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In this paper, we combine the reduced-formmodel with the structuralmodel to discuss the European vulnerable option pricing.We
define that the default occurs when the default process jumps or the corporate goes bankrupt. Assuming that the underlying asset
follows the jump-diffusion process and the default follows the Vasicek model, we can have the expression of European vulnerable
option. Then we use the measure transformation and martingale method to derive the explicit solution of it.

1. Instruction

Vulnerable option is a kind of option with credit risk. The
pricing of credit risk has been concerned by scholars for a
long time. Merton (1974) [1] firstly introduced option pricing
into zero coupon bond with credit risk. He assumed that the
capital structure of corporate consisted of two parts which are
assets and liabilities; the default occurred when the corporate
was insolvent at maturity. This is the basic of structural
model. Black and Cox (1976) [2] researched the corporate
bond pricing with subordinated debt capital structure. They
improved the definition of default and took the interest and
dividend into consideration to obtain the corporate bond
pricing. Johnson and Stulz (1987) [3] discussed the option
pricing with credit risk based on the structural model and put
forward the conception of vulnerable option firstly. Longstaff
and Schwartz (1995) [4] assumed that the default boundary
was a constant and the recovery rate was an exogenous
ratio. Then they derived the zero coupon bond pricing.
Hull and White (1995) [5] assumed that the underlying
asset and the counterparty asset were independent of each
other and derived the vulnerable option pricing. Jarrow
and Turnbull (2000) [6] presented the reduced-form model.
They considered that the occurrence of default was a kind
of jumps and they used the Poisson process with constant
intensity to describe the density of default. Rich (1996) [7]

presented that the default could occur before maturity and
the equity was exercised immediately if default occurred.
Klein (1996) [8] supposed that the underlying assets and
credit risk were correlated and deduced the option pricing
with martingale method. Madan and Unal (1998) [9] put
forward a model with stochastic default intensity. According
to Lando (1998) [10], the default-free bond pricing method
was used for default bond pricing by adjusting the short-
term interest rate. Assuming that the default occurs at any
time with specific probability, Duffie and Singleton (1999)
[11] deduced the default bond pricing at initial time. Klein
and Inglis (2001) [12] took the stochastic default boundary
which depends on options and counterparty debts into
consideration to discuss option pricing. Ammann (2002)
[13] deduced the explicit solution of vulnerable option by
using structural method on the assumptions of stochastic
interest and boundary. The unexpected risks were intro-
duced into default by Zhou (2001) [14]; he assumed that
the corporate assets were composed of continuous process
and jump process and presented the corporate assets value
model based on the jump-diffusion process firstly. Hui et al.
(2003) [15] discussed the pricingmodel with dynamic default
boundary and derived the explicit solution of the vulnerable
option by using the method of partial differential equation.
Lakner and Liang (2008) [16] studied the credit default bonds
pricing based on the structure model and the reduced-form
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model by using martingale method. Wang and Wang (2010)
[17] assumed that the underlying asset followed the jump-
diffusion process and derived the expression of the Euro-
pean vulnerable option pricing under the Markov regime
switching model. Tchuindjo (2011) [18] studied the pricing
of bond and bond option under the condition of stochastic
default intensity and obtained the explicit solution. Su and
Wang (2012) [19] assumed that the default intensity followed
the stochastic model with jumps; then the vulnerable option
pricing was given based on the reduced-form model by the
martingale method. Wang et al. (2015) [20] deduced the
explicit solution of the European vulnerable option which
was derived by the fractional Brownian motion with jumps.
Yoon and Kim (2015) [21] used double Mellin transforms
to study European vulnerable options under constant as
well as stochastic interest rates and obtained an analytic
closed-form pricing formula in each interest rate case. Fard
(2015) [22] obtained a closed-form price for the vulnerable
option by using the Esscher transform under a completely
random generalized jump-diffusionmodel. Wang (2016) [23]
presented a pricing model which allows for the correlation
between the intensity of default and the variance of the
underlying asset and derived a closed-form solution for the
vulnerable option. Lee et al. (2016) [24] studied the pricing
of European-type vulnerable options when the underlying
asset follows the Heston dynamics and obtained a closed-
form analytic formula of the option price as a stochastic
volatility extension of the classical Heston formula. Jeon et al.
(2017) [25] studied the pricing of vulnerable path-dependent
options using double Mellin transforms and obtained an
explicit form pricing formula or semianalytic formula in each
path-dependent option.

2. The European Vulnerable Option
Pricing Model

Suppose that the uncertainty in the economy is described by
the probability space (Ω,F, 𝑄, (F𝑡)0≤𝑡≤𝑇) where 𝑄 is a risk
neutral martingale measure in which the discounted assets
price is a martingale. The underlying assets and corporate
assets are given by

𝑑𝑆𝑡 = (𝑟 − 𝜃𝜆) 𝑆𝑡𝑑𝑡 + 𝜎1𝑆𝑡𝑑𝑊1 (𝑡) + 𝑆𝑡𝑑𝐽 (𝑡) , (1)

𝑑𝑉𝑡 = 𝑟𝑉𝑡𝑑𝑡 + 𝜎2𝑉𝑡𝑑𝑊2 (𝑡) , (2)

where 𝜎1, 𝜎2, and 𝑟 are constants and 𝑊1(𝑡) and 𝑊2(𝑡) are
Brownian motions in the probability space. 𝐽(𝑡) = ∑𝑁𝑡𝑖=1 𝑌𝑖 is
a composite Poisson process and 𝑌𝑖 (set 𝑌0 = 0) is the jump
range of it. 𝑌𝑖 is a sequence of independent identically dis-
tributed random variables with the finite expected value and𝐸[𝑌𝑖] = 𝜃. 𝑌𝑖,𝑊1(𝑡),𝑊2(𝑡),𝑊3(𝑡), and𝑁𝑡 are independent of
each other where 𝑁𝑡 is a Poisson process with parameter 𝜆.
Suppose that 𝑌𝑖 + 1 follows log-normal distribution, then we
have ln(𝑌𝑖 + 1) ∼ 𝑁(𝜇𝐽, 𝜎2𝐽 ).

Suppose that default intensity 𝜆(𝑡) is F𝑡-measurable in
the space and it follows the Vasicek model in the risk neutral
measure

𝑑𝜆 (𝑡) = 𝛼 [𝛽 − 𝜆 (𝑡)] 𝑑𝑡 + 𝜎3𝑑𝑊3 (𝑡) , (3)

where 𝛼, 𝛽, and 𝜎3 are all constants.The covariance matrix of𝑊1(𝑡),𝑊2(𝑡), and𝑊3(𝑡) is
( 1 𝜌12 𝜌13𝜌12 1 𝜌23𝜌13 𝜌23 1 ) 𝑡. (4)

We will combine the reduced-form model with the
structural model to discuss the European vulnerable option
pricing. We define that the default occurs when the default
process jumps or the corporate goes bankrupt. Suppose that
the underlying asset follows the jump-diffusion process and
the corporate asset follows the Brownian motion. Then we
can have the European vulnerable option pricing at initial
time in the risk neutralmeasure.We assume that thematurity
is 𝑇, the strike price is𝐾, the default time is 𝜏, the proportion
of bankruptcy costs in writer’s assets is 𝑤, and the default
boundary is a constant 𝐷; then the European vulnerable
option pricing is

𝐶 (0, 𝑇) = 𝐸 [𝑒−∫𝑇0 𝑟(𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+
⋅ (1 − 𝑤𝐷 𝑉𝑇 (1 − 𝐼{𝜏>𝑇,𝑉𝑇>𝐷}) + 𝐼{𝜏>𝑇,𝑉𝑇>𝐷}) | F0]
= 𝐸 [𝑒−∫𝑇0 𝑟(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+ | F0]
+ 𝐸 [𝑒−∫𝑇0 𝑟(𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+ 𝐼{𝜏>𝑇,𝑉𝑇>𝐷} | F0]
− 𝐸 [𝑒−∫𝑇0 𝑟(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+ 𝐼{𝜏>𝑇,𝑉𝑇>𝐷} | F0] .

(5)

Since F0 is a filter space and 𝑇 ≥ 0, we have F0 ⊆ F𝑇.
Suppose that there is no default at initial time. According to
the law of iterated expectations and 𝐹𝑢𝑏𝑖𝑛𝑖 theorem we have

𝐸 [𝐼{𝜏>𝑇} | F0] = 𝐸 [𝐸 [𝐼{𝜏>𝑇} | F0] | F𝑇]= 𝐸 [𝐸 [𝐼{𝜏>𝑇} | F𝑇] | F0] . (6)

Since the path of {𝜆(𝑡) : 0 ≤ 𝑡 ≤ 𝑇} is known at time 𝑇, then
𝐸 [𝐼{𝜏>𝑇} | F𝑇] = 𝑃 (𝜏 > 𝑇) = 𝑃 (𝑁𝑇 − 𝑁0 = 0)

= exp(−∫𝑇
0
𝜆 (𝑢) 𝑑𝑢) . (7)

So we have

𝐶 (0, 𝑇) = 𝐸 [𝑒−∫𝑇0 𝑟(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+ | F0]
+ 𝐸 [𝑒−∫𝑇0 [𝑟(𝑢)+𝜆(𝑢)]𝑑𝑢 (𝑆𝑇 − 𝐾)+ 𝐼{𝑉𝑇>𝐷} | F0]
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− 𝐸 [𝑒−∫𝑇0 [𝑟(𝑢)+𝜆(𝑢)]𝑑𝑢 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+
⋅ 𝐼{𝑉𝑇>𝐷} | F0] .

(8)

3. The Explicit Solution of European
Vulnerable Option Pricing

Suppose that the assets price follows the jump-diffusion
process, then the measure transformation of the continuous
diffusion process can be derived by Girsanov’s theorem and
the measure transformation of the jump-diffusion process is
given inTheorem 1.

Theorem 1. In the probability space (Ω,F, 𝑄), if one has
Radon-Nikodym derivative 𝑍(𝑡)

𝑍 (𝑡) | F𝑡 = 𝑒∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1)−𝜃𝜆𝑡, (9)

where {𝑁(𝑡), 𝑡 ≥ 0} is a Poisson process with intensity 𝜆 and𝑌𝑖 is a sequence of independent identically distributed random
variables that the mean is 𝜃 and ln(𝑌𝑖 + 1) ∼ 𝑁(𝜇𝐽, 𝜎2𝐽 ), then𝑁(𝑡) can be transformed into measure 𝑄̃ by 𝑍(𝑡) where the
intensity 𝜆̃ = (1 + 𝜃)𝜆.
Proof. According to the definition of moment generating
function, we have

𝐸̃ [𝑒𝑢∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1) | F𝑡] = 𝐸 [𝑒𝑢∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1)𝑍 (𝑡) | F𝑡]
= 𝐸 [𝑒(𝑢+1)∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1)−𝜃𝜆𝑡 | F𝑡]
= exp {𝜆𝑡 (𝜑𝐽(𝑢+1) − 1) − 𝜃𝜆𝑡}= exp {𝜆𝑡𝐸 [𝑒(𝑢+1)ln(𝑌𝑖+1)] − 𝜆𝑡 − 𝜃𝜆𝑡}
= exp {𝜆𝑡𝐸 [𝑒(𝑢+1) ln(𝑌𝑖+1) − (1 + 𝜃)]}
= exp{𝜆𝑡 (1 + 𝜃) 𝐸 [𝑒(𝑢+1) ln(𝑌𝑖+1)1 + 𝜃 − 1]} .

(10)

Since

𝐸 [𝑒ln(𝑌𝑖+1)] = 1 + 𝜃, (11)

we have

𝐸̃ [𝑒𝑢∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1) | F𝑡]
= exp {𝜆𝑡 (1 + 𝜃) 𝐸 [𝑒𝑢 ln(𝑌𝑖+1) − 1]} . (12)

Let 𝑔 = ln(𝑌𝑖 + 1); then
𝐸̃ [𝑒𝑢∑𝑁𝑡𝑖=0 ln(𝑌𝑖+1) | F𝑡]
= exp{𝜆̃𝑡 [∫∞

−∞
𝑒𝑢𝑔𝑓 (𝑔) 𝑑𝑔 − 1]} . (13)

So in conditionF𝑡, the intensity of𝑁(𝑡) is 𝜆̃ = (1 + 𝜃)𝜆.
Theorem 2. The European vulnerable option pricing at initial
time in the risk neutral measure is

𝐶 (0, 𝑇) = ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇 [1 − 𝑤𝐷
⋅ 𝑆0𝑉0𝑒𝑟𝑇+𝜌12𝜎1𝜎2𝑇𝑁(𝑑1 (𝑛)) + 𝑒−𝑟𝑇𝐴 (0, 𝑇)𝑋 (0, 𝑇)
⋅ 𝑁 (𝑑3 (𝑛) , 𝑑4 (𝑛) , 𝜌) − 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐴 (0, 𝑇)
⋅ 𝑍 (0, 𝑇)𝑁 (𝑑7 (𝑛) , 𝑑8 (𝑛) , 𝜌)]
− ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇 [1 − 𝑤𝐷 𝐾𝑉0𝑁(𝑑2 (𝑛))
+ 𝑒−𝑟𝑇𝐾𝐴 (0, 𝑇)𝑁 (𝑑5 (𝑛) , 𝑑6 (𝑛) , 𝜌) − 𝑒−𝑟𝑇 1 − 𝑤𝐷
⋅ 𝐾𝐴 (0, 𝑇) 𝑌 (0, 𝑇)𝑁 (𝑑9 (𝑛) , 𝑑10 (𝑛) , 𝜌)] ,

(14)

where

𝜆̃ = (1 + 𝜃) 𝜆,
𝜌 = 𝜌12𝜎1𝜎2𝑇√𝜎21𝑇 + 𝜎22𝑇,

𝑀 (𝑢, 𝑇, 𝛼) = 1𝛼 (1 − 𝑒−𝛼(𝑇−𝑢)) ,
𝐴 (0, 𝑇) = exp{−𝛽𝑇 − [𝜆 (0) − 𝛽]𝑀 (0, 𝑇, 𝛼) + 12𝜎23 ∫𝑇0 𝑀2 (𝑢, 𝑇, 𝛼) 𝑑𝑢} ,
𝑋 (0, 𝑇) = 𝑆0 exp{𝑟𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} ,
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𝑌 (0, 𝑇) = 𝑉0 exp{𝑟𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} ,

𝑍 (0, 𝑇) = 𝑆0𝑉0 exp{2𝑟𝑇 − (𝜌13𝜎1 + 𝜌23𝜎2) 𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2} ,

𝑑1 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑2 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑3 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑4 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 − (1/2) 𝜎22𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 ,
𝑑5 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑6 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 − (1/2) 𝜎22𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 ,
𝑑7 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑8 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 + (1/2) 𝜎22𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 = 𝑑4 (𝑛) + √𝜎22𝑇,
𝑑9 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑10 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 + (1/2) 𝜎22𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 = 𝑑6 (𝑛) + √𝜎22𝑇.

(15)

Proof. For convenience, we define𝐶(0, 𝑇) = 𝐼+𝐼𝐼−𝐼𝐼𝐼, where
𝐼 = 𝐸 [𝑒−𝑟𝑇 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+ | F0] ,
𝐼𝐼 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+ 𝐼{𝑉𝑇>𝐷} | F0] ,𝐼𝐼𝐼
= 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑉𝑇 (𝑆𝑇 − 𝐾)+ 𝐼{𝑉𝑇>𝐷} | F0] .

(16)

Then

𝐼 = 1 − 𝑤𝐷 𝑆0𝑉0𝑒𝑟𝑇+𝜌12𝜎1𝜎2𝑇 ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑1 (𝑛))
− 1 − 𝑤𝐷 𝐾𝑉0 ∞∑

𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑2 (𝑛)) ,
𝐼𝐼 = 𝑒−𝑟𝑇𝐴 (0, 𝑇)𝑋 (0, 𝑇)
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⋅ ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑3 (𝑛) , 𝑑4 (𝑛) , 𝜌)
− 𝑒−𝑟𝑇𝐾𝐴 (0, 𝑇)
⋅ ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑5 (𝑛) , 𝑑6 (𝑛) , 𝜌) ,
𝐼𝐼𝐼 = −𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐴 (0, 𝑇)𝑍 (0, 𝑇)
⋅ ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑7 (𝑛) , 𝑑8 (𝑛) , 𝜌) − 𝑒−𝑟𝑇 1 − 𝑤𝐷
⋅ 𝐾𝐴 (0, 𝑇) 𝑌 (0, 𝑇)
⋅ ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑9 (𝑛) , 𝑑10 (𝑛) , 𝜌) .
(17)

The derivation of 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 is separately shown in
Proof 𝐼, Proof 𝐼𝐼, and Proof 𝐼𝐼𝐼.
Proof I. We define 𝐼 = 𝐸[𝑒−𝑟𝑇((1−𝑤)/𝐷)𝑉𝑇(𝑆𝑇−𝐾)+ | F0] =𝐼1 − 𝐼2, where

𝐼1 = 𝐸 [𝑒−𝑟𝑇 1 − 𝑤𝐷 𝑆𝑇𝑉𝑇𝐼{𝑆𝑇>𝐾} | F0] ,
𝐼2 = 𝐸 [𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐾𝑉𝑇𝐼{𝑆𝑇>𝐾} | F0] . (18)

We deduce 𝐼2 firstly. We introduce a new measure

𝑑𝑄𝑉𝑑𝑄 | F0 = 𝑉𝑇𝐸 [𝑉𝑇 | F0]
= exp{∫𝑇

0
𝜎2𝑑𝑊2 (𝑢) − 12 ∫𝑇0 𝜎22𝑑𝑢} .

(19)

According to (2)

𝑉𝑇 = 𝑉0 exp{𝑟𝑇 − 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊2 (𝑢)} ; (20)

then

𝐼2 = 1 − 𝑤𝐷 𝐾𝑉0𝐸[exp{∫𝑇
0
𝜎2𝑑𝑊2 (𝑢) − 12𝜎22𝑇}

⋅ 𝐼{𝑆𝑇>𝐾} | F0] = 1 − 𝑤𝐷 𝐾𝑉0𝐸𝑉 [𝐼{𝑆𝑇>𝐾} | F0] .
(21)

Using (19) and Girsanov’s theorem, we have

𝑊𝑉1 (𝑇) = 𝑊1 (𝑇) − 𝜌12𝜎2𝑇,𝑊𝑉2 (𝑇) = 𝑊2 (𝑇) − 𝜎2𝑇. (22)

According to (1)

𝑆𝑇 = 𝑆0 exp{𝑟𝑇 − 12𝜎21𝑇
+ ∫𝑇
0
𝜎1𝑑𝑊1 (𝑢) − 𝜃𝜆𝑇 + 𝑁𝑇∑

𝑖=0
ln (𝑌𝑖 + 1)} .

(23)

So in the measure 𝑄𝑉, we have
𝑆𝑇 = 𝑆0 exp{𝑟𝑇 − 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝑉1 (𝑢)
+ 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇 + 𝑁𝑇∑

𝑖=0
ln (𝑌𝑖 + 1)} .

(24)

Since

∫𝑇
0
𝜎1𝑑𝑊𝑉1 (𝑢) ∼ 𝑁 (0, 𝜎21𝑇) (25)

and when𝑁𝑇 = 𝑛,
𝑁𝑡∑
𝑖=0

ln (𝑌𝑖 + 1) ∼ 𝑁(𝑛𝜇𝐽, 𝑛𝜎2𝐽) , (26)

then we have

𝐸𝑉 [𝐼{𝑆𝑇>𝐾} | F0] = ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑2 (𝑛)) , (27)

where𝑑2 (𝑛)
= ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 . (28)

Then we will deduce 𝐼1. We introduce a new measure

𝑑𝑄𝑆𝑉𝑑𝑄 | F0 = 𝑆𝑇𝑉𝑇𝐸 [𝑆𝑇𝑉𝑇 | F0] = exp{∫𝑇
0
𝜎1𝑑𝑊1 (𝑢)

+ ∫𝑇
0
𝜎2𝑑𝑊2 (𝑢) − 12 (𝜎21 + 𝜎22 + 2𝜌12𝜎1𝜎2) 𝑇

− 𝜃𝜆𝑇 + 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} .
(29)

According to Girsanov’s theorem andTheorem 1

𝑊𝑆𝑉1 (𝑇) = 𝑊1 (𝑇) − 𝜎1𝑇 − 𝜌12𝜎2𝑇. (30)
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So in measure 𝑄𝑆𝑉
𝑆𝑇 = 𝑆0 exp{𝑟𝑇 + 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝑆𝑉1 (𝑢)
+ 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇 + 𝑁𝑇∑

𝑖=0
ln (𝑌𝑖 + 1)} .

(31)

Since

𝐸 [𝑆𝑇𝑉𝑇 | F0] = 𝑆0𝑉0𝑒2𝑟𝑇+𝜌12𝜎1𝜎2𝑇, (32)

we have

𝐼1 = 1 − 𝑤𝐷 𝑆0𝑉0𝑒𝑟𝑇+𝜌12𝜎1𝜎2𝑇𝐸𝑆𝑉 [𝐼{𝑆𝑇>𝐾} | F0] . (33)

When𝑁𝑇 = 𝑛
𝐸𝑆𝑉 [𝐼{𝑆𝑇>𝐾} | F0] = ∞∑

𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑1 (𝑛)) , (34)

where

𝑑1 (𝑛)
= ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 . (35)

Proof II. We define 𝐼𝐼 = 𝐸[𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢(𝑆𝑇 − 𝐾)+𝐼{𝑉𝑇>𝐷} |
F0] = 𝐼3 − 𝐼4, where

𝐼3 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢𝑆𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,
𝐼4 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢𝐾𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] . (36)

We deduce 𝐼4 firstly. We define an equivalent martingale
measure 𝑄𝜆 according to Radon-Nikodym derivative as
follows:

𝑑𝑄𝜆𝑑𝑄 | F0 = 𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝐸 [𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢 | F0] . (37)

According to (3)

−∫𝑇
0
𝜆 (𝑢) 𝑑𝑢 = −𝛽𝑇 − [𝜆 (0) − 𝛽]𝑀 (0, 𝑇, 𝛼)

− 𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑊3 (𝑢) . (38)

Let 𝐴(0, 𝑇) = 𝐸[𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢 | F0]; using Itô lemma we
have

𝐴 (0, 𝑇) = exp{−𝛽𝑇 − [𝜆 (0) − 𝛽]𝑀 (0, 𝑇, 𝛼)
+ 12𝜎23 ∫𝑇0 𝑀2 (𝑢, 𝑇, 𝛼) 𝑑𝑢} .

(39)

So

𝑑𝑄𝜆𝑑𝑄 | F0 = 𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝐸 [𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢 | F0]
= exp{−𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑊3 (𝑢)

− 12𝜎23 ∫𝑇0 𝑀2 (𝑢, 𝑇, 𝛼) 𝑑𝑢} .
(40)

Using Girsanov’s theorem,

𝑊𝜆1 (𝑇) = 𝑊1 (𝑇) + 𝜌13𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢,

𝑊𝜆2 (𝑇) = 𝑊2 (𝑇) + 𝜌23𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢,

𝑊𝜆3 (𝑇) = 𝑊3 (𝑇) + 𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢.

(41)

Then the solutions of 𝑆𝑇 and 𝑉𝑇 in measure 𝑄𝜆 are
𝑆𝑇 = 𝑆0 exp{𝑟𝑇 − 12𝜎21𝑇
+ ∫𝑇
0
𝜎1𝑑𝑊1 (𝑢) − 𝜃𝜆𝑇 + 𝑁𝑇∑

𝑖=0
ln (𝑌𝑖 + 1)} = 𝑆0

⋅ exp{𝑟𝑇 − 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝜆1 (𝑢)
− 𝜌13𝜎1𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆𝑇

+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} ,

(42)

𝑉𝑇 = 𝑉0 exp{𝑟𝑇 − 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊2 (𝑢)} = 𝑉0
⋅ exp{𝑟𝑇 − 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊𝜆2 (𝑢)
− 𝜌23𝜎2𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} .

(43)
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Since

𝐼4 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢𝐾𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇𝐾𝐸[𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇𝐾𝐴 (0, 𝑇) 𝐸𝜆 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,

(44)

when 𝑁𝑇 = 𝑛, substituting 𝑆𝑇 and 𝑉𝑇 into 𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷}, we
have

𝐸𝜆 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑5 (𝑛) , 𝑑6 (𝑛) , 𝜌) , (45)

where

𝑑5 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑6 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 − (1/2) 𝜎22𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 .

(46)

Then we will deduce 𝐼3. We define a new measure

𝑑𝑄𝑆𝑑𝑄𝜆 | F0 = 𝑆𝑇𝐸𝜆 [𝑆𝑇 | F0] . (47)

Let𝑋(0, 𝑇) = 𝐸𝜆[𝑆𝑇 | F0]; according to (42)

𝑋 (0, 𝑇) = 𝑆0 exp{𝑟𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} . (48)

Then

𝑑𝑄𝑆𝑑𝑄𝜆 | F0 = exp{−12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝜆1 (𝑢) − 𝜃𝜆𝑇
+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} .
(49)

According to Girsanov’s theorem andTheorem 1

𝑊𝑆1 (𝑇) = 𝑊𝜆1 (𝑇) − 𝜎1𝑇,𝑊𝑆2 (𝑇) = 𝑊𝜆2 (𝑇) − 𝜌12𝜎1𝑇. (50)

So in measure, we have

𝑆𝑇 = 𝑆0 exp{𝑟𝑇 + 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝑆1 (𝑢)
− 𝜌13𝜎1𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆̃𝑇

+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} ,
𝑉𝑇 = 𝑉0 exp{𝑟𝑇 − 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊𝑆2 (𝑢) + 𝜌12𝜎1𝜎2𝑇
− 𝜌23𝜎2𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} .

(51)

Since

𝐼3 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢𝑆𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇𝐸 [𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝑆𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇𝐴 (0, 𝑇) 𝐸𝜆 [𝑆𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]= 𝑒−𝑟𝑇𝐴 (0, 𝑇)𝑋 (0, 𝑇) 𝐸𝑆 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,

(52)

when𝑁0 = 𝑛,
𝐸𝑆 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑3 (𝑛) , 𝑑4 (𝑛) , 𝜌) , (53)
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where

𝑑3 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑4 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 − (1/2) 𝜎22𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 .

(54)

Proof III. We define 𝐼𝐼𝐼 = 𝐸[𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢((1 −𝑤)/𝐷)𝑉𝑇(𝑆𝑇 −𝐾)+𝐼{𝑉𝑇>𝐷} | F0] = 𝐼5 − 𝐼6, where
𝐼5 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑆𝑇𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,
𝐼6 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝐾𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] . (55)

We deduce 𝐼6 firstly. We introduce a new measure

𝑑𝑄𝑉𝑑𝑄𝜆 | F0 = 𝑉𝑇𝐸𝜆 [𝑉𝑇 | F0] . (56)

Let 𝑌(0, 𝑇) = 𝐸𝜆[𝑉𝑇 | F0]; according to (43)
𝑌 (0, 𝑇) = 𝑉0 exp{𝑟𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} . (57)

So

𝑑𝑄𝑉𝑑𝑄𝜆 | F0 = exp{−12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊𝜆2 (𝑢)} . (58)

According to Girsanov’s theorem,

𝑊𝑉1 (𝑇) = 𝑊𝜆1 (𝑇) − 𝜌12𝜎2𝑇,𝑊𝑉2 (𝑇) = 𝑊𝜆2 (𝑇) − 𝜎2𝑇. (59)

So, in measure 𝑄𝑉, we have
𝑆𝑇 = 𝑆0 exp{𝑟𝑇 − 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝑉1 (𝑢)

− 𝜌13𝜎1𝜎3 ∫𝑇
0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇

+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} ,
𝑉𝑇 = 𝑉0 exp{𝑟𝑇 + 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊𝑉2 (𝑢)
− 𝜌23𝜎2𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢} .

(60)

Since

𝐼6 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝐾𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐾𝐸[𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐾𝐴 (0, 𝑇) 𝐸𝜆 [𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐾𝐴 (0, 𝑇) 𝑌 (0, 𝑇)
⋅ 𝐸𝑉 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,

(61)

when𝑁0 = 𝑛, we have
𝐸𝑉 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= ∞∑
𝑛=0

(𝜆𝑇)𝑛𝑛! 𝑒−𝜆𝑇𝑁(𝑑9 (𝑛) , 𝑑10 (𝑛) , 𝜌) , (62)

where

𝑑9 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 − (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑10 (𝑛) = ln (𝑉0/𝐷) + 𝑟𝑇 + (1/2) 𝜎22𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 = 𝑑6 (𝑛) + √𝜎22𝑇.

(63)
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Then we will deduce 𝐼5. We introduce the measure as
follows:

𝑑𝑄𝑆𝑉𝑑𝑄𝜆 | F0 = 𝑆𝑇𝑉𝑇𝐸𝜆 [𝑆𝑇𝑉𝑇 | F0] . (64)

Let 𝑍(0, 𝑇) = 𝐸𝜆[𝑆𝑇𝑉𝑇 | F0]; according to (42) and (43)

𝑍 (0, 𝑇) = 𝑆0𝑉0 exp{2𝑟𝑇
− (𝜌13𝜎1 + 𝜌23𝜎2) 𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢

+ 𝜌12𝜎1𝜎2} .
(65)

So

𝑑𝑄𝑆𝑉𝑑𝑄𝜆 | F0 = exp{−12 (𝜎21 + 𝜎22 + 𝜌12𝜎1𝜎2) 𝑇
+ ∫𝑇
0
𝜎1𝑑𝑊𝜆1 (𝑢) + ∫𝑇

0
𝜎2𝑑𝑊𝜆2 (𝑢) − 𝜃𝜆𝑇

+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} .
(66)

According to Girsanov’s theorem andTheorem 1

𝑊𝑆𝑉1 (𝑇) = 𝑊𝜆1 (𝑇) − 𝜎1𝑇 − 𝜌12𝜎2𝑇,𝑊𝑆𝑉2 (𝑇) = 𝑊𝜆2 (𝑇) − 𝜎2𝑇 − 𝜌12𝜎1𝑇. (67)

So in measure 𝑄𝑆𝑉
𝑆𝑇 = 𝑆0 exp{𝑟𝑇 + 12𝜎21𝑇 + ∫𝑇0 𝜎1𝑑𝑊𝑆𝑉1 (𝑢)
− 𝜌13𝜎1𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇

+ 𝑁𝑇∑
𝑖=0

ln (𝑌𝑖 + 1)} ,
𝑉𝑇 = 𝑉0 exp{𝑟𝑇 + 12𝜎22𝑇 + ∫𝑇0 𝜎2𝑑𝑊𝑆𝑉2 (𝑢)
− 𝜌23𝜎2𝜎3 ∫𝑇

0
𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇} .

(68)

Since

𝐼5 = 𝐸 [𝑒−𝑟𝑇−∫𝑇0 𝜆(𝑢)𝑑𝑢 1 − 𝑤𝐷 𝑆𝑇𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐸[𝑒−∫𝑇0 𝜆(𝑢)𝑑𝑢𝑆𝑇𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐴 (0, 𝑇) 𝐸𝜆 [𝑆𝑇𝑉𝑇𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= 𝑒−𝑟𝑇 1 − 𝑤𝐷 𝐴 (0, 𝑇)𝑍 (0, 𝑇)
⋅ 𝐸𝑆𝑉 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0] ,

(69)

when𝑁0 = 𝑛, we have
𝐸𝑆𝑉 [𝐼{𝑆𝑇>𝐾,𝑉𝑇>𝐷} | F0]
= ∞∑
𝑛=0

(𝜆̃𝑇)𝑛𝑛! 𝑒−𝜆̃𝑇𝑁(𝑑7 (𝑛) , 𝑑8 (𝑛) , 𝜌) , (70)

where

𝑑7 (𝑛) = ln (𝑆0/𝐾) + 𝑟𝑇 + (1/2) 𝜎21𝑇 − 𝜌13𝜎1𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢 + 𝜌12𝜎1𝜎2𝑇 − 𝜃𝜆̃𝑇 + 𝑛𝜇𝐽√𝜎21𝑇 + 𝑛𝜎2𝐽 ,
𝑑8 (𝑛) = ln (𝑉 (0) /𝐷) + 𝑟𝑇 + (1/2) 𝜎22𝑇 + 𝜌12𝜎1𝜎2𝑇 − 𝜌23𝜎2𝜎3 ∫𝑇0 𝑀(𝑢, 𝑇, 𝛼) 𝑑𝑢√𝜎22𝑇 = 𝑑4 (𝑛) + √𝜎22𝑇.

(71)

4. Numerical Experiments

In this section, we mainly discuss the influence of different
parameters on option value. The parameters are as follows:𝛼 = 0.2;𝛽 = 0.05;

𝑟 (0) = 0.05;
𝜃 = 1;
𝜆 = 0.1;
𝜆̃ = 0.2;
𝐾 = 100;
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𝐷 = 60;𝑇 = 1;𝜎1 = 0.5;𝜎2 = 0.5;𝜎3 = 0.5;𝜎𝐽 = 0.5;𝜇𝐽 = 0.2;𝜌12 = 0.5;𝜌23 = 0.5;𝜌13 = 0.5;𝑤 = 0.8.
(72)

Figure 1 shows the influences of underlying assets and
corporate assets on option value. We can see that the option
value increases gradually with the increase of underlying
assets and corporate assets, but the corporate assets have
a higher influence on option value than that of underlying
assets.

From Figure 2 we can see that the jump process has an
obvious influence on option pricing which can make the
option value more accurate. Because of the expansion of
default, the default probability becomes higher. So the option
value is lower than that in Black-Scholes model and this is
coincident with the reality.

Figure 3 shows the changes of option value with different
jump intensity.With the increase of jump intensity, the option
value will decrease because of the rising default risk. We can
choose the most suitable jump intensity according to the
historical data to make the option value more accurate in
reality.

From Figures 4 and 5 we can see that the option value
decreases obviously when the default intensity and the default
boundary are less than certain critical value while the it
changes slowly when the default intensity and the default
boundary exceed the critical value. In real application, the
default intensity and the default boundary can be set accord-
ing to the corporate reputation, so that the option pricing will
be more reasonable.

Figure 6 shows that the option value and the proportion
of bankruptcy costs are negatively correlated. The higher the
bankruptcy costs, the lower the option value.

5. Conclusion

The traditional definition of default probability is divided into
two forms: the reduced-form model says that the corporate
will default as long as the jump occurs and the default
probability is determined by the default intensity while the
structural model says that the default occurs when the
corporate assets are less than the default boundary and
the default probability is determined by the relationship
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between corporate assets and default boundary. In this paper,
we combine reduced-form model with structural model to
discuss the European vulnerable option pricing. We define
that the default occurs when the default process jumps or
the corporate goes bankrupt. Supposing that the underlying
asset follows the jump-diffusion process and the default
follows the Vasicek model, we deduce the expression of
vulnerable option. Then we use the measure transformation
and martingale method to derive the explicit solution of it.
The results show that the model we put forward is more in
line with the real financial market.
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