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Fractal theory is a branch of nonlinear scientific research, and its research object is the irregular geometric form in nature. On
account of the complexity of the fractal set, the traditional Euclidean dimension is no longer applicable and the measurement
method of fractal dimension is required. In the numerous fractal dimension definitions, box-counting dimension is taken to
characterize the complexity of Julia set since the calculation of box-counting dimension is relatively achievable. In this paper, the
Julia set of Brusselator model which is a class of reaction diffusion equations from the viewpoint of fractal dynamics is discussed,
and the control of the Julia set is researched by feedback control method, optimal control method, and gradient control method,
respectively. Meanwhile, we calculate the box-counting dimension of the Julia set of controlled Brusselator model in each control
method, which is used to describe the complexity of the controlled Julia set and the system. Ultimately we demonstrate the

effectiveness of each control method.

1. Introduction

In order to recognize the essence of some extremely sophis-
ticated phenomena, researchers attempt to figure out the
regularity and unity which exist behind these phenomena so
that they can control and predict them better. In the early
20th century, the fundamental theory of chaos and fractal
was proposed. The theory explains the unity of determinacy
and randomness and the unity of order and disorder. It is
considered to be the third major revolution of science after
the theory of relativity and quantum mechanics [1, 2].

Fractal theory, first proposed in the 1970s, comes from
the study of nonlinear science. Its primary research object is
the geometric form of nature and nonlinear system, which is
complex but has some kind of self similarity and regularity. In
1977, Mandelbrot, a professor of mathematics of the Harvard
University, published the landmark work Fractal: Form,
Chance and Dimension [3]. It marked the fractal geometry
that had become an independent discipline. Subsequently, he
published another work The Fractal Geometry of Nature [4],
which implied that fractal theory had been basically formed.

Nowadays, with the emergence of some new mathemati-
cal tools and methods, especially the combination of the study

of fractal theory and computer, the theory has been developed
rapidly. In addition, researchers not only constantly establish
and improve the theory of fractals, but also apply it in various
fields, such as the diffusion processes and chemical kinetics in
crowded media, the protein structure and complex vascular
branches in biomedicine, dynamical system and hydrome-
chanics in physics, and landforms evolution and earthquake
monitoring [5-16]. Even in social and economic activi-
ties, the theory of fractals also has numerous applications
(17-19].

Considering the complexity of fractal sets, traditional
Euclidean geometry dimension cannot accurately depict their
geometric forms. Mathematicians propose many definitions
of noninteger dimension and use different names to distin-
guish them. For example, Hausdorft dimension which was
proposed by the German mathematician Hausdorft in 1919
has a rigorous mathematical definition. It is established on
the basis of Hausdorff measure and can define most fractal
sets, so it is easier to deal with in mathematics [20]. Moreover,
box-counting dimension is one of the most widely used
dimensions. Its popularity is largely due to its relative ease of
mathematical calculation and empirical estimation. Besides,
other fractal dimensions, such as similar dimension, capacity
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FIGURE 1: The original Julia set of the system.

dimension, and Lyapunov dimension, also have their own
applications in the corresponding fields [21-24].

Brusselator model [25-27] is a kind of reaction diffusion
equations which describe the change of chemical elements
in the process of chemical reaction [28]. It is significant in
the study of the chaos and fractal behavior of nonlinear
differential equations. Researchers have studied Brusselator
model from different aspects and proven some properties of
it [29-33]. These studies of the model have contributed much
to the development of nonlinear mathematics. Nowadays,
with the development of research, people apply some of the
property of the model in all kinds of disciplines and social
production activities and have achieved fruitful results.

Notably, in the nonlinear system, the Julia set of the
system is an important nonlinear feature. According to the
objective requirement, we often need restrict the size of the
nonlinear attractive domain. And sometimes it is required
that the system possess different or similar behavior and
performance in compliance with the actual requirements of
technical problems. As a result, how to effectively control the
Julia set is particularly critical.

Based on the Julia set of Brusselator model, feedback con-
trol method, optimal control method, and gradient control
method [34] are taken to control the Julia set of the model.
And the box-counting dimension of the Julia set of controlled
Brusselator model is calculated in each control method to
describe the complexity of the Julia set of the system.

2. Basic Theory

In 1918, Julia Gaston, a famous French mathematician, dis-
covered an important fractal set in fractal theory, when he
studied the iteration of complex functions, which was named
Julia set. He noticed that functions on the complex plane as
simple as f(z) = z* + ¢, with a complex constant ¢, can give
rise to fractals of an exotic appearance. The precise definition
of Julia set is given below [35].

Take f: C — C to be a polynomial of degree n > 2 with
complex coefficients, f(z) = ay + a,z + - - + a,2". Write f*
for the k-fold composition f o---o f, so that f*(w) is the kth
iterate f(f(--- (f(w)))) of w. If f(w) = w we call w a fixed

point of f, and if f#(w) = w for some integer p > 1 we call
w a periodic point of f; the least such p is called the period
of w. We call w, f(w),..., fP(w) a period p orbit. Let w be
a periodic point of period p, with (f¥)'(w) = A, where the
prime denotes complex differentiation. The point w is called
superattractive, if A = 0; attractive, if 0 < |A| < 1; neutral, if
[Al = 1; and repelling, if [A| > 1.

Definition 1. Let f: C — C be a polynomial of degree n > 1;
Julia set of f is defined to be the closure of repelling period
points of f.

In fractal theory, fractal dimension is one of the most
elemental concepts. At present, there are many definitions
of fractal dimensions, including Hausdorff dimension, box-
counting dimension, similarity dimension. In all kinds of
definitions of fractal dimensions, Hausdorff dimension is the
basis of the fractal theory. It can even be considered the
theoretical basis of the fractal geometry. However, Hausdorft
dimension is just suitable for the theoretical analysis of
fractal theory, and there is only a small class of fairly solid
mathematical regular fractal graphics that can be calculated
for their Hausdorff dimension. It is hard to calculate the
fractal dimension which is proposed in the practical applica-
tions. Therefore, people propose the concept of box-counting
dimension. Its popularity is largely due to its relative ease of
mathematical calculation and empirical estimation. In fact,
in practical applications, the dimension is generally referred
to as box-counting dimension. The precise definition of box-
counting dimension is as follows.

Definition 2 (see [35]). Let F be any nonempty bounded
subset of R" and let Ng(F) be the smallest number of sets
of diameter at most § which can cover F. The lower and

upper box-counting dimensions of F ((1), (2)), respectively, are
defined as

. _log N; (F)
dim,F = lim————=,
dimyf = g v
dimyF = lim M. @)

5-0 —logd



Discrete Dynamics in Nature and Society

80

60

40

20 ¢

720 -

—60

=80, )

-80 -60 -40 -20

60 -

40

20 -

=20 F

—40 F

—60 F

—80 F

-80 -60 -40 -20

60

40

20 ¢

—20 +

—60 +

—80 +

80 | '
60
40
20

ok

—20 F

—40 +

—60

—80 +

-80 -60 -40 -20
(e)

FIGURE 2: The change of the Julia sets of the controlled system when

(d) k =0.30; (e) k = 0.38; (f) k = 0.45.

If these are equal we refer to the common value as the

box-counting dimension of F (3):

dimgF = lim

-0 —logé

log N (F)

(3)

-80 —60

(f)
a=0.07, b=0.02,and y = 0.01. (a) k = 0.06; (b) k = 0.14; (c) k = 0.22;

3. The Control of the Julia Set of
Brusselator Model

Brusselator model is one of the most fundamental models in
nonlinear systems, and the dynamic equations are as follows:
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xn+1:A—(B+1)xn+xflyn, W

_ 2
Yn+1 = B'xn =X Vn>

where x, y denote concentration of reactant in the process of
chemical reaction. A, B > 0 denote initial concentration of
reactant.

Brusselator equations were first discovered by A. Turing
in 1952 [36], and then I. Pigogine and Leefver did some
systematic studies on it. They pointed out that the Brusselator
equations were the most elementary and essential mathe-
matic model which describes the oscillation of biochemistry.
They proved that when B > 1 + A%, the equations have stable
and unique limit cycle. When B < 1 + A%, there is no limit
cycle [37]. It can be known that the initial concentration of
reactant has an important influence on the system. In fractal
theory, Julia set is a set of initial points of the system that
satisfy certain conditions. With the same thought, we define
the Julia set of Brusselator model. Let F(x, y) = (A - (B +
1)x,, + X2 Y, Bx,, — X2 9,).

Definition 3. Set K = {(x, y) € R | {F'(x, ¥)},51 is bound-
ed} is called the filled Julia set of Brusselator model. The
boundary of the filled Julia set is defined to be the Julia set
of Brusselator model; that is, J(F) = oK.

The research results demonstrate that, coupled with a
piecewise constant value control function, we can control
the size of the limit cycle of (4) [36]. From the definition of
Julia set, we found that there is a close relation between the
boundedness of iterative orbits and the structure of the Julia
set. So if we want to control the Julia set of Brusselator model,
how to control the boundedness of the system iterative is
critical. We consider especially the stability of the fixed point
of Brusselator model, and by designing controllers unstable
fixed points are turned into stable fixed points to control the
boundedness of iterative orbits effectively. Then the control of
the Julia set can be realized.

As was mentioned above, considering the stability of
the fixed points of system (5), we try to find controllers to
make the fixed point of the system stable. Let the controlled
Brusselator model be

2
Xn+1 =a+(1_b_)})xn+yxnyn+un’

(5)

2
Yne1 = Vn T bxn VX V0 T Ve

where u,, and v,, denote the designed controllers.

3.1 Feedback Control Method. Take u, = k(x, — x*), v, =
k(y, — y*), with the control parameter k, and the controlled
system is

Xpyp =4+ (1 _b_y)xn"'yxiyn"'k(xn_x*)’
(6)

st = Yo+ b3, = yxy, + (9, - y7).
Theorem 4. Let A, = 1 -b—y+2yx"y" +k B, = 1-
yx*2 +k C, = px*%, and D, = b - 2yx"y", where (x*, y*)
denotes the fixed point of the controlled system (6). If |(A, +
B))+ \/(A1 — B))? +4C, D, | < 2, the fixed point of the system
is attractive.

Proof. Write B, (x, y) = (a+(1-b—y)x+yx*y+k(x—x*), y+
bx — yx*y + k(y — y*)). The Jacobi matrix of the controlled
system (6) is

2
YXn

_ 1-b-y+2yx,y,+k
1-yx, +k

DB, =
b- 2)”%)’ n
and its eigenmatrix is
DB, - AE

2
VX

1-b-y+2yx,y, +k—A (8)
- 1-yxi+k-2A .

b- zyxnyn
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And the characteristic equation is When the modulus of the eigenvalues A,;, A, of the
5 5 Jacobi matrix at the fixed point is less than 1, the fixed point
A= (2 —b-y+2yx,y, - yx, + 2k) A is attractive:
+(1—b—y+2yxnyn+k)(1—yxi+k) 9)

(A, +B,) £ (A, - B,)* +4C,D
—yxfl(b—Zyxnyn)z(). |A11,12|= 1 : \/ 21 1 e <1; (10)
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that is, change generally shows a monotonic decreasing trend. Par-

I(A1 +B,)+ \/(A1 - B,)’ +4C,D,| < 2. (11)

By Theorem 4, we know that Brusselator model can be
controlled by selecting the value of k which satisfies the
condition, and then the control of the Julia set can be realized.

For example, take a = 0.07, b = 0.02, and y = 0.01 in
system (6) and the initial Julia set is shown in Figure 1; then
we get x* = 7, y* = 2/7. By Theorem 4, the range of the
value of k is —1.9895 < k < 0.4695.

Six simulation diagrams are chosen corresponding to the
values of k from 0.06 to 0.45 in Figure 2, and we find that the
trend of the change of the Julia sets is obvious. In Figure 3
the box-counting dimensions of the controlled Julia sets are
computed in this control method.

In the same control, six simulation diagrams are chosen
corresponding to the values of k from -1 to —0.22 in Figure 4
to illustrate the change of the Julia sets in feedback control
method. In Figure 5 the box-counting dimensions of the
controlled Julia sets are computed in this control method.

In feedback control method, the contraction of the left
and the lower parts is faster than the right and the upper
parts when the interval of control parameter k is between
0.06 and 0.45. In addition, the complexity of the boundary
of the Julia set significantly decreases and the lower part
rapidly contracts. When the interval of control parameter k
is between —1 and —0.22, the complexity of the boundary of
the Julia set significantly decreases, and the Julia set tends to
be centrally symmetric. In general, with the absolute value of
k increasing, the Julia set contracts to the center gradually.

From the perspective of the change of box-counting
dimensions, with the absolute values of k increasing, the

(1-b-y+2yx,y,) (k+1)-k-A
(b-2yx,y,) (k+1)

DB, - AE =

ticularly when the control parameter k is in the interval
from 0.16 to 0.37 and —0.9 to —0.4, the monotonic change
of box-counting dimensions is obvious, which indicates the
effectiveness of this control method on the Julia set of
Brusselator model. O

3.2. Optimal Control Method. Take u, = k(f(x,,y,) —
x,), v, = k(g(x,, y,) — »,), with f(x,,y,) =a+(1-b-
V)X + PX2 Y G(X V) = ¥, + bx, — yx_y,, where k is the
control parameter. Then the controlled system is

Xy =a+(1=b—y)x, +yx,y,

+k(f (xn’yn) _xn)’ (12)

Yne1 = Vn T bxn - inyn + k(g (xwyn) - yn)

Theorem5. Let A, = (1-b—y+2yx*y*)(k+1)-k, B, = (1-
yx ) (k+1)—k, C, = px**(k+1), and D, = (b-2yx" y*)(k+1),
where (x*, y*) denotes the fixed point of the controlled system
(12). 1f (A, + By) £ (A, — By)? +4C,D,| < 2, the fixed point
of the system is attractive.

Proof. Write B,(x, y) = (a+(1-b-p)x+yx’y +k(f(x, y) -
x), y +bx — yxzy + k(g(x, y) — ¥)). The Jacobi matrix of the
controlled system (12) is

DB,
(1-b-y+2yx,y,) (k+1) -k yx2 (k+1) (13)
) (b-2yx,y,) (k+1) (l—yxf,)(k+1)—k]
and its eigenmatrix is
yxfl (k+1)
5 . (14)
(1-ypx2) (k+1)—k-A
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And the characteristic equation is

- ((2—b—y+2yxnyn—yx,21)(k+ 1)—2k))t
+((1=b-y+2yx,,) (k+1) k)
. ((1 - yxf,) (k+1)- k) - yxi (b-2yx,y,)

(k+1)*=0.

(15)

When the modulus of the eigenvalue A,,, A,, of the Jacobi
matrix at the fixed point is less than 1, the fixed point is
attractive:

2
(Ay+By)+ \/(Az - B,)" +4C,D,

= 16
21| > (16)

<1

that is,

I(A2 +B)+ \/(A2 - B,)’ +4C,D,| < 2. 17)

By Theorem 5, we know that Brusselator model can be
controlled by selecting the value of k which satisfies the
condition, and then the control of the Julia set can be realized.

For example, we take the values of system parameters
a = 0.07, b = 0.02, and y = 0.01, which are the same as
Section 3.1. Then the range of the value of k is -1 < k <
190.659.

Six simulation diagrams are chosen corresponding to the
values of k from 0.64 to 2.6 in Figure 6 to illustrate the
change of the Julia sets in optimal control method. In Figure 7
the box-counting dimensions of the controlled Julia sets are
computed in this control method.

In optimal control method, the effective controlled inter-
val of k is from —1 to 190.6. But when the interval of k is from
0.64 to 2.6, this method has the best controlled effectiveness.
In this interval, with the absolute values of k increasing, the

Julia sets gradually contract to the center with nearly the same
speed, and no significant change in the overall shape of the
Julia sets occurs.

From the perspective of the change of box-counting
dimensions, box-counting dimensions of the Julia sets gen-
erally show a monotonic decreasing trend with the absolute
values of k increasing. For the reason that the complexity
of the Julia set can be depicted by box-counting dimension,
when the complexity of the Julia set decreases with the
absolute value of k increasing, it indicates that this control
method has great control effectiveness. O

3.3. Gradient Control Method. Take u, = k(x? - x*%), v, =

k(y> - y*z), with the control parameter k. Therefore the
controlled system is

X1 =a+(1—b—y)xn+yxflyn+k(xfl—x*2),
, (18)
2 2 *
Yn+1 :yn+bxn_yxnyn+k(yn_y )

Theorem 6. Let Ay = 1 —b —y+2yx"y" + 2kx", B; =
1—yx*? + 2ky*, C; = yx**, and D; = b - 2yx*y*, where
(x*, y™) denotes the fixed point of the controlled system (18). If
(A3 +B3) £ \[(A, — By)? + 4C,Ds| < 2, the fixed point of the
system is attractive.

Proof. Write By(x, y) = (@ + (1 = b~ p)x + px*y + k(x* -
x*?), y + bx — yxy + k(y* = y*)). The Jacobi matrix of the
controlled system (18) is

2
YXn

1 - yx +2ky,

- 1-b-y+2yx,y, +2kx,
- Y+ 2YXaYn (19)

b- zyxnyn
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and its eigenmatrix is
DB, - AE

1-b-y+2yx,y, +2kx, - A yx (20)

b-2yx,y, 1 - px’ +2ky, — A .

And the characteristic equation is
A - (2 —b—y +2yx,y, + 2kx,, — yx + Zkyn) A
+(1-b-y+2yx,y, + 2kx,) (1 - yxi + Zky,,) (21)
—yx, (b= 2yx,,) = 0.
When the modulus of the eigenvalue A, A5, of the Jacobi

matrix at the fixed point is less than 1, the fixed point is
attractive:

2
[(As +By) £ (4, - B,Y +4C,D,

|A31,32 - 2 (22)

<1

that is,

l(A3 +B,)+ \/(A3 ~B,)} +4C,Dy| <2, (23)

By Theorem 6, we know that the Brusselator model can
be controlled by selecting the value of k which satisfies the
condition, and then the control of the Julia set can be realized.

For example, we take the values of system parameters
a = 0.07, b = 0.02, and y = 0.01, which are the same as
Section 3.1. Then the range of the value of k is —2.6420 < k <
0.8561.

Six simulation diagrams are chosen corresponding to the
values of k from —0.0005 to —0.02 in Figure 8 to illustrate
the change of the Julia sets in gradient control method. In

Figure 9 the box-counting dimensions of the controlled Julia
sets are computed in this control method.

In the same control, six simulation diagrams are chosen
corresponding to the values of k from 0.0005 to 0.02 in
Figure 10 to illustrate the change of the Julia sets in gradient
control method. In Figure 11 the box-counting dimensions
of the controlled Julia sets are computed in this control
method.

In gradient control method, we consider two groups of
interval of the parameter k. It is worth noticing that the
contraction of the left and the lower parts of the Julia set are
faster than the right and the upper parts when the interval of
control parameter k is from —0.0005 to —0.02, while the right
and the upper parts are faster than the left and the lower parts
when the interval of control parameter k is from 0.0005 to
0.02. In general, with the absolute values of k increasing, the
Julia sets contract to the center gradually, and the complexity
of the boundary of the Julia sets decreases.

From the perspective of the change of box-counting
dimensions, with the absolute values of k increasing, the
box-counting dimensions of the Julia sets generally show a
monotonic decreasing trend. Particularly when the control
parameter k is in the range from —0.016 to —0.0075 and from
0.0075 to 0.016, the change of box-counting dimensions is
obviously monotonic, which indicates the effectiveness of this
method on the Julia set of the Brusselator model. O

4. Conclusion

Fractal theory is a hot topic in the research of nonlinear
science. Describing the change of chemical elements in the
chemical reaction process, Brusselator model, an important
class of reaction diffusion equations, is significant in the
study of chaotic and fractal behaviors of nonlinear differential
equations. In technological applications, it is often required
that the behavior and performance of the system can be
controlled effectively.
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FIGURE 10: The change of the Julia sets of the controlled system when a = 0.07, b = 0.02, and y = 0.01. (a) k = 0.0005; (b) k = 0.0045; (¢)
k = 0.0085; (d) k = 0.0125; (e) k = 0.0165; (f) k = 0.0200.
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FIGURE 11: The change of box-counting dimensions of the Julia sets
of the controlled system when k is from 0.0005 to 0.02.

In this paper, feedback control method, optimal control
method, and gradient control method are taken to control
the Julia set of Brusselator model, respectively, and the
box-counting dimensions of the Julia set are calculated. In
each control method, when the absolute value of control
parameter k increases discretely, the box-counting dimension
of Julia set decreases and the Julia set contracts to the center
gradually. The decrease of box-counting dimension is nearly
monotonic, which indicates that the complexity of the Julia
set of the system is declined gradually. Thus when the control
parameter k is selected, the Julia set of Brusselator model
could be controlled. Most importantly, the three control
methods have consistency of conclusion and effectiveness.
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