑠V󸀠𝑚 (𝑠)⟩ 𝑑𝑠.

(41)

We shall estimate the terms of (41) as follows:

∫𝑡
0
(𝑠2𝜇 (𝑠))󸀠 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠
≤ 1𝛼∗ ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨(𝑠2𝜇 (𝑠))󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑆𝑚 (𝑠) 𝑑𝑠
≤ 𝐶𝑇𝛼∗ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨(𝑠2𝜇 (𝑠))󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠;
(42)

2∫𝑡
0
⟨𝑠𝑓1 (𝑠) , 𝑠V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

≤ 2∫𝑇
0

󵄩󵄩󵄩󵄩󵄩𝑠𝑓1 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠 + 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠.
(43)

On the other hand, we have

󵄨󵄨󵄨󵄨V𝑚 (𝑥, 𝑠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑠)󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩V𝑚 (𝑠)󵄩󵄩󵄩󵄩𝐶0(Ω) + 󵄨󵄨󵄨󵄨𝑔1 (𝑠)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑠)󵄨󵄨󵄨󵄨

≤ √ (𝑅 − 1) 𝐶𝑇𝛼∗ + 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩𝐶0([0,𝑇])
+ 󵄩󵄩󵄩󵄩𝑔𝑅󵄩󵄩󵄩󵄩𝐶0([0,𝑇]) ≡ 𝐶𝑇,

(44)

and hence

2∫𝑡
0
⟨𝑠𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , 𝑠V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

≤ 2∫𝑡
0

󵄩󵄩󵄩󵄩𝑠𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠))󵄩󵄩󵄩󵄩20 𝑑𝑠
+ 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠
≤ 2∫𝑡
0
𝑠2𝑑𝑠∫𝑅

1
𝑥𝛾 sup
|𝑧|≤𝐶𝑇

𝑓2 (𝑧) 𝑑𝑥
+ 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠

≤ 2𝑇2 (𝑅𝛾+1 − 1𝛾 + 1 ) sup
|𝑧|≤𝐶𝑇

𝑓2 (𝑧) 𝑑𝑥
+ 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠.
(45)

It follows from (41)–(43) and (45) that

∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠 + 2𝛼∗ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑠V󸀠𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠
+ 𝜇∗ 󵄩󵄩󵄩󵄩𝑡V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ≤ 𝐶𝑇𝛼∗ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨(𝑠2𝜇 (𝑠))󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
+ 2∫𝑇
0

󵄩󵄩󵄩󵄩󵄩𝑠𝑓1 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠
+ 2𝑇2 (𝑅𝛾+1 − 1𝛾 + 1 ) sup

|𝑧|≤𝐶𝑇

𝑓2 (𝑧) 𝑑𝑥 ≤ 𝐶𝑇,

(46)

for all 𝑚 ∈ N, for all 𝑡 ∈ [0, 𝑇], where 𝐶𝑇 always indicates a
bound depending on 𝑇.

By (𝑡V𝑚𝑥)󸀠 = 𝑡V󸀠𝑚𝑥+V𝑚𝑥 and (39) and (46), we deduce that󵄩󵄩󵄩󵄩󵄩(𝑡V𝑚𝑥)󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄𝑇) ≤ 󵄩󵄩󵄩󵄩󵄩𝑡V󸀠𝑚𝑥󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄𝑇) + 󵄩󵄩󵄩󵄩V𝑚𝑥󵄩󵄩󵄩󵄩𝐿2(𝑄𝑇)
≤ √∫𝑇
0

󵄩󵄩󵄩󵄩𝑠V󸀠𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠
+ √𝑇 󵄩󵄩󵄩󵄩V𝑚󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻10 ) ≤ 𝐶𝑇.

(47)

Step 3 (the limiting process). By (39), (46), and (47), we
deduce that there exists a subsequence of {V𝑚}, still denoted
by {V𝑚} such that

V𝑚 󳨀→ V in 𝐿∞ (0, 𝑇;𝐻10) weakly∗,
(𝑡V𝑚)󸀠 󳨀→ (𝑡V)󸀠 in 𝐿2 (0, 𝑇;𝐻10) weakly. (48)

Using a compactness lemma ([18], Lions, p. 57), applied
to (48), we can extract from the sequence {V𝑚} a subsequence
still denoted by {V𝑚}, such that

𝑡V𝑚 󳨀→ 𝑡V strongly in 𝐿2 (𝑄𝑇) . (49)

By the Riesz-Fischer theorem, we can extract from {V𝑚} a
subsequence still denoted by {V𝑚}, such that

V𝑚 (𝑥, 𝑡) 󳨀→ V (𝑥, 𝑡) a.e. (𝑥, 𝑡) in 𝑄𝑇. (50)

Because 𝑓 is continuous, it gives

𝑓 (V𝑚 (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡)) 󳨀→ 𝑓 (V (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡))
a.e. (𝑥, 𝑡) in 𝑄𝑇. (51)

On the other hand, by (𝐻6), it follows from (44) that󵄨󵄨󵄨󵄨𝑓 (V𝑚 (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡))󵄨󵄨󵄨󵄨 ≤ sup
|𝑧|≤𝐶𝑇

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝐶𝑇, (52)

where 𝐶𝑇 is a constant independent of𝑚.
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Using the dominated convergence theorem, (51) and (52)
yield

𝑓 (V𝑚 + 𝜑) 󳨀→ 𝑓 (V + 𝜑) strongly in 𝐿2 (𝑄𝑇) . (53)

Passing to the limit in (30) by (31), (48), and (53), we
obtain𝑑𝑑𝑡 [⟨V (𝑡) , 𝑤⟩ + 𝛼 (𝑡) 𝑎 (V (𝑡) , 𝑤)]

+ (𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 𝑎 (V (𝑡) , 𝑤)
+ ⟨𝑓 (V (𝑡) + 𝜑 (𝑡)) , 𝑤⟩ = ⟨𝑓1 (𝑡) , 𝑤⟩ ,

∀𝑤 ∈ 𝐻10 , a.e., 𝑡 ∈ (0, 𝑇) ,
V (0) = Ṽ0.

(54)

Step 4 (uniqueness of the solution). First, we shall need the
following lemma.

Lemma 7. Let V be the weak solution of the following problem:

V𝑡 − (𝜇 (𝑡) + 𝛼 (𝑡) 𝜕𝜕𝑡)( 𝜕2V𝜕𝑥2 + 𝛾𝑥 𝜕V𝜕𝑥) = 𝑓̃ (𝑥, 𝑡) ,
1 < 𝑥 < 𝑅, 0 < 𝑡 < 𝑇,

V (1, 𝑡) = V (𝑅, 𝑡) = 0,
V (𝑥, 0) = Ṽ0 (𝑥) ,

V ∈ 𝐿∞ (0, 𝑇;𝐻10) , 𝑡V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) , 𝜇, 𝛼 ∈ 𝑊1,1 (0, 𝑇) .

(55)

Then,

‖V (𝑡)‖20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20
+ ∫𝑡
0
(2𝜇 (𝑠) − 𝛼󸀠 (𝑠)) 󵄩󵄩󵄩󵄩V𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

≥ 󵄩󵄩󵄩󵄩Ṽ0󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩Ṽ0𝑥󵄩󵄩󵄩󵄩20 + 2∫𝑡
0
⟨𝑓̃ (𝑠) , V (𝑠)⟩ 𝑑𝑠.

(56)

Furthermore, if Ṽ0 = 0, then the equality in (56) holds.

Lemma 7 is a slight improvement of a lemma used in [12]
(or it can be found in Lions’s book [18]).

Now, we will prove the uniqueness of the solutions.
Let V1 and V2 be two weak solutions of (24).Then, V = V1−

V2 is a weak solution of (55) with the right-hand side function
replaced by 𝑓̃(𝑥, 𝑡) = −𝑓(V1+𝜑)+𝑓(V2+𝜑) and Ṽ0 = 0.Using
Lemma 7, we have equality

𝜎1 (𝑡) = −∫𝑡
0
(2𝜇 (𝑠) − 𝛼󸀠 (𝑠)) 󵄩󵄩󵄩󵄩V𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

− 2∫𝑡
0
⟨𝑓 (V1 + 𝜑) − 𝑓 (V2 + 𝜑) , V (𝑠)⟩ 𝑑𝑠, (57)

where

𝜎1 (𝑡) = ‖V (𝑡)‖20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 . (58)

By (𝐻6), we obtain
2∫𝑡
0
⟨𝑓 (V1 + 𝜑) − 𝑓 (V2 + 𝜑) , V (𝑠)⟩ 𝑑𝑠

≥ −2𝛿∫𝑡
0
‖V (𝑠)‖20 𝑑𝑠 ≥ −2𝛿∫𝑡

0
𝜎1 (𝑠) 𝑑𝑠;

− ∫𝑡
0
(2𝜇 (𝑠) − 𝛼󸀠 (𝑠)) 󵄩󵄩󵄩󵄩V𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

≤ 1𝛼∗ ∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨2𝜇 (𝑠) − 𝛼󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝜎1 (𝑠) 𝑑𝑠.

(59)

It follows from (57)–(59) that

𝜎1 (𝑡) ≤ ∫𝑡
0
(2𝛿 + 1𝛼∗ 󵄨󵄨󵄨󵄨󵄨2𝜇 (𝑠) − 𝛼󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨) 𝜎1 (𝑠) 𝑑𝑠. (60)

By Gronwall’s lemma, V = 0.
Assume now that (𝐻5) is replaced by 𝑓1 ∈ 𝐿2(𝑄𝑇); then

we only have to show that {V󸀠𝑚} is bounded in 𝐿2(0, 𝑇;𝐻10 ).
Indeed, multiplying the 𝑗th equation of (30) by 𝑐󸀠𝑚𝑗(𝑡) and

summing up with respect to 𝑗, afterwards, integrating with
respect to the time variable from 0 to 𝑡, we get after some
rearrangements

𝑋𝑚 (𝑡) = 𝑋𝑚 (0) + ∫𝑡
0
𝜇󸀠 (𝑠) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠

+ 2∫𝑡
0
⟨𝑓1 (𝑠) , V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

− 2∫𝑡
0
⟨𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , V󸀠𝑚 (𝑠)⟩ 𝑑𝑠,

(61)

where

𝑋𝑚 (𝑡) = 2∫𝑡
0
(󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 + 𝛼 (𝑠) 󵄩󵄩󵄩󵄩󵄩V󸀠𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩󵄩20) 𝑑𝑠

+ 𝜇 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .
(62)

By the same estimates as above, we obtain

𝑋𝑚 (0) = 𝜇 (0) 󵄩󵄩󵄩󵄩V0𝑚𝑥󵄩󵄩󵄩󵄩20 ≤ 𝜇 (0)𝛼∗ 𝑆0;
∫𝑡
0
𝜇󸀠 (𝑠) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑠)󵄩󵄩󵄩󵄩20 𝑑𝑠 ≤ ∫𝑡

0

󵄨󵄨󵄨󵄨󵄨𝜇󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝛼∗ 𝑆𝑚 (𝑠) 𝑑𝑠
≤ 𝐶𝑇𝛼∗ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝜇󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠;
2 ∫𝑡
0
⟨𝑓1 (𝑠) , V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

≤ 2 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄𝑇) + 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠
≤ 2 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄𝑇) + 14𝑋𝑚 (𝑡) ;
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− 2∫𝑡
0
⟨𝑓 (V𝑚 (𝑠) + 𝜑 (𝑠)) , V󸀠𝑚 (𝑠)⟩ 𝑑𝑠

≤ 2𝑇(𝑅𝛾+1 − 1𝛾 + 1 ) sup
|𝑧|≤𝐶𝑇

𝑓2 (𝑧) + 12 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑠)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑠
≤ 2𝑇(𝑅𝛾+1 − 1𝛾 + 1 ) sup

|𝑧|≤𝐶𝑇

𝑓2 (𝑧) + 14𝑋𝑚 (𝑡) .
(63)

This implies

𝑋𝑚 (𝑡) ≤ 2𝛼∗ (𝜇 (0) 𝑆0 + 𝐶𝑇∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝜇󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠)
+ 4 󵄩󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄𝑇)
+ 4𝑇(𝑅𝛾+1 − 1𝛾 + 1 ) sup

|𝑧|≤𝐶𝑇

𝑓2 (𝑧) = 𝐶(1)𝑇 .
(64)

Then, the sequence {V󸀠𝑚} is bounded in 𝐿2(0, 𝑇;𝐻10 ).
Applying a similar argument used as above, the limit V of

the sequence {V𝑚} in suitable function spaces is a uniqueweak
solution of (24) satisfying (28).

Therefore, Theorem 6 is proved.

4. Asymptotic Behavior of the Solution
as 𝑡→ +∞

In this part, let 𝑇 > 0, (𝐻1)–(𝐻6) hold. Then, there exists a
unique solution 𝑢 = V + 𝜑 of problems (1)–(3) such that

𝑢 − 𝜑 = V ∈ 𝐿∞ (0, 𝑇;𝐻10) ,
𝑡 (𝑢𝑡 − 𝜑𝑡) = 𝑡V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) . (65)

We shall study asymptotic behavior of the solution 𝑢(𝑡) as𝑡 → +∞.
We make the following supplementary assumptions on

the functions 𝑔1(𝑡), 𝑔𝑅(𝑡), 𝛼(𝑡), 𝜇(𝑡), and 𝑓1(𝑥, 𝑡):
(𝐻󸀠2) 𝑔1, 𝑔𝑅 ∈ 𝑊1,1(R+), 𝑢̃0(1) −𝑔1(0) = 𝑢̃0(𝑅)−𝑔𝑅(0) = 0,

and there exist the positive constants 𝐶1, 𝐶𝑅, 𝛾1, and𝛾𝑅, such that

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝑖𝑒−𝛾𝑖𝑡, ∀𝑡 ≥ 0, 𝑖 ∈ {1, 𝑅} . (66)

(𝐻󸀠3) 𝛼 ∈ 𝑊1,1(R+), 𝛼(𝑡) ≥ 𝛼∗ > 0, ∀𝑡 ≥ 0, 𝛼(0) ≤ 𝛼(𝑇).(𝐻󸀠4) 𝜇 ∈ 𝑊1,1(R+), and there exist the positive constants𝜇∗, 𝜇∗, 𝜇∞, 𝐶𝜇, and 𝛾𝜇, such that

𝜇 (𝑡) ≥ 𝜇∗ > 0, ∀𝑡 ≥ 0,
󵄨󵄨󵄨󵄨𝜇 (𝑡) − 𝜇∞󵄨󵄨󵄨󵄨 ≤ 𝐶𝜇𝑒−𝛾𝜇𝑡, ∀𝑡 ≥ 0,

2𝜇 (𝑡) − 𝛼󸀠 (𝑡) ≥ 2𝜇∗ > 0, ∀𝑡 ≥ 0.
(67)

(𝐻󸀠5) 𝑓1 ∈ 𝐿∞(0,∞; 𝐿2), and there exist the positive
constants 𝐶1, 𝛾1 and the function 𝑓1∞ ∈ 𝐿2, such that‖𝑓1(𝑡) − 𝑓1∞‖0 ≤ 𝐶1𝑒−𝛾1𝑡, ∀𝑡 ≥ 0.

(𝐻󸀠6) 𝑓 ∈ 𝐶0(R;R) and there exists a positive constant 𝛿,
with 0 < 𝛿 < 2𝜇∞/𝑅𝛾(𝑅−1)2, such that (𝑦−𝑧)(𝑓(𝑦)−𝑓(𝑧)) ≥ −𝛿|𝑦 − 𝑧|2, for all 𝑦, 𝑧 ∈ R.

First, we consider the following stationary problem:

−𝜇∞ (𝜕2𝑢𝜕𝑥2 + 𝛾𝑥 𝜕𝑢𝜕𝑥) + 𝑓 (𝑢) = 𝑓1∞ (𝑥) ,
1 < 𝑥 < 𝑅,

𝑢 (1, 𝑡) = 𝑢 (𝑅, 𝑡) = 0.
(68)

The weak solution of problem (68) is obtained from the
following variational problem. Find 𝑢∞ ∈ 𝐻10 such that

𝜇∞𝑎 (𝑢∞, 𝑤) + ⟨𝑓 (𝑢∞) , 𝑤⟩ = ⟨𝑓1∞, 𝑤⟩ , (69)

for all𝑤 ∈ 𝐻10 , where 𝑎(⋅, ⋅) is the symmetric bilinear form on𝐻10 × 𝐻10 defined by (21).
We then have the following theorem.

Theorem 8. Let (𝐻󸀠4)–(𝐻󸀠6) hold. Then, there exists a unique
solution𝑢∞ of the variational problem (69) such that 𝑢∞ ∈ 𝐻10 .
Proof. Consider the basis {𝑤𝑗} for𝐻10 as in Lemma 5. Put

𝑦𝑚 = 𝑚∑
𝑗=1

𝑑𝑚𝑗𝑤𝑗, (70)

where 𝑑𝑚𝑗 satisfies the following nonlinear equation system:

𝜇∞𝑎 (𝑦𝑚, 𝑤𝑗) + ⟨𝑓 (𝑦𝑚) , 𝑤𝑗⟩ = ⟨𝑓1∞, 𝑤𝑗⟩ ,
1 ≤ 𝑗 ≤ 𝑚. (71)

By Brouwer’s lemma (see Lions [18], Lemma 4.3, p. 53), it
follows from the hypotheses (𝐻󸀠4)–(𝐻󸀠6) that systems (70) and
(71) have a solution 𝑦𝑚.

Multiplying the 𝑗th equation of system (71) by 𝑑𝑚𝑗, and
then summing up with respect to 𝑗, we have

𝜇∞𝑎 (𝑦𝑚, 𝑦𝑚) + ⟨𝑓 (𝑦𝑚) , 𝑦𝑚⟩ = ⟨𝑓1∞, 𝑦𝑚⟩ . (72)

By using (𝐻6), we obtain
⟨𝑓 (𝑦𝑚) , 𝑦𝑚⟩ = ∫𝑅

1
𝑥𝛾 (𝑓 (𝑦𝑚 (𝑥)) − 𝑓 (0)) 𝑦𝑚 (𝑥) 𝑑𝑥

+ ∫𝑅
1
𝑥𝛾𝑓 (0) 𝑦𝑚 (𝑥) 𝑑𝑥
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≥ −𝛿∫𝑅
1
𝑥𝛾𝑦2𝑚 (𝑥) 𝑑𝑥

+ ∫𝑅
1
𝑥𝛾𝑓 (0) 𝑦𝑚 (𝑥) 𝑑𝑥

≥ −𝛿 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20 − 𝜀1 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20
− 14𝜀1 ∫

𝑅

1
𝑥𝛾𝑓2 (0) 𝑑𝑥

= − (𝛿 + 𝜀1) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20
− 14𝜀1 (𝑅𝛾+1 − 1𝛾 + 1 )𝑓2 (0) ,

∀𝜀1 > 0.
(73)

By using inequalities (20)(iii) and (73), we obtain from
(72) that

𝜇∞ 󵄩󵄩󵄩󵄩𝑦𝑚𝑥󵄩󵄩󵄩󵄩20 ≤ (𝛿 + 𝜀1) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20
+ 14𝜀1 (𝑅𝛾+1 − 1𝛾 + 1 )𝑓2 (0)
+ 󵄩󵄩󵄩󵄩𝑓1∞󵄩󵄩󵄩󵄩0 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩0

≤ (𝛿 + 𝜀1) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20
+ 14𝜀1 (𝑅𝛾+1 − 1𝛾 + 1 )𝑓2 (0)
+ 14𝜀1 󵄩󵄩󵄩󵄩𝑓1∞󵄩󵄩󵄩󵄩20 + 𝜀1 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20

= (𝛿 + 2𝜀1) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩20
+ 14𝜀1 [(𝑅𝛾+1 − 1𝛾 + 1 )𝑓2 (0) + 󵄩󵄩󵄩󵄩𝑓1∞󵄩󵄩󵄩󵄩20]

= (𝛿 + 2𝜀1) 𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑦𝑚𝑥󵄩󵄩󵄩󵄩20
+ 14𝜀1 [(𝑅𝛾+1 − 1𝛾 + 1 )𝑓2 (0) + 󵄩󵄩󵄩󵄩𝑓1∞󵄩󵄩󵄩󵄩20] .

(74)

By 0 < 𝛿 < 2𝜇∞/𝑅𝛾(𝑅 − 1)2, choose 𝜀1 > 0 such that(𝛿 + 2𝜀1)(𝑅𝛾/2)(𝑅 − 1)2 < 𝜇∞.
Hence, we deduce from (74) that

󵄩󵄩󵄩󵄩𝑦𝑚𝑥󵄩󵄩󵄩󵄩0 ≤ √ ((𝑅𝛾+1 − 1) / (𝛾 + 1)) 𝑓2 (0) + 󵄩󵄩󵄩󵄩𝑓1∞󵄩󵄩󵄩󵄩204𝜀1 [𝜇∞ − (𝛿 + 2𝜀1) (𝑅𝛾/2) (𝑅 − 1)2]
= 𝐷̃1,

(75)

and 𝐷̃1 is a constant independent of𝑚.

By means of (75) and Lemma 3, the sequence {𝑦𝑚} has a
subsequence still denoted by {𝑦𝑚} such that

𝑦𝑚 󳨀→ 𝑢∞ in 𝐻10 weakly,
𝑦𝑚 󳨀→ 𝑢∞ in 𝐶0 ([1, 𝑅]) strongly. (76)

On the other hand, by (76)2 and the continuity of 𝑓, we
have

𝑓 (𝑦𝑚) 󳨀→ 𝑓 (𝑢∞) in 𝐶0 ([1, 𝑅]) strongly. (77)

Passing to the limit in (71), we findwithout difficulty from
(76) and (77) that 𝑢∞ satisfies the equation

𝜇∞𝑎 (𝑢∞, 𝑤𝑗) + ⟨𝑓 (𝑢∞) , 𝑤𝑗⟩ = ⟨𝑓1∞, 𝑤𝑗⟩ . (78)

Equation (78) holds for every 𝑗 = 1, 2, . . .; that is, (69) is
true.

The solution of problem (69) is unique, which can be
shown by the same arguments as in the proof of Theo-
rem 6.

Nowwe consider asymptotic behavior of the solution 𝑢(𝑡)
as 𝑡 → +∞.

We then have the following theorem.

Theorem 9. Let (𝐻1), (𝐻󸀠2)–(𝐻󸀠5), and (𝐻6) hold. Let𝑓 satisfy
the following condition, in addition,

(𝐻󸀠󸀠6 ) ∀𝑀 > 0, ∃𝑘𝑀 > 0 : |𝑓(𝑦) − 𝑓(𝑧)| ≤ 𝑘𝑀|𝑦 − 𝑧|,∀𝑦, 𝑧 ∈ [−𝑀,𝑀].
And let 𝛿 > 0 in (𝐻6) satisfy the following condition, in
addition,

(𝐻󸀠󸀠󸀠6 ) 0 < 𝛿 < (2/𝑅𝛾(𝑅 − 1)2)min{𝜇∞, 𝜇∗}.
Then we have

󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢∞󵄩󵄩󵄩󵄩1 ≤ 𝐶𝑒−𝛾𝑡, ∀𝑡 ≥ 0, (79)

where 𝛾 > 0, 𝐶 > 0 are constants independent of 𝑡.
Proof. Put𝑍𝑚(𝑡) = V𝑚(𝑡) −𝑦𝑚. Let us subtract (30)1 with (71)
to obtain

⟨𝑍󸀠𝑚 (𝑡) , 𝑤𝑗⟩ + 𝛼 (𝑡) 𝑎 (𝑍󸀠𝑚 (𝑡) , 𝑤𝑗)
+ 𝜇 (𝑡) 𝑎 (𝑍𝑚 (𝑡) , 𝑤𝑗) + (𝜇 (𝑡) − 𝜇∞) 𝑎 (𝑦𝑚, 𝑤𝑗)
+ ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚) , 𝑤𝑗⟩
= ⟨𝑓1 (𝑡) − 𝑓1∞, 𝑤𝑗⟩ , 1 ≤ 𝑗 ≤ 𝑚,

𝑍𝑚 (0) = V0𝑚 − 𝑦𝑚.

(80)
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By multiplying (80)1 by 𝑐𝑚𝑗(𝑡) −𝑑𝑚𝑗 and summing up in 𝑗, we
obtain

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ (2𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
+ 2 (𝜇 (𝑡) − 𝜇∞) 𝑎 (𝑦𝑚, 𝑍𝑚 (𝑡))
+ 2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚 + 𝜑 (𝑡)) , 𝑍𝑚 (𝑡)⟩
+ 2 ⟨𝑓 (𝑦𝑚 + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚) , 𝑍𝑚 (𝑡)⟩

= 2 ⟨𝑓1 (𝑡) − 𝑓1 (𝑡) , 𝑍𝑚 (𝑡)⟩
+ 2 ⟨𝑓1 (𝑡) − 𝑓1∞, 𝑍𝑚 (𝑡)⟩ .

(81)

By the assumptions (𝐻󸀠2)–(𝐻󸀠5), (𝐻6), (𝐻󸀠󸀠6 ), and (𝐻󸀠󸀠󸀠6 )
and using inequality (20)(iii), and with 𝜀1 > 0, we estimate
without difficulty the following terms in (81) as follows:

(i) Estimate (2𝜇(𝑡) − 𝛼󸀠(𝑡))‖𝑍𝑚𝑥(𝑡)‖20, as
(2𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ≥ 2𝜇∗ 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ; (82)

(ii) Estimate 2(𝜇(𝑡) − 𝜇∞)𝑎(𝑦𝑚, 𝑍𝑚(𝑡)), as
2 (𝜇 (𝑡) − 𝜇∞) 𝑎 (𝑦𝑚, 𝑍𝑚 (𝑡))

≤ 2 󵄨󵄨󵄨󵄨𝜇 (𝑡) − 𝜇∞󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦𝑚𝑥󵄩󵄩󵄩󵄩0 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩0
≤ 2𝐶𝜇𝑒−𝛾𝜇𝑡𝐶̃ 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩0
≤ 1𝜀1 𝐶̃2𝐶2𝜇𝑒−2𝛾𝜇𝑡 + 𝜀1 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .

(83)

(iii) Estimate 2⟨𝑓(V𝑚(𝑡) + 𝜑(𝑡)) − 𝑓(𝑦𝑚 + 𝜑(𝑡)), 𝑍𝑚(𝑡)⟩, as
2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚 + 𝜑 (𝑡)) , 𝑍𝑚 (𝑡)⟩

≥ −2𝛿 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 ≥ −2𝛿𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 . (84)

(iv) Estimate 2⟨𝑓(𝑦𝑚 + 𝜑(𝑡)) − 𝑓(𝑦𝑚), 𝑍𝑚(𝑡)⟩. Note that,
from the inequalities

󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐶1 + 𝐶𝑅,󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩𝐶0(Ω) ≤ √𝑅 − 1 󵄩󵄩󵄩󵄩𝑦𝑚𝑥󵄩󵄩󵄩󵄩 ≤ √𝑅 − 1𝐷̃1,󵄩󵄩󵄩󵄩𝑦𝑚 + 𝜑󵄩󵄩󵄩󵄩𝐶0(Ω) ≤ √𝑅 − 1𝐷̃1 + 𝐶1 + 𝐶𝑅 = 𝑀1,
(85)

and (𝐻󸀠󸀠6 ), we deduce that󵄨󵄨󵄨󵄨𝑓 (𝑦𝑚 + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚)󵄨󵄨󵄨󵄨 ≤ 𝑘𝑀1 󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑡)󵄨󵄨󵄨󵄨
≤ 𝑘𝑀1 (󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨) = 𝑘𝑀1Ψ (𝑡) , (86)

where

Ψ (𝑡) = 𝐶1𝑒−𝛾1𝑡 + 𝐶𝑅𝑒−𝛾𝑅𝑡. (87)

Hence,

󵄩󵄩󵄩󵄩𝑓 (𝑦𝑚 + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚)󵄩󵄩󵄩󵄩20
≤ 1𝛾 + 1 (𝑅𝛾+1 − 1) 𝑘2𝑀1Ψ2 (𝑡) . (88)

Thus,

2 ⟨𝑓 (𝑦𝑚 + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚) , 𝑍𝑚 (𝑡)⟩
≤ 1𝜀1 󵄩󵄩󵄩󵄩𝑓 (𝑦𝑚 + 𝜑 (𝑡)) − 𝑓 (𝑦𝑚)󵄩󵄩󵄩󵄩20 + 𝜀1 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝜀1 1𝛾 + 1 (𝑅𝛾+1 − 1) 𝑘2𝑀1Ψ2 (𝑡)

+ 𝜀1𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .
(89)

(v) Estimate ⟨𝑓1(𝑡) − 𝑓1(𝑡), 𝑍𝑚(𝑡)⟩. We have

𝑓1 (𝑥, 𝑡) − 𝑓1 (𝑥, 𝑡) = − 1𝑅 − 1 [(𝑥 − 1) 𝑔󸀠𝑅 (𝑡)
+ (𝑅 − 𝑥) 𝑔󸀠1 (𝑡)]
+ 𝛾(𝑅 − 1) 𝑥 [𝜇 (𝑡) (𝑔𝑅 (𝑡) − 𝑔1 (𝑡))
+ 𝛼 (𝑡) (𝑔󸀠𝑅 (𝑡) − 𝑔󸀠1 (𝑡))] .

(90)

Hence,

󵄨󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡) − 𝑓1 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑔󸀠1 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠𝑅 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝛾𝑅 − 1 (𝛼 (𝑡) + 𝜇 (𝑡))
⋅ [󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠1 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠𝑅 (𝑡)󵄨󵄨󵄨󵄨󵄨] ≤ 𝐶1𝑒−𝛾1𝑡
+ 𝐶𝑅𝑒−𝛾𝑅𝑡 + 𝛾𝑅 − 1 (‖𝛼‖𝐿∞(R+) + 󵄩󵄩󵄩󵄩𝜇󵄩󵄩󵄩󵄩𝐿∞(R+))
⋅ [𝐶1𝑒−𝛾1𝑡 + 𝐶𝑅𝑒−𝛾𝑅𝑡]
= [1 + 𝛾𝑅 − 1 (‖𝛼‖𝐿∞(R+) + 󵄩󵄩󵄩󵄩𝜇󵄩󵄩󵄩󵄩𝐿∞(R+))]
⋅ [𝐶1𝑒−𝛾1𝑡 + 𝐶𝑅𝑒−𝛾𝑅𝑡]
= [1 + 𝛾𝑅 − 1 (‖𝛼‖𝐿∞(R+) + 󵄩󵄩󵄩󵄩𝜇󵄩󵄩󵄩󵄩𝐿∞(R+))]Ψ (𝑡)
≡ 𝐶̃ (𝛼, 𝜇)Ψ (𝑡) .

(91)

It follows that

󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡) − 𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 ≤ 1𝛾 + 1 (𝑅𝛾+1 − 1) 𝐶̃2 (𝛼, 𝜇)Ψ2 (𝑡) . (92)
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Thus,

2 ⟨𝑓1 (𝑡) − 𝑓1 (𝑡) , 𝑍𝑚 (𝑡)⟩
≤ 1𝜀1 󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡) − 𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 𝜀1 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝜀1 1𝛾 + 1 (𝑅𝛾+1 − 1) 𝐶̃2 (𝛼, 𝜇)Ψ2 (𝑡)

+ 𝜀1𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .

(93)

(vi) Estimate ⟨𝑓1(𝑡) − 𝑓1∞, 𝑍𝑚(𝑡)⟩, as
2 ⟨𝑓1 (𝑡) − 𝑓1∞, 𝑍𝑚 (𝑡)⟩

≤ 1𝜀1 󵄩󵄩󵄩󵄩𝑓1 (𝑡) − 𝑓1∞󵄩󵄩󵄩󵄩20 + 𝜀1 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝜀1𝐶21𝑒−2𝛾1𝑡 + 𝜀1𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .

(94)

It follows from (81)–(84), (89), (93), and (94) that

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ [2𝜇∗ − 𝜀1 − (2𝛿 + 3𝜀1) 𝑅𝛾2 (𝑅 − 1)2] 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝜀1 (𝐶̃2𝐶2𝜇𝑒−2𝛾𝜇𝑡 + 𝐶21𝑒−2𝛾1𝑡)
+ 1𝜀1 𝑅

𝛾+1 − 1𝛾 + 1 (𝑘2𝑀1 + 𝐶̃2 (𝛼, 𝜇))Ψ2 (𝑡) ≡ 𝜓̃ (𝑡) .

(95)

By 0 < 𝛿 < (2/𝑅𝛾(𝑅−1)2)min{𝜇∞, 𝜇∗} ≤ 2𝜇∗/𝑅𝛾(𝑅−1)2,
choose 𝜀1 > 0 such that 2𝛾̃ = 2𝜇∗ − 𝜀1 − (2𝛿 + 3𝜀1)(𝑅𝛾/2)(𝑅 −1)2 > 0.

Put 𝛾0 = min{𝛾1, 𝛾1, 𝛾𝑅, 𝛾𝜇}, and we have 𝜓̃(𝑡) ≤ 𝐶0𝑒−2𝛾0𝑡
for all 𝑡 ≥ 0, as

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20] + 2𝛾̃ 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≤ 𝜓̃ (𝑡) ≤ 𝐶0𝑒−2𝛾0𝑡. (96)

By

󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 = 12 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 + 12 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≥ 12 1𝛼 (𝑡)𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20

+ 12 2𝑅𝛾 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20

≥ 12 1‖𝛼‖𝐿∞(R+)𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
+ 12 2𝑅𝛾 (𝑅 − 1)2 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20

≥ 𝛽1 (𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 + 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20) ,
(97)

where 𝛽1 = (1/2)min{1/‖𝛼‖𝐿∞(R+), 2/𝑅𝛾(𝑅 − 1)2}, it follows
from (96) and (97) that

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ 2𝛾̃𝛽1 (󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20) ≤ 𝜓̃ (𝑡)
≤ 𝐶0𝑒−2𝛾0𝑡.

(98)

Choose 𝛾 > 0 such that 𝛾 < min{𝛾0, 2𝛾̃𝛽1}, and then we
have from (98) that

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ 2𝛾 (󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20) ≤ 𝐶0𝑒−2𝛾0𝑡.

(99)

Hence, we obtain from (99) that

󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼∗ 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ≤ 󵄩󵄩󵄩󵄩𝑍𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡)
⋅ 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≤ (󵄩󵄩󵄩󵄩𝑍𝑚 (0)󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩𝑍𝑚𝑥 (0)󵄩󵄩󵄩󵄩20 + 𝐶02 (𝛾0 − 𝛾))
⋅ 𝑒−2𝛾𝑡.

(100)

Letting𝑚 → +∞ in (100), we obtain

󵄩󵄩󵄩󵄩V (𝑡) − 𝑢∞󵄩󵄩󵄩󵄩20 + 𝛼∗ 󵄩󵄩󵄩󵄩V𝑥 (𝑡) − 𝑢∞𝑥󵄩󵄩󵄩󵄩20
≤ lim inf
𝑚→+∞

(󵄩󵄩󵄩󵄩V𝑚 (𝑡) − 𝑦𝑚󵄩󵄩󵄩󵄩20 + 𝛼∗ 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡) − 𝑦𝑚𝑥󵄩󵄩󵄩󵄩20)
≤ (󵄩󵄩󵄩󵄩Ṽ0 − 𝑢∞󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩Ṽ0𝑥 − 𝑢∞𝑥󵄩󵄩󵄩󵄩20
+ 𝐶02 (𝛾0 − 𝛾)) 𝑒−2𝛾𝑡, ∀𝑡 ≥ 0,

(101)

or 󵄩󵄩󵄩󵄩V (𝑡) − 𝑢∞󵄩󵄩󵄩󵄩1 ≤ 𝐷̃2𝑒−𝛾𝑡, ∀𝑡 ≥ 0, (102)

where

𝐷̃2 = √ 1
min (1, 𝛼∗) (󵄩󵄩󵄩󵄩Ṽ0 − 𝑢∞󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩Ṽ0𝑥 − 𝑢∞𝑥󵄩󵄩󵄩󵄩20 + 𝐶02 (𝛾0 − 𝛾)). (103)
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Note that󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐶1𝑒−𝛾1𝑡 + 𝐶𝑅𝑒−𝛾𝑅𝑡= Ψ (𝑡) ;
󵄨󵄨󵄨󵄨𝜑𝑥 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡) − 𝑔1 (𝑡)󵄨󵄨󵄨󵄨𝑅 − 1 ≤ 1𝑅 − 1Ψ (𝑡) .

(104)

Hence,󵄩󵄩󵄩󵄩𝜑 (𝑡)󵄩󵄩󵄩󵄩21 = 󵄩󵄩󵄩󵄩𝜑 (𝑡)󵄩󵄩󵄩󵄩20 + 󵄩󵄩󵄩󵄩𝜑𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝛾 + 1 (𝑅𝛾+1 − 1) (1 + 1(𝑅 − 1)2)Ψ2 (𝑡)
≤ 𝐷̃23𝑒−2𝛾𝑡.

(105)

It follows from (102) and (105) that󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢∞󵄩󵄩󵄩󵄩1 ≤ 󵄩󵄩󵄩󵄩V (𝑡) − 𝑢∞󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝜑 (𝑡)󵄩󵄩󵄩󵄩1
≤ (𝐷̃2 + 𝐷̃3) 𝑒−𝛾𝑡, ∀𝑡 ≥ 0. (106)

This completes the proof of Theorem 9.

5. The Existence and the Uniqueness of
a (𝜂,𝑇)-Periodic Weak Solution

In this section, we shall consider problems (1), (2), and (4)
with 𝑅 > 1, 0 < |𝜂| ≤ 1 as given constants and 𝜇, 𝛼,𝑓, 𝑓1, 𝑔1, and 𝑔𝑅 as given functions satisfying the following
assumptions:

(𝐻2) 𝑔1, 𝑔𝑅 ∈ 𝑊1,1(0, 𝑇), and𝑔1 and𝑔𝑅 are (𝜂, 𝑇)-periodic;
that is,

𝑔1 (0) = 𝜂𝑔1 (𝑇) ,𝑔𝑅 (0) = 𝜂𝑔𝑅 (𝑇) . (107)

(𝐻3) 𝛼 ∈ 𝑊1,1(0, 𝑇), 𝛼(𝑡) ≥ 𝛼∗ > 0, ∀𝑡 ∈ [0, 𝑇], 0 < 𝛼(0) ≤𝛼(𝑇);(𝐻4) 𝜇 ∈ 𝑊1,1(0, 𝑇), 𝜇(𝑡) ≥ 𝜇∗ > 0, ∀𝑡 ∈ [0, 𝑇], 2𝜇(𝑡) −𝛼󸀠(𝑡) ≥ 2𝜇∗ > 0, a.e., 𝑡 ∈ [0, 𝑇];(𝐻5) 𝑓1, 𝑓󸀠1 ∈ 𝐿2(𝑄𝑇), 𝑓1 is (𝜂, 𝑇)-periodic, 𝑓1(0) = 𝜂𝑓1(𝑇);(𝐻6) 𝑓 ∈ 𝐶0(R;R) and there exists a positive constant 𝛿,
with

0 < 𝛿 < 2𝜇∗𝑅𝛾 (𝑅 − 1)2 ,
such that (𝑦 − 𝑧) (𝑓 (𝑦) − 𝑓 (𝑧)) ≥ −𝛿 󵄨󵄨󵄨󵄨𝑦 − 𝑧󵄨󵄨󵄨󵄨2 ,∀𝑦, 𝑧 ∈ R.

(108)

Remark 10. An example of the functions 𝑔1, 𝑔𝑅 satisfying(𝐻2) is
𝑔𝑘 (𝑡) = 𝜁𝑘𝑒𝑝𝑡, (109)

where 𝑝 > 0, 𝜁𝑘, and 𝑘 ∈ {1, 𝑅} are constants. It is obvious
that (𝐻2) holds, because

𝑔𝑘 (𝑡) = 𝑒−𝑝𝑇𝜁𝑘𝑒𝑝(𝑡+𝑇) = 𝜂𝑔𝑘 (𝑡 + 𝑇) , (110)

with 𝜂 = 𝑒−𝑝𝑇 and
𝑔𝑘 (0) = 𝜂𝑔𝑘 (𝑇) , 𝑘 ∈ {1, 𝑅} . (111)

Similarly, by the transformation V(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −𝜑(𝑥, 𝑡),
with 𝜑(𝑥, 𝑡) = ((𝑥 − 1)/(𝑅 − 1))𝑔𝑅(𝑡) + ((𝑅 − 𝑥)/(𝑅 − 1))𝑔1(𝑡),𝜑(𝑥, 0) = 𝜂𝜑(𝑥, 𝑇), problems (1), (2), and (4) reduce to the
following problem:

V𝑡 − (𝜇 (𝑡) + 𝛼 (𝑡) 𝜕𝜕𝑡)( 𝜕2V𝜕𝑥2 + 𝛾𝑥 𝜕V𝜕𝑥) + 𝑓 (V + 𝜑)
= 𝑓1 (𝑥, 𝑡) , 1 < 𝑥 < 𝑅, 0 < 𝑡 < 𝑇,

V (1, 𝑡) = V (𝑅, 𝑡) = 0,
V (𝑥, 0) = 𝜂V (𝑥, 𝑇) ,

(112)

where 𝑓1(𝑥, 𝑡) is defined by (25)1.
The weak formulation of problem (112) can be given in

the following manner: Find V ∈ 𝐿∞(0, 𝑇;𝐻10 ) with V𝑡 ∈𝐿2(0, 𝑇;𝐻10 ), such that V satisfies the following variational
equation:

∫𝑇
0
⟨V󸀠 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡 + ∫𝑇

0
𝛼 (𝑡) 𝑎 (V󸀠 (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
𝜇 (𝑡) 𝑎 (V (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
⟨𝑓 (V (𝑡) + 𝜑 (𝑡)) , 𝑤 (𝑡)⟩ 𝑑𝑡

= ∫𝑇
0
⟨𝑓1 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡, ∀𝑤 ∈ 𝐿2 (0, 𝑇;𝐻10) ,

V (0) = 𝜂V (𝑇) ,

(113)

where 𝑎(⋅, ⋅) is the symmetric bilinear form on 𝐻10 × 𝐻10
defined by (21).

Then, we have the following theorem.

Theorem 11. Let 𝑇 > 0 and (𝐻2)–(𝐻6) hold. Then, problem
(112) has a unique weak solution V such that

V ∈ 𝐿∞ (0, 𝑇;𝐻10) ,
V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) . (114)

Proof. The proof consists of several steps.

Step 1 (the Faedo-Galerkin approximation (introduced by
Lions [18])). Consider the basis {𝑤𝑗} for 𝐻10 as in Lemma 5.
Let 𝑉𝑚 be the linear space generated by 𝑤1, 𝑤2, . . . , 𝑤𝑚. We
consider the following problem.
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Find a function V𝑚(𝑡) in the form (29) satisfying the
nonlinear differential equation system (30)1 and the (𝜂, 𝑇)-
periodic condition:

V𝑚 (0) = 𝜂V𝑚 (𝑇) . (115)

We consider an initial value problem given by (30), where
V0𝑚 is given in 𝑉𝑚.

It is clear that, for each 𝑚, there exists a solution V𝑚(𝑡)
in the form (29) which satisfies (30) almost everywhere on0 ≤ 𝑡 ≤ 𝑇̃𝑚 for some 𝑇̃𝑚, 0 < 𝑇̃𝑚 ≤ 𝑇. The following a priori
estimates allow us to take 𝑇̃𝑚 = 𝑇 for all𝑚.

Step 2 (a priori estimates). Multiplying the 𝑗th equation of
(30)1 by 𝑐𝑚𝑗(𝑡) and summing up with respect to 𝑗, we get

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ (2𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
+ 2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , V𝑚 (𝑡)⟩

= 2 ⟨𝑓1 (𝑡) , V𝑚 (𝑡)⟩ .
(116)

By the same estimates as in Section 3, and with 𝜀1 > 0, we
obtain2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , V𝑚 (𝑡)⟩

= 2 ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) − 𝑓 (𝜑 (𝑡)) , V𝑚 (𝑡)⟩
+ 2 ⟨𝑓 (𝜑 (𝑡)) , V𝑚 (𝑡)⟩

≥ − (2𝛿 + 𝜀1) 𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
− 1𝜀1 󵄩󵄩󵄩󵄩𝑓 (𝜑 (𝑡))󵄩󵄩󵄩󵄩20 ;

2 ⟨𝑓1 (𝑡) , V𝑚 (𝑡)⟩ ≤ 1𝜀1 󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 𝜀1 󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20
≤ 1𝜀1 󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 𝜀1𝑅𝛾2 (𝑅 − 1)2 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 .

(117)

Hence, it follows from (116) and (117) that

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ 2 [𝜇∗ − (𝛿 + 𝜀1) 𝑅𝛾2 (𝑅 − 1)2] 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20

≤ 1𝜀1 (󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 󵄩󵄩󵄩󵄩𝑓 (𝜑 (𝑡))󵄩󵄩󵄩󵄩20) .
(118)

By 0 < 𝛿 < 2𝜇∗/𝑅𝛾(𝑅 − 1)2, choose 𝜀1 > 0 such that𝛾̃ = 𝜇∗ − (𝛿 + 𝜀1)(𝑅𝛾/2)(𝑅 − 1)2 > 0.
It is similar to (97); we get󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ≥ 𝛽1 (𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 + 󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20) , (119)

where 𝛽1 = (1/2)min{1/‖𝛼‖𝐿∞(0,𝑇), 2/𝑅𝛾(𝑅 − 1)2}.

From (118) and (119), it leads to

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ 2𝛽1𝛾̃ (󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20) ≤ 𝑓 (𝑡) , (120)

in which 𝑓(𝑡) = (1/𝜀1)[‖𝑓1(𝑡)‖20 + ‖𝑓(𝜑(𝑡))‖20].
Integrating (120), we have󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20

≤ (󵄩󵄩󵄩󵄩V0𝑚󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩V0𝑚𝑥󵄩󵄩󵄩󵄩20 + ∫𝑡
0
𝑒2𝛽1𝛾̃𝑠𝑓 (𝑠) 𝑑𝑠)

⋅ 𝑒−2𝛽1𝛾̃𝑡 ≤ 𝜌2 + (󵄩󵄩󵄩󵄩V0𝑚󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩V0𝑚𝑥󵄩󵄩󵄩󵄩20 − 𝜌2)
⋅ 𝑒−2𝛽1𝛾̃𝑡,

(121)

where 𝜌2 = sup0≤𝑡≤𝑇𝜌1(𝑡), with
𝜌1 (𝑡) = {{{{{{{

1𝑒2𝛽1𝛾̃𝑡 − 1 ∫𝑡
0
𝑒2𝛽1𝛾̃𝑠𝑓 (𝑠) 𝑑𝑠, 0 < 𝑡 ≤ 𝑇,12𝛽1𝛾̃𝑓 (0) , 𝑡 = 0. (122)

Therefore, if we choose V0𝑚 such that ‖V0𝑚‖20+𝛼(0)‖V0𝑚𝑥‖20≤ 𝜌2, we obtain from (121) that󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 ≤ 𝜌2,
i.e., 𝑇̃𝑚 = 𝑇

∀𝑚.
(123)

Let 𝐵𝑚(𝜌) be a closed ball in the space 𝑉𝑚 with the norm
V0𝑚 󳨃→ ‖V0𝑚‖𝑉𝑚 = (‖V0𝑚‖20 + 𝛼(0)‖V0𝑚𝑥‖20)1/2.

By 0 < 𝛼(0) ≤ 𝛼(𝑇), we obtain󵄩󵄩󵄩󵄩V𝑚 (𝑇)󵄩󵄩󵄩󵄩2𝑉𝑚 = 󵄩󵄩󵄩󵄩V𝑚 (𝑇)󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑇)󵄩󵄩󵄩󵄩20
≤ 󵄩󵄩󵄩󵄩V𝑚 (𝑇)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑇) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑇)󵄩󵄩󵄩󵄩20 ≤ 𝜌2. (124)

Let us define

F𝑚 : 𝐵𝑚 (𝜌) 󳨀→ 𝐵𝑚 (𝜌)
V0𝑚 󳨃󳨀→ F𝑚 (V0𝑚) = 𝜂V𝑚 (𝑇) . (125)

We prove that F𝑚 is a contraction. Let V0𝑚, V0𝑚 ∈𝐵𝑚(0, 𝜌) and let 𝑦𝑚(𝑡) = V𝑚(𝑡) − V𝑚(𝑡), where V𝑚(𝑡) and V𝑚(𝑡)
are solutions of system (30)1 on [0, 𝑇] satisfying the initial
conditions V𝑚(0) = V0𝑚 and V𝑚(0) = V0𝑚, respectively. Then,𝑦𝑚(𝑡) satisfies the following differential equation system:

⟨𝑦󸀠𝑚 (𝑡) , 𝑤𝑗⟩ + 𝛼 (𝑡) 𝑎 (𝑦󸀠𝑚 (𝑡) , 𝑤𝑗)
+ 𝜇 (𝑡) 𝑎 (𝑦𝑚 (𝑡) , 𝑤𝑗)
+ ⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) − 𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , 𝑤𝑗⟩

= 0,
(126)
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where 1 ≤ 𝑗 ≤ 𝑚, with initial condition

𝑦𝑚 (0) = V0𝑚 − V0𝑚. (127)

By using the same arguments as before, we can show that

𝑑𝑑𝑡 [󵄩󵄩󵄩󵄩𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20]
+ 2𝛽2 [󵄩󵄩󵄩󵄩𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20] ≤ 0, (128)

where 𝛽2 = 𝛽1(𝜇∗ − 𝛿(𝑅𝛾/2)(𝑅 − 1)2) > 0, 𝛽1 = (1/2)min{1/‖𝛼‖𝐿∞(0,𝑇), 2/𝑅𝛾(𝑅 − 1)2}.
Integrating inequality (128), we obtain

󵄩󵄩󵄩󵄩𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20
≤ 𝑒−2𝛽2𝑡 (󵄩󵄩󵄩󵄩𝑦𝑚 (0)󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (0)󵄩󵄩󵄩󵄩20)
= 𝑒−2𝛽2𝑡 󵄩󵄩󵄩󵄩𝑦𝑚 (0)󵄩󵄩󵄩󵄩2𝑉𝑚 , ∀𝑡 ∈ [0, 𝑇] .

(129)

By 0 < 𝛼(0) ≤ 𝛼(𝑇), it follows that
󵄩󵄩󵄩󵄩𝑦𝑚 (𝑇)󵄩󵄩󵄩󵄩2𝑉𝑚 = 󵄩󵄩󵄩󵄩𝑦𝑚 (𝑇)󵄩󵄩󵄩󵄩20 + 𝛼 (0) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (𝑇)󵄩󵄩󵄩󵄩20

≤ 󵄩󵄩󵄩󵄩𝑦𝑚 (𝑇)󵄩󵄩󵄩󵄩20 + 𝛼 (𝑇) 󵄩󵄩󵄩󵄩𝑦𝑚𝑥 (𝑇)󵄩󵄩󵄩󵄩20
≤ 𝑒−2𝛽2𝑇 󵄩󵄩󵄩󵄩𝑦𝑚 (0)󵄩󵄩󵄩󵄩2𝑉𝑚
= 𝑒−2𝛽2𝑇 󵄩󵄩󵄩󵄩V0𝑚 − V0𝑚

󵄩󵄩󵄩󵄩2𝑉𝑚 ,
(130)

or 󵄩󵄩󵄩󵄩F𝑚 (V0𝑚) −F𝑚 (V0𝑚)󵄩󵄩󵄩󵄩𝑉𝑚 = 󵄩󵄩󵄩󵄩𝜂𝑦𝑚 (𝑇)󵄩󵄩󵄩󵄩𝑉𝑚
≤ 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 𝑒−𝛽2𝑇 󵄩󵄩󵄩󵄩V0𝑚 − V0𝑚

󵄩󵄩󵄩󵄩𝑉𝑚 ; (131)

that is,F𝑚 is a contraction.
Therefore, there exists a unique function V0𝑚 ∈ 𝐵𝑚(𝜌)

such that the solution of the initial value problem (30) is a
solution of system (30)1, (115). This solution satisfies inequal-
ity (124) a.e., in [0, 𝑇].

On the other hand, multiplying the 𝑗th equation of (30)1
by 𝑐󸀠𝑚𝑗(𝑡) and summing up with respect to 𝑗, afterwards,
integrating with respect to the time variable from 0 to 𝑇, we
get after some rearrangements

2∫𝑇
0
(󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 + 𝛼 (𝑡) 󵄩󵄩󵄩󵄩󵄩V󸀠𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩20) 𝑑𝑡
+ ∫𝑇
0

𝑑𝑑𝑡 (𝜇 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20) 𝑑𝑡
+ 2∫𝑇
0
⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , V󸀠𝑚 (𝑡)⟩ 𝑑𝑡

= ∫𝑇
0
𝜇󸀠 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡

+ 2∫𝑇
0
⟨𝑓1 (𝑡) , V󸀠𝑚 (𝑡)⟩ 𝑑𝑡.

(132)

We estimate without difficulty the following terms in
(132):

− ∫𝑇
0

𝑑𝑑𝑡 (𝜇 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20) 𝑑𝑡
= −𝜇 (𝑇) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑇)󵄩󵄩󵄩󵄩20 + 𝜇 (0) 󵄩󵄩󵄩󵄩V𝑚𝑥 (0)󵄩󵄩󵄩󵄩20
≤ 𝜇 (0) 󵄩󵄩󵄩󵄩V𝑚𝑥 (0)󵄩󵄩󵄩󵄩20 ≤ 𝜇 (0) 𝜌2𝛼∗ .

(133)

Note that󵄩󵄩󵄩󵄩𝜑 (𝑡)󵄩󵄩󵄩󵄩𝐶0([1,𝑅]) ≤ 󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨
≤ sup
0≤𝑡≤𝑇

(󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨) , (134)

󵄩󵄩󵄩󵄩V𝑚 (𝑡) + 𝜑 (𝑡)󵄩󵄩󵄩󵄩𝐶0([1,𝑅])
≤ 󵄩󵄩󵄩󵄩V𝑚 (𝑡)󵄩󵄩󵄩󵄩𝐶0([1,𝑅]) + 󵄩󵄩󵄩󵄩𝜑 (𝑡)󵄩󵄩󵄩󵄩𝐶0([1,𝑅])
≤ √𝑅 − 1 𝜌√𝛼∗ + sup

0≤𝑡≤𝑇

(󵄨󵄨󵄨󵄨𝑔1 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔𝑅 (𝑡)󵄨󵄨󵄨󵄨)
= 𝑀1 (𝑇) .

(135)

Hence,

2∫𝑇
0
⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , V󸀠𝑚 (𝑡)⟩ 𝑑𝑡

≤ 2∫𝑇
0

󵄩󵄩󵄩󵄩𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡))󵄩󵄩󵄩󵄩20 𝑑𝑡
+ 12 ∫𝑇
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡
≤ 𝑀2 (𝑇) + 12 ∫𝑇

0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡,

(136)

where

𝑀2 (𝑇) = 2𝑇(𝑅𝛾+1 − 1𝛾 + 1 ) sup
|𝑧|≤𝑀1(𝑇)

𝑓2 (𝑧) . (137)

Moreover,

2∫𝑇
0
⟨𝑓1 (𝑡) , V󸀠𝑚 (𝑡)⟩ 𝑑𝑡

≤ 2∫𝑇
0

󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡 + 12 ∫𝑇
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡;
∫𝑇
0
𝜇󸀠 (𝑡) 󵄩󵄩󵄩󵄩V𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡 ≤ 𝜌2𝛼∗ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝜇󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡.
(138)

It follows from (132), (133), (136), and (138) that

∫𝑇
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡 + 2𝛼∗ ∫𝑇
0

󵄩󵄩󵄩󵄩󵄩V󸀠𝑚𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡
≤ 𝜇 (0) 𝜌2𝛼∗ +𝑀2 (𝑇) + 2∫𝑇

0

󵄩󵄩󵄩󵄩󵄩𝑓1 (𝑡)󵄩󵄩󵄩󵄩󵄩20 𝑑𝑡
+ 𝜌2𝛼∗ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝜇󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝐶𝑇,
(139)
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for all 𝑚 ∈ N, for all 𝑡 ∈ [0, 𝑇], where 𝐶𝑇 always indicates a
bound depending on 𝑇.
Step 3 (the limiting process). By (123) and (139), we deduce
that there exists a subsequence of {V𝑚}, still denoted by {V𝑚}
such that

V𝑚 󳨀→ V in 𝐿∞ (0, 𝑇;𝐻10) weakly∗,
V󸀠𝑚 󳨀→ V󸀠 in 𝐿2 (0, 𝑇;𝐻10) weakly. (140)

From (115), we obtain

V (0) = 𝜂V (𝑇) . (141)

Indeed, we prove (141) as follows.
By ‖V0𝑚𝑥‖ ≤ (1/√𝛼∗)‖V0𝑚‖𝑉𝑚 ≤ 𝜌/√𝛼∗, and by the

imbedding 𝐻10 󳨅→ 𝐶0(Ω) being compact, there exists a
subsequence of {V0𝑚}, still denoted by {V0𝑚} such that

V0𝑚 󳨀→ Ṽ0 in 𝐻10 weakly,
V0𝑚 󳨀→ Ṽ0 in 𝐶0 ([1, 𝑅]) strongly. (142)

By V𝑚(𝑡) = V𝑚(0) + ∫𝑡
0
V󸀠𝑚(𝑠)𝑑𝑠, we deduce from (140) and

(142) that

V (𝑡) = Ṽ0 + ∫𝑡
0
V󸀠 (𝑠) 𝑑𝑠. (143)

This implies

V (0) = Ṽ0, (144)

V0𝑚 󳨀→ V (0) in 𝐻10 weakly,
V0𝑚 󳨀→ V (0) in 𝐶0 ([1, 𝑅]) strongly. (145)

From (115), we obtain

⟨V𝑚 (0) , 𝑤𝑗⟩ = 𝜂 ⟨V𝑚 (𝑇) , 𝑤𝑗⟩
= 𝜂(⟨V𝑚 (0) , 𝑤𝑗⟩ + ∫𝑇

0
⟨V󸀠𝑚 (𝑡) , 𝑤𝑗⟩ 𝑑𝑡) ,

∀𝑗 ∈ N.
(146)

By (140), (145), and (146), it yields

⟨V (0) , 𝑤𝑗⟩ = 𝜂(⟨V (0) , 𝑤𝑗⟩ + ∫𝑇
0
⟨V󸀠 (𝑡) , 𝑤𝑗⟩ 𝑑𝑡)

= 𝜂 ⟨V (𝑇) , 𝑤𝑗⟩ , ∀𝑗 ∈ N. (147)

Therefore,

V (0) = 𝜂V (𝑇) . (148)

Therefore, (141) is proved.
Using a compactness lemma ([18], Lions, p. 57), applied to

(140), we can extract from the sequence {V𝑚} a subsequence
still denoted by {V𝑚}, such that

V𝑚 󳨀→ V strongly in 𝐿2 (𝑄𝑇) . (149)

By the Riesz-Fischer theorem, we can extract from {V𝑚} a
subsequence still denoted by {V𝑚}, such that

V𝑚 (𝑥, 𝑡) 󳨀→ V (𝑥, 𝑡) a.e., (𝑥, 𝑡) in 𝑄𝑇, (150)

Because 𝑓 is continuous, then

𝑓 (V𝑚 (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡)) 󳨀→
𝑓 (V (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡)) a.e., (𝑥, 𝑡) in 𝑄𝑇. (151)

On the other hand,󵄨󵄨󵄨󵄨𝑓 (V𝑚 (𝑥, 𝑡) + 𝜑 (𝑥, 𝑡))󵄨󵄨󵄨󵄨 ≤ sup
|𝑧|≤𝑀1(𝑇)

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 ,
a.e., (𝑥, 𝑡) in 𝑄𝑇, (152)

where𝑀1(𝑇) is the constant defined by (135).
Using the dominated convergence theorem, (151) and

(152) yield

𝑓 (V𝑚 + 𝜑) 󳨀→ 𝑓 (V + 𝜑) strongly in 𝐿2 (𝑄𝑇) . (153)

Denote by {𝜁𝑖, 𝑖 = 1, 2, . . .} the orthonormal base in the
realHilbert space𝐿2(0, 𝑇).The set {𝜁𝑖𝑤𝑗, 𝑖, 𝑗 = 1, 2, . . .} forms
an orthonormal base in 𝐿2(0, 𝑇;𝐻10 ). From (30)1 we have

∫𝑇
0
⟨V󸀠𝑚 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡
+ ∫𝑇
0
𝛼 (𝑡) 𝑎 (V󸀠𝑚 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
𝜇 (𝑡) 𝑎 (V𝑚 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
⟨𝑓 (V𝑚 (𝑡) + 𝜑 (𝑡)) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡

= ∫𝑇
0
⟨𝑓1 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡,

(154)

for all 𝑖, 𝑗, 1 ≤ 𝑗 ≤ 𝑚, 𝑖 ∈ N.
For 𝑖, 𝑗 fixed, passing to the limit in (154) by (140) and

(153), we get

∫𝑇
0
⟨V󸀠 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡
+ ∫𝑇
0
𝛼 (𝑡) 𝑎 (V󸀠 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
𝜇 (𝑡) 𝑎 (V (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
⟨𝑓 (V (𝑡) + 𝜑 (𝑡)) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡

= ∫𝑇
0
⟨𝑓1 (𝑡) , 𝑤𝑗𝜁𝑖 (𝑡)⟩ 𝑑𝑡.

(155)
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Note that (155) holds for every 𝑖, 𝑗 ∈ N; that is, the equality

∫𝑇
0
⟨V󸀠 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡 + ∫𝑇

0
𝛼 (𝑡) 𝑎 (V󸀠 (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
𝜇 (𝑡) 𝑎 (V (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
⟨𝑓 (V (𝑡) + 𝜑 (𝑡)) , 𝑤 (𝑡)⟩ 𝑑𝑡

= ∫𝑇
0
⟨𝑓1 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡, ∀𝑤 ∈ 𝐿2 (0, 𝑇;𝐻10) ,

(156)

is fulfilled.

Step 4 (uniqueness of the solutions). Let V1 and V2 be two
solutions of (113). Then V = V1 − V2 satisfies the following
problem:

∫𝑇
0
⟨V󸀠 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡 + ∫𝑇

0
𝛼 (𝑡) 𝑎 (V󸀠 (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
𝜇 (𝑡) 𝑎 (V (𝑡) , 𝑤 (𝑡)) 𝑑𝑡

+ ∫𝑇
0
⟨𝑓 (V1 (𝑡) + 𝜑 (𝑡))

− 𝑓 (V2 (𝑡) + 𝜑 (𝑡)) , 𝑤 (𝑡)⟩ 𝑑𝑡 = 0,
∀𝑤 ∈ 𝐿2 (0, 𝑇;𝐻10) ,

V (0) = 𝜂V (𝑇) ,
V ∈ 𝐿∞ (0, 𝑇;𝐻10) , V𝑡 ∈ 𝐿2 (0, 𝑇;𝐻10) .

(157)

Taking 𝑤 = 2V in (157)1 and using (157)2, we get

∫𝑇
0
(2𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡 + ∫𝑇

0

𝑑𝑑𝑡 ‖V (𝑡)‖20 𝑑𝑡
+ ∫𝑇
0

𝑑𝑑𝑡 (𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20) 𝑑𝑡
+ 2∫𝑇
0
⟨𝑓 (V1 (𝑡) + 𝜑 (𝑡))

− 𝑓 (V2 (𝑡) + 𝜑 (𝑡)) , V (𝑡)⟩ 𝑑𝑡 = 0.

(158)

By 2𝜇(𝑡) − 𝛼󸀠(𝑡) ≥ 𝜇∗ > 0, we have
∫𝑇
0
(2𝜇 (𝑡) − 𝛼󸀠 (𝑡)) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡
≥ 2𝜇∗ ∫𝑇

0

󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡.
(159)

On the other hand,

∫𝑇
0

𝑑𝑑𝑡 ‖V (𝑡)‖20 𝑑𝑡 = ‖V (𝑇)‖20 − ‖V (0)‖20
= (1 − 𝜂2) ‖V (𝑇)‖20 ≥ 0;

∫𝑇
0

𝑑𝑑𝑡 (𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20) 𝑑𝑡
= 𝛼 (𝑡) 󵄩󵄩󵄩󵄩V𝑥 (𝑇)󵄩󵄩󵄩󵄩20 − 𝛼 (0) 󵄩󵄩󵄩󵄩V𝑥 (0)󵄩󵄩󵄩󵄩20
≥ 𝛼 (0) (1 − 𝜂2) 󵄩󵄩󵄩󵄩V𝑥 (𝑇)󵄩󵄩󵄩󵄩20 ≥ 0.

(160)

Hence,

2𝜇∗ ∫𝑇
0

󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡 ≤ −2∫𝑇
0
⟨𝑓 (V1 (𝑡) + 𝜑 (𝑡))

− 𝑓 (V2 (𝑡) + 𝜑 (𝑡)) , V (𝑡)⟩ 𝑑𝑡
≤ 2𝛿∫𝑇

0
‖V (𝑡)‖20 𝑑𝑡 ≤ 2𝛿𝑅𝛾2 (𝑅 − 1)2

⋅ ∫𝑇
0

󵄩󵄩󵄩󵄩V𝑥 (𝑡)󵄩󵄩󵄩󵄩20 𝑑𝑡.

(161)

By 0 < 𝛿 < 2𝜇∗/𝑅𝛾(𝑅 − 1)2, implying 𝛿(𝑅𝛾/2)(𝑅 − 1)2 <𝜇∗, we deduce from (161) that ∫𝑇
0
‖V𝑥(𝑡)‖20𝑑𝑡 = 0; that is, V =

V1 − V2 = 0.
This completes the proof of Theorem 11.
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