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In this paper, we study optimal investment-reinsurance strategies for an insurer who facesmodel uncertainty.The insurer is allowed
to acquire new business and invest into a financial market which consists of one risk-free asset and one risky asset whose price
process is modeled by a Geometric Brownianmotion.Minimizing the expected quadratic distance of the terminal wealth to a given
benchmark under the “worst-case” scenario, we obtain the closed-form expressions of optimal strategies and the corresponding
value function by solving the Hamilton-Jacobi-Bellman (HJB) equation. Numerical examples are presented to show the impact of
model parameters on the optimal strategies.

1. Introduction

In recent years, insurance companies are playing the more
active role in the financialmarket. To avoid their risk, insurers
are apt to invest in the financial market, purchase reinsurance
from the reinsurer and acquire new business (acting as
a reinsurer for other insurers). Tremendous literature on
optimal investment and/or reinsurance problem for insurers
has been investigated. For example, Browne [1] studied the
optimal investment problem for an insurer whose surplus
is described by a drifted Brownian motion under the crite-
rion of maximizing the expected exponential utility of the
terminal wealth or minimizing the ruin probability. To the
same question, Hipp and Plum [2] showed a different result
when insurance business is modeled by a compound Poisson
process. Schmidli [3, 4] investigated optimal strategies under
the criterion of minimizing the ruin probability.

Mean-variance portfolio selection theory was first pro-
posed by Markowitz [5] and it has been used to investigate
optimal investment and reinsurance problems in the actuarial
literature [6–13].

In addition, it is important to consider model uncertainty
due to the uncertainties in the global economy and the debit
crisis exiting in financial markets and insurance industries.
Meanwhile a growing number of scholars have paid atten-
tion to incorporating model uncertainty into optimization
problems. For example, Talay and Zheng [14] viewed the
Trader and the Market as two players and formulated the
model risk control problem as a zero-sum stochastic dif-
ferential game problem. Mataramvura and Øksendal [15]
investigated the risk-minimizing portfolio selection problem
in a jump diffusion market. Zhang and Siu [16] studied
optimal investment and reinsurance problems via the game
theoretic approach and derived closed-form solutions when
the objective function is the expected exponential utility of
terminal wealth and the expected discounted penalty of ruin,
respectively. Lin et al. [17] discussed an optimal portfolio
selection problem of an insurer who faces model uncertainty
and obtained closed-form solutions to the game problems
in both the jump diffusion risk process and its diffusion
approximation for the case of an exponential utility by using
techniques of stochastic linear-quadratic control.
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In this paper, we are concerned about optimal investment
and reinsurance strategies for an insurer with model uncer-
tainty. Suppose that the insurer can purchase proportional
reinsurance/acquire new business and invest in a simplified
continuous-time financial market with a bank account and
a risky stock. We measure the risk faced by the insurer by
means of the deviation of the surplus to a fixed terminal target
(a given benchmark). The insurer’s objective is to find an
optimal investment-reinsurance strategy under the criterion
ofminimizing the expected quadratic distance of the terminal
wealth to the given benchmark in the “worst-case” scenario.
Different from those in Zhang and Siu [16], we propose here a
mean-variance portfolio optimization problem under model
uncertainty.

The rest of this paper is organized as follows. In Section 2,
we give the assumptions and formulate the model dynamics.
In Section 3, we derive optimal investment-reinsurance
strategy and the corresponding value function with the help
of stochastic control theory. In Section 4, we provide some
numerical analyses to demonstrate our results. Section 5
concludes the paper.

2. Model Formulation

Throughout this paper, we work on a filtered complete
probability space (Ω,F,P, {F𝑡}0≤𝑡≤𝑇), where P is a refer-
ence probability measure from which a family of real-world
probability measures absolutely continuous with respect to
P are generated; {F𝑡}0≤𝑡≤𝑇 is the filtration generated by all
Brownian motions standing for the information available
up to time 𝑡. The finite constant 𝑇 > 0 is a final time
horizon.

2.1. Surplus Process. In what follows, we consider an insurer
whose surplus process {𝑅(𝑡), 𝑡 ∈ [0, 𝑇]} is approximated by a
diffusion model. We firstly go back to the classical risk model
as follows:

𝑅 (𝑡) = 𝑥0 + 𝑐𝑡 − 𝑁𝑡∑
𝑖=1

𝑌𝑖. (1)

Here {𝑌𝑖} is the size of the 𝑖th claim and {𝑌𝑖, 𝑖 = 1, 2, . . .} are
independent and identically distributed (i.i.d.) nonnegative
random variables with finite first-order moment 𝜇∞ and
second-order moment 𝜎2∞; {𝑁𝑡}, independent of {𝑌𝑖, 𝑖 =1, 2, . . .}, is a homogeneous Poisson process with intensity 𝜆;𝑐 > 0 is the premium rate which is assumed to be calculated
by the expected value principle, that is, 𝑐 = (1 + 𝛿)𝜆𝜇∞,
where 𝛿 is the safety loading of the insurer and 𝑥0 is the initial
capital.

According to Grandell [18] or Schmidli [19], the insurer’s
surplus process can be approximated by the following diffu-
sion model:

𝑅 (𝑡) = 𝑥0 + 𝑞𝑡 + 𝜎0𝑊0 (𝑡) , (2)

where 𝑞 = 𝛿𝜆𝜇∞ is the premium return rate of the insurer;𝜎20 = 𝜆𝜎2∞ represents the volatility of the insurer’s surplus;{𝑊0(𝑡)} is a standard Brownian motion.

2.2. Financial Market. The insurance company is allowed to
invest the money into a financial market with a riskless asset
and a risky asset. Without loss of generality we assume any
fractional units of assets can be traded continuously and no
taxes or transaction costs are involved in our model.

The price process of the riskless asset {𝑆0(𝑡) | 𝑡 ∈ [0, 𝑇]}
is modeled by

𝑑𝑆0 (𝑡) = 𝑟0𝑆0 (𝑡) 𝑑𝑡, 𝑆0 (0) = 1, (3)

where 𝑟0 > 0 represents the riskless interest rate.
The price process of the risky asset {𝑆1(𝑡) | 𝑡 ∈ [0, 𝑇]}

follows the geometric Brownian process

𝑑𝑆1 (𝑡) = 𝑆1 (𝑡) [𝑟1𝑑𝑡 + 𝜎1𝑑𝑊1 (𝑡)] , 𝑆1 (0) = 𝑠1 > 0, (4)

where 𝑟1 > 𝑟0 is the appreciation rate of the risky asset and𝜎1 > 0 is the volatility of the risky asset; {𝑊1(𝑡) | 𝑡 ∈ [0, 𝑇]}
is another one-dimensional standard Brownian motion. For
convenience, we assume {𝑊0(𝑡) | 𝑡 ∈ [0, 𝑇]} and {𝑊1(𝑡) | 𝑡 ∈[0, 𝑇]} are independent Brownian motions.

2.3. Wealth Process. As mentioned before, the insurer is
allowed to invest in the financial market and purchase pro-
portional reinsurance or acquire new business as described in
Bäuerle [6].We denote by 𝜋(𝑡) themoney amount invested in
the risky asset and by 𝑎(𝑡) the retention level of reinsurance.
For each 𝑡 ∈ [0, 𝑇], 𝜗(𝑡) fl (𝜋(𝑡), 𝑎(𝑡)) represents the strategy
adopted by the insurance company and denote by {𝑋𝜗(𝑡) | 𝑡 ∈[0, 𝑇]} the surplus of the insurance company with the above
notation 𝜗. Thus the wealth process 𝑋𝜗(𝑡) of the insurer can
be described as

𝑑𝑋𝜗 (𝑡)
= [𝜆𝜇∞ (𝜂𝑎 (𝑡) − (𝜂 − 𝛿)) + 𝑟0𝑋𝜗 (𝑡) + 𝑟𝜋 (𝑡)] 𝑑𝑡

+ 𝜎0𝑎 (𝑡) 𝑑𝑊0 (𝑡) + 𝜎1𝜋 (𝑡) 𝑑𝑊1 (𝑡) ,
𝑋𝜗 (0) = 𝑥0,

(5)

where 𝑟 = 𝑟1 − 𝑟0 > 0, 𝜂 > 𝛿 is the safety loading of the
reinsurance/new business.

A strategy 𝜗 = {(𝜋(𝑡), 𝑎(𝑡)), 𝑡 ∈ [0, 𝑇]} is said to be
admissible if it is F𝑡-progressively measurable, 𝑎(𝑡) ≥ 0,
𝐸[∫𝑇
0
(𝜎20𝑎2(𝑡)+𝜎21𝜋2(𝑡))𝑑𝑠] < +∞, and (5) has a unique strong

solution. Denote byA the set of all admissible strategies.

2.4. Model Uncertainty. For each 𝑡 ∈ [0, 𝑇], define the
enlarged 𝜎-field G(𝑡), the minimal 𝜎-field generated by
F𝑊0(𝑡) and F𝑊1(𝑡). Denote G(𝑡) fl F𝑊0(𝑡) ∨ F𝑊1(𝑡) and
denote G fl {G(𝑡) | 𝑡 ∈ [0, 𝑇]}.

Now specify the space of admissible controls by the
market. Define {𝜃(𝑡) | 𝑡 ∈ [0, 𝑇]}, which is satisfying the
following conditions:

(1) {𝜃(𝑡) | 𝑡 ∈ [0, 𝑇]} is G-progressively measurable;
(2) 𝜃(𝑡) fl 𝜃(𝑡, 𝜔) < 1, for a.a. (𝑡, 𝜔) ∈ [0, 𝑇] × Ω;

(3) ∫𝑇
0

𝜃2(𝑡)𝑑𝑡 < ∞,P-a.s..
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Write Θ for the space of all processes satisfying the above
three conditions.

For each 𝜃 ∈ Θ, define a real-valued, G-adapted process{Λ𝜃(𝑡) | 𝑡 ≥ 0} on (Ω,F,P) by
Λ𝜃 (𝑡) fl exp{−∫𝑡

0

𝜃 (𝑢) 𝑑𝑊0 (𝑢) − ∫𝑡
0

𝜃 (𝑢) 𝑑𝑊1 (𝑢)
− ∫𝑡
0

𝜃2 (𝑢) 𝑑𝑢} .
(6)

By Ito’s differentiation rule,

𝑑Λ𝜃 (𝑡) = Λ𝜃 (𝑡) [−𝜃 (𝑡) 𝑑𝑊0 (𝑡) − 𝜃 (𝑡) 𝑑𝑊1 (𝑡)] ,
Λ𝜃 (0) = 1, P-a.s. (7)

So, Λ𝜃 is a (G,P)-(local)-martingale. Hence,

E [Λ𝜃 (𝑇)] = 1. (8)

For each 𝜃 ∈ Θ, a new (real-world) probability measure
P𝜃 absolutely continuous with respect to P on G(𝑇) is
defined by

𝑑P𝜃𝑑P
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨G(𝑇) fl Λ𝜃 (𝑇) . (9)

Then the family P(Θ) of real-world probability measures
with index set Θ is generated.

3. The Basic Problem (MV)

As in Mataramvura and Øksendal [15], we define {𝑈(𝑡) | 𝑡 ∈[0, 𝑇]}, a vector process, by
𝑑𝑈 (𝑡) = (𝑑𝑈0 (𝑡) , 𝑑𝑈1 (𝑡) , 𝑑𝑈2 (𝑡))󸀠

= (𝑑𝑈0 (𝑡) , 𝑑𝑈𝜗1 (𝑡) , 𝑑𝑈𝜃2 (𝑡))󸀠
= (𝑑𝑡, 𝑑𝑋𝜗 (𝑡) , 𝑑Λ𝜃 (𝑡))󸀠 ,

𝑈 (0) = 𝑢 = (𝑠, 𝑢1, 𝑢2)󸀠 = (𝑠, 𝑥, Λ)󸀠 .

(10)

Suppose the market is the leader of the game and aims
to select an admissible strategy {𝜃(𝑡) | 𝑡 ∈ [0, 𝑇]} which
represents the “worst-case” scenario of the minimal expected
quadratic deviation between the terminal surplus and some
preset targets. That leads to the Min-Max problem

Ψ (𝑢) = inf
𝜗∈A

sup
𝜃∈Θ

{E𝑢𝜃 [(𝑋𝜗 (𝑇) − 𝑘)2]}
= E𝑢𝜃∗ [(𝑋𝜗∗ (𝑇) − 𝑘)2] ,

(11)

where 𝑘 ∈ R+ is a certain predefined benchmark. Here it
is reasonable to assume 𝑘 ≥ 𝑥0𝑒𝑟0𝑇, which states that the
insurer’s terminal wealth 𝑘 cannot be less than the amount

earned by the insurer if all the wealth was invested in the risk-
free asset. The market selects an optimal probability scenario{𝜃∗(𝑡) | 𝑡 ∈ [0, 𝑇]} to maximize the minimal expected
quadratic deviation and the insurer reacts antagonistically by
choosing an optimal portfolio processes {𝜗∗(𝑡) | 𝑡 ∈ [0, 𝑇]}
to minimize the expected quadratic deviation of 𝑋𝜗(𝑇) to 𝑘.

For each 𝑢 and (𝜃, 𝜗) ∈ Θ × A, we define

𝐽𝜃,𝜗 (𝑢) = E𝑢𝜃 [(𝑋𝜗 (𝑇) − 𝑘)2]
= E𝑢 [Λ𝜃 (𝑇) (𝑋𝜗 (𝑇) − 𝑘)2] . (12)

Then we can get another statement of the above Min-Max
problem (11) by the version of Bayes’ rule: to solve the
problem, we must find Ψ(𝑢), 𝜃∗ ∈ Θ, and 𝜗∗ = (𝜋∗, 𝑎∗) ∈ A
such that

Ψ (𝑢) = inf
𝜗∈A

sup
𝜃∈Θ

𝐽𝜃,𝜗 (𝑢) = 𝐽𝜃∗ ,𝜗∗ (𝑢) . (13)

Similar to the handling in Øksendal [20] and Øksendal
and Sulem [21], we could consider feedback Markov controls
and, for some functions, 𝜃0 : [0, 𝑇] × (0,∞) × (0,∞) → R
and 𝜗0 : [0, 𝑇] × (0,∞) × (0,∞), assume that for each 𝑡 ∈[0, 𝑇], 𝜃(𝑡) fl 𝜃0(𝑈(𝑡)) and 𝜗(𝑡) fl 𝜗0(𝑈(𝑡)) under some mild
conditions. Then, for each pair (𝜃, 𝜗) ∈ (Θ,A), the generator
of the process𝑈(⋅) is a partial differential operatorL𝜃,𝜗(ℎ(𝑢)).

L
𝜃,𝜗 (ℎ (𝑢))
= 𝜕ℎ𝜕𝑡 + {𝜆𝜇∞ [𝜂𝑎 − (𝜂 − 𝛿)] + 𝑟0𝑢1 + 𝑟𝜋} 𝜕ℎ𝜕𝑢1

+ 12 (𝜎20𝑎2 + 𝜎21𝜋2) 𝜕2ℎ𝜕𝑢21 + 𝑢22𝜃2 𝜕2ℎ𝜕𝑢22
− (𝜎0𝑎 + 𝜎1𝜋) 𝜃𝑢2 𝜕2ℎ𝜕𝑢1𝜕𝑢2 ,

(14)

where ℎ(𝑢) fl ℎ(⋅, ⋅, ⋅) ∈ C1,2,2([0, 𝑇] × (0,∞) × (0,∞)).
Theorem 1 (verification theorem). For theMin-Max problem,
if there exist three real value functions 𝜙, 𝜃∗, and 𝜗∗ satisfying
the following HJB system:

inf
𝜗∈A

sup
𝜃∈Θ

L
𝜃,𝜗 [𝜙 (𝑡, 𝑢1, 𝑢2)] = 0,

𝜙 (𝑇, 𝑢1, 𝑢2) = 𝑢2 (𝑢1 − 𝑘)2 , (15)

then Ψ(𝑢) = 𝜙(𝑡, 𝑢1, 𝑢2), 𝜃∗ corresponds to the “worst-case”
scenario, and 𝜗∗ = (𝜋∗, 𝑎∗) is the optimal investment-
reinsurance strategy.

The proof ofTheorem 1 is similar to the proof ofTheorem3.2 in Mataramvura and Øksendal [15]. So we do not repeat
it here.

In order to solve problem (11), we only need to solve
the HJB equation (15). Motivated by the terminal boundary
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condition, we try the following parametric form of the value
function:

𝜙 (𝑡, 𝑢1, 𝑢2) = 𝑢2 [𝐴 (𝑡) 𝑢21 + 𝐵 (𝑡) 𝑢1 + 𝐶 (𝑡)] , (16)

where𝐴(⋅), 𝐵(⋅), and𝐶(⋅) are three suitable functions, and the
boundary condition in Theorem 1 implies that 𝐴(𝑇) = 1,𝐵(𝑇) = −2𝑘, and 𝐶(𝑇) = 𝑘2. The corresponding partial
derivatives are

𝜕𝜙𝜕𝑡 = 𝑢2 [𝐴̇ (𝑡) 𝑢21 + 𝐵̇ (𝑡) 𝑢1 + 𝐶̇ (𝑡)] ,
𝜕𝜙𝜕𝑢1 = 𝑢2 [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)] ,
𝜕2𝜙𝜕𝑢21 = 2𝐴 (𝑡) 𝑢2,
𝜕𝜙𝜕𝑢2 = 𝐴 (𝑡) 𝑢21 + 𝐵 (𝑡) 𝑢1 + 𝐶 (𝑡) , 𝜕2𝜙𝜕𝑢22 = 0,

𝜕2𝜙𝜕𝑢1𝜕𝑢2 = 2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡) .

(17)

Substituting the above derivatives into L𝜃,𝜗(𝜙(𝑢)), we
have

L
𝜃,𝜗 (𝜙 (𝑢)) = 𝑢2 {𝐴̇ (𝑡) 𝑢21 + 𝐵̇ (𝑡) 𝑢1 + 𝐶̇ (𝑡)
+ [𝑟0𝑢1 − 𝜆𝜇∞ (𝜂 − 𝛿)] [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)]
+ (𝜆𝜇∞𝜂 − 𝜎0𝜃) [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)] 𝑎 + 𝜎20𝐴 (𝑡) 𝑎2
+ (𝑟 − 𝜎1𝜃) [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)] 𝜋 + 𝜎21𝐴 (𝑡) 𝜋2} .

(18)

For fixed 𝜃, by the first-order condition, we can get

𝜋̂ (𝜃) = 𝜎1𝜃 − 𝑟2𝜎21 [2𝑢1 + 𝐵 (𝑡)𝐴 (𝑡)] , (19)

𝑎̂ (𝜃) = 𝜎0𝜃 − 𝜆𝜇∞𝜂2𝜎20 [2𝑢1 + 𝐵 (𝑡)𝐴 (𝑡)] . (20)

Substituting 𝜗̂ = (𝜋̂(𝜃), 𝑎̂(𝜃)) intoL𝜃,𝜗(𝜙(𝑢)), we have
L
𝜃,𝜗̂ (𝜙 (𝑢)) = 𝑢2 {𝐴̇ (𝑡) 𝑢21 + 𝐵̇ (𝑡) 𝑢1 + 𝐶̇ (𝑡)
+ [𝑟0𝑢1 − 𝜆𝜇∞ (𝜂 − 𝛿)] [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)]
− [𝜎0𝜃 − 𝜆𝜇∞𝜂]2 [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)]2

4𝜎20𝐴 (𝑡)
− [𝜎1𝜃 − 𝑟]2 [2𝐴 (𝑡) 𝑢1 + 𝐵 (𝑡)]2

4𝜎21𝐴 (𝑡) } .

(21)

Maximizing over 𝜃 gives the first-order condition for the
maximum point 𝜃 = 𝜃̂ as follows:

𝜃̂ = 12 (𝜆𝜇∞𝜂𝜎0 + 𝑟𝜎1) = 𝑟𝜎0 + 𝜆𝜇∞𝜂𝜎12𝜎0𝜎1 . (22)

So,

𝜋̂ (𝑡) = 𝜋̂ (𝜃̂) = 𝜆𝜇∞𝜂𝜎1 − 𝑟𝜎04𝜎0𝜎21 [2𝑢1 + 𝐵 (𝑡)𝐴 (𝑡)] ,
𝑎̂ (𝑡) = 𝑎̂ (𝜃̂) = 𝑟𝜎0 − 𝜆𝜇∞𝜂𝜎14𝜎20𝜎1 [2𝑢1 + 𝐵 (𝑡)𝐴 (𝑡)] .

(23)

We rewriteL𝜃̂,𝜗̂(𝜙(𝑢)) as follows:
L
𝜃̂,𝜗̂ (𝜙 (𝑢)) = 𝑢2 {[𝐴̇ (𝑡) + (2𝑟0 − D) 𝐴 (𝑡)] 𝑢21
+ [𝐵̇ (𝑡) + (𝑟0 − D) 𝐵 (𝑡) − 2Γ𝐴 (𝑡)] 𝑢1 + 𝐶̇ (𝑡)
− Γ𝐵 (𝑡) − D𝐵2 (𝑡)4𝐴 (𝑡) } ,

(24)

whereD = (𝑟𝜎0 − 𝜆𝜇∞𝜂𝜎1)2/4𝜎20𝜎21 and Γ = 𝜆𝜇∞(𝜂 − 𝛿).
To ensureL𝜃̂,𝜗̂(𝜙(𝑢)) = 0 holds, we require

𝐴̇ (𝑡) + (2𝑟0 − D) 𝐴 (𝑡) = 0, 𝐴 (𝑇) = 1,
𝐵̇ (𝑡) + (𝑟0 − D) 𝐵 (𝑡) − 2Γ𝐴 (𝑡) = 0, 𝐵 (𝑇) = −2𝑘,

𝐶̇ (𝑡) − Γ𝐵 (𝑡) − D𝐵2 (𝑡)4𝐴 (𝑡) = 0, 𝐶 (𝑇) = 𝑘2.
(25)

Then it is easy to obtain

𝐴 (𝑡) = 𝑒(2𝑟0−D)(𝑇−𝑡),
𝐵 (𝑡) = −2 [ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1) + 𝑘] 𝑒(𝑟0−D)(𝑇−𝑡),
𝐶 (𝑡) = [ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1) + 𝑘]2 𝑒−D(𝑇−𝑡).
(26)

So, for 𝑠 ≤ 𝑡 ≤ 𝑇, we have
𝜋̂ (𝑡) = 𝑟𝜎0 − 𝜆𝜇∞𝜂𝜎12𝜎0𝜎21 [(𝑘 − Γ𝑟0) 𝑒−𝑟0(𝑇−𝑡)

− (𝑢1 − Γ𝑟0)] = 𝑟𝜎0 − 𝜆𝜇∞𝜂𝜎12𝜎0𝜎21𝑒𝑟0(𝑇−𝑡) [(𝑘 − 𝑥𝑒𝑟0(𝑇−𝑡))
+ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1)] ,
𝑎̂ (𝑡) = 𝜆𝜇∞𝜂𝜎1 − 𝑟𝜎02𝜎20𝜎1 [(𝑘 − Γ𝑟0) 𝑒−𝑟0(𝑇−𝑡)

− (𝑢1 − Γ𝑟0)] = 𝜆𝜇∞𝜂𝜎1 − 𝑟𝜎02𝜎20𝜎1𝑒𝑟0(𝑇−𝑡) [(𝑘 − 𝑥𝑒𝑟0(𝑇−𝑡))
+ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1)] .

(27)
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Note that the reinsurance strategy 𝑎must be nonnegative.
Denote

Δ = 𝜆𝜇∞𝜂𝜎1 − 𝑟𝜎0,
𝐻 (𝑡) = (𝑘 − 𝑥𝑒𝑟0(𝑇−𝑡)) + Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1) . (28)

Then for 𝑡 ∈ [0, 𝑇],
(i) when Δ ≥ 0,𝐻(𝑡) ≥ 0 or Δ ≤ 0,𝐻(𝑡) ≤ 0, it is easy to

get 𝑎̂(𝑡) ≥ 0, which can be a candidate of the optimal
strategy;

(ii) when Δ ≤ 0,𝐻(𝑡) ≥ 0 or Δ ≥ 0,𝐻(𝑡) ≤ 0, we
may choose 𝑎̂ = 0 as the optimal reinsurance strategy
since (18) is a second-order polynomial in 𝑎. Thus the
operatorL𝜃,𝜗(ℎ(V)) in (14) can be changed as

L
𝜃,𝜗 (ℎ (𝑢)) = 𝜕ℎ𝜕𝑡 + {𝜆𝜇∞ (𝛿 − 𝜂) + 𝑟0𝑢1 + 𝑟𝜋} 𝜕ℎ𝜕𝑢1

+ 12𝜎21𝜋2 𝜕2ℎ𝜕𝑢21 + 𝑢22𝜃2 𝜕2ℎ𝜕𝑢22
− 𝜎1𝜋𝜃𝑢2 𝜕2ℎ𝜕𝑢1𝜕𝑢2 .

(29)

Parallel to the proof of Theorem 1, we can obtain the same
form of expression of the investment strategy 𝜋̂ in (19) for
fixed 𝜃̂ = 𝑟/𝜎1. Then the minimum point 𝜋̂ is given by 𝜋̂ = 0.

Combining with Theorem 1, the above analyses are
summarized as the following theorem.

Theorem 2. The optimal investment-reinsurance strategy of
the Min-Max problem (11) is

(𝜋∗, 𝑎∗)
= {{{{{

(− 𝐻 (𝑡) Δ2𝜎0𝜎21𝑒𝑟0(𝑇−𝑡) ,
𝐻 (𝑡) Δ2𝜎20𝜎1𝑒𝑟0(𝑇−𝑡)) , 𝑖𝑓 𝐻 (𝑡) Δ ≥ 0,

(0, 0) , 𝑖𝑓 𝐻 (𝑡) Δ ≤ 0.
(30)

Moreover, the corresponding value function is given by

Ψ (𝑢) = 𝑢2 {𝑒−D(𝑇−𝑠) [𝑢1𝑒𝑟0(𝑇−𝑠) − Γ𝑟0 (𝑒
𝑟0(𝑇−𝑠) − 1)

− 𝑘]2} .
(31)

Remark 3. We find that (i) under model uncertainty the
optimal policy 𝜗∗ = (𝜋∗, 𝑎∗) depends on the volatility of
both the insurer’s surplus and the risky asset; (ii) if we
do not take account of the model risk, the corresponding
optimal investment-reinsurance strategies (see Appendix)
are different: the volatility of the insurer’s surplus has no
influence on the investment strategy 𝜋̃(𝑡) (see Appendix
(A.11)), and the volatility of the risky asset has no influence
on the reinsurance strategy 𝑎̃(𝑡) (see Appendix (A.12)).

4. Numerical Results

In this section, we present some numerical illustrations and
sensitivity analysis of optimal investment-reinsurance strate-
gies. Throughout the numerical analysis, unless otherwise
stated, the basic parameters are given by 𝑥0 = 10, 𝜆 = 1,𝑢1 = 1, 𝜂 = 1.5, 𝛿 = 1.1, 𝑟0 = 0.04, 𝑟1 = 0.2, 𝜎0 = 1.5, 𝜎1 =1.15, 𝑘 = 15, 𝑇 = 5, and𝑁 = 300. In the following numerical
examples, we illustrate the effect of different parameters on
the optimal strategies by varying the value of one parameter
with others fixed each time.

Figure 1 shows the effect of the riskless rate of interest𝑟0, the appreciation rate of the risky asset 𝑟1, the volatility of
the insurer’s surplus 𝜎0, and the volatility of the risky asset𝜎1 on the optimal investment strategy 𝜋∗(𝑡). We compare
the investment strategies in Figure 1(a) when 𝑟0 = 0.01 and𝑟0 = 0.06 for fixed 𝑡 ∈ [0, 5]. It is shown that as the risk-
free interest rate 𝑟0 increases, the optimal investment strategy𝜋∗(𝑡) moves up in any time. And when 𝑡 is near time 0,
the trend is very obvious. From Figures 1(b) and 1(c), we
find that 𝜋∗(𝑡) increases with respect to 𝑟1 and 𝜎0 for fixed𝑡 ∈ [0, 5] where we compare the investment strategies when𝑟1 = 0.05 and 𝑟1 = 0.35 and 𝜎0 = 1.15 and 𝜎0 = 1.5. It
is a different case as in Figure 1(d), where we compare the
investment strategies when 𝜎1 = 0.55 and 𝜎1 = 1.65 for fixed𝑡 ∈ [0, 5].

Figure 2 shows the effect of different parameters on the
optimal reinsurance strategy. In Figure 2(a), we compare the
reinsurance strategies when 𝑟0 = 0.01 and 𝑟0 = 0.06 for fixed𝑡 ∈ [0, 5]. It is shown that as the risk-free interest rate 𝑟0
increases, the optimal investment strategy𝜋∗(𝑡)moves down.
In Figure 2(b), we compare the reinsurance strategies when𝑟1 = 0.05 and 𝑟1 = 0.35 for fixed 𝑡 ∈ [0, 5]. In Figure 2(c),
we compare the reinsurance strategies when 𝜎0 = 1.15 and𝜎0 = 1.55 for fixed 𝑡 ∈ [0, 5]. In Figure 2(d), we compare the
reinsurance strategies when 𝜎1 = 0.55 and 𝜎1 = 1.65 for fixed𝑡 ∈ [0, 5].

We can find from the above two groups of Figures that,
while keeping other parameters unchanged:

(i) The insurer is inclined to invest in the market (com-
pared with buying reinsurance) when the riskless rate
of interest 𝑟0 increases.

(ii) When the appreciation rate of the risky asset 𝑟1
increases, the insurer is inclined to invest in the
market (compared with buying reinsurance) during
the first half of the horizon and to buy reinsurance
(compared with investing in the market) during the
second half of the horizon.

(iii) As the volatility of the insurers surplus 𝜎0 increases,
the insurer seems to be willing to invest in the
market during the first half of the horizon and buy
reinsurance during the second half of the horizon.

(iv) The insurer is inclined to invest in the market (com-
pared with buying reinsurance) when the volatility of
the risky asset 𝜎1 increases.
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Figure 1: The effect of parameters on optimal investment strategy.

5. Conclusion

In this paper, we study an optimization problem for an
insurer when facing uncertainties. The insurer is allowed
to invest into a financial market and purchase proportional
reinsurance/acquire new business. The model uncertainty is
described by a family of probability measures equivalent to
the original probability measure. Compared with Zhang and
Siu [16] and Lin et al. [17], we focus on the criterion of
minimizing the expected quadratic distance of the insurer’s
terminal wealth to a given benchmark. Under the “worst-
case” scenario, we have derived the optimal investment-
reinsurance strategy and the corresponding value function
explicitly. In addition, we have presented some numerical
illustrations and sensitivity analysis to show the effect of
parameters on optimal strategies.

Appendix

Optimal Strategies without Model Risk

The insurer aims to select an optimal investment and rein-
surance strategy 𝜗 which minimizes the expected quadratic

distance of the terminal wealth to a given benchmark.That is
to find

𝑉 (𝑥) = inf
𝜗∈A

{E𝑥 [(𝑋𝜗 (𝑇) − 𝑘)2]} . (A.1)

Here we also assume 𝑘 ≥ 𝑥0𝑒𝑟0𝑇.
Then the generator of the process 𝑉(⋅) is a partial

differential operator.

L̃ (ℎ (𝑢)) = 𝜕ℎ𝜕𝑡
+ {𝜆𝜇∞ [𝜂𝑎 − (𝜂 − 𝛿)] + 𝑟0𝑢1 + 𝑟𝜋} 𝜕ℎ𝜕𝑥
+ 12 (𝜎20𝑎2 + 𝜎21𝜋2) 𝜕2ℎ𝜕𝑥2 .

(A.2)

Thus we can obtain the following HJB equation:

inf
𝜗∈A

L̃ [𝜑 (𝑡, 𝑥)] = 0, 𝜑 (𝑇, 𝑥) = (𝑥 − 𝑘)2 . (A.3)
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Figure 2: The effect of parameters on optimal reinsurance strategy.

Motivated by the terminal boundary condition, we try the
following parametric form of the value function:

𝜑 (𝑡, 𝑥) = 𝑚 (𝑡) 𝑥2 + 𝑛 (𝑡) 𝑥 + 𝑙 (𝑡) , (A.4)

with 𝑚(𝑇) = 1, 𝑛(𝑇) = −2𝑘, 𝑙(𝑇) = 𝑘2. The corresponding
partial derivatives are

𝜕𝜑𝜕𝑡 = 𝑚̇ (𝑡) 𝑥2 + 𝑛̇ (𝑡) 𝑥 + ̇𝑙 (𝑡) ,
𝜕𝜑𝜕𝑥 = 2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡) ,

𝜕2𝜑𝜕𝑥2 = 2𝑚 (𝑡) 𝑥.
(A.5)

Substituting the above derivatives into L̃(𝜑(𝑥)), we have
L̃ (𝜑 (𝑥))

= 𝑚̇ (𝑡) 𝑥2 + 𝑛̇ (𝑡) 𝑥 + ̇𝑙 (𝑡)
+ [𝑟0𝑥 − 𝜆𝜇∞ (𝜂 − 𝛿)] [2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡)]
+ 𝜆𝜇∞𝜂 [2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡)] 𝑎 + 𝜎20𝑚(𝑡) 𝑎2
+ 𝑟 [2𝑚 (𝑡) 𝑢1 + 𝑛 (𝑡)] 𝜋 + 𝜎21𝑚(𝑡) 𝜋2.

(A.6)

For fixed 𝜃, by the first-order condition, we can get

𝜋̃ (𝜃) = − 𝑟2𝜎21 [2𝑥 + 𝑛 (𝑡)𝑚 (𝑡)] ,
𝑎̃ (𝜃) = −𝜆𝜇∞𝜂2𝜎20 [2𝑥 + 𝑛 (𝑡)𝑚 (𝑡)] .

(A.7)

Substituting 𝜗̃ = (𝜋̃(𝜃), 𝑎̃(𝜃)) into L̃(𝜑(𝑥)), we have
L̃ (𝜑 (𝑥)) = [𝑚̇ (𝑡) + (2𝑟0 − E)𝑚 (𝑡)] 𝑥2

+ [𝑛̇ (𝑡) + (𝑟0 − E) 𝑛 (𝑡) − 2Γ𝑚 (𝑡)] 𝑥
+ ̇𝑙 (𝑡) − Γ𝑛 (𝑡) − E𝑛2 (𝑡)4𝑚 (𝑡) ,

(A.8)

where E = (𝑟2𝜎20 + 𝜆2𝜇2∞𝜂2𝜎21)/𝜎20𝜎21 and Γ = 𝜆𝜇∞(𝜂 − 𝛿).
To ensure L̃(𝜑(𝑥)) = 0 holds, we require

𝑚̇ (𝑡) + (2𝑟0 − E)𝑚 (𝑡) = 0, 𝑚 (𝑇) = 1,
𝑛̇ (𝑡) + (𝑟0 − E) 𝑛 (𝑡) − 2Γ𝑚 (𝑡) = 0, 𝑛 (𝑇) = −2𝑘,

̇𝑙 (𝑡) − Γ𝑛 (𝑡) − E𝑛2 (𝑡)4𝑚 (𝑡) = 0, 𝑙 (𝑇) = 𝑘2.
(A.9)
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Then it is easy to obtain

𝑚(𝑡) = 𝑒(2𝑟0−E)(𝑇−𝑡),
𝑛 (𝑡) = −2 [ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1) + 𝑘] 𝑒(𝑟0−E)(𝑇−𝑡),
𝑙 (𝑡) = [ Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1) + 𝑘]2 𝑒−E(𝑇−𝑡).
(A.10)

So, for 𝑠 ≤ 𝑡 ≤ 𝑇, we get the optimal strategies

𝜋̃ (𝑡) = 𝑟𝜎21 [(𝑘 − Γ𝑟0) 𝑒−𝑟0(𝑇−𝑡) − (𝑥 − Γ𝑟0)]
= 𝑟𝜎21𝑒𝑟0(𝑇−𝑡) [(𝑘 − 𝑥𝑒𝑟0(𝑇−𝑡)) + Γ𝑟0 (𝑒

𝑟0(𝑇−𝑡) − 1)]
(A.11)

𝑎̃ (𝑡) = 𝜆𝜇∞𝜂𝜎20 [(𝑘 − Γ𝑟0) 𝑒−𝑟0(𝑇−𝑡) − (𝑥 − Γ𝑟0)]
= 𝜆𝜇∞𝜂

𝜎20𝑒𝑟0(𝑇−𝑡) [(𝑘 − 𝑥𝑒𝑟0(𝑇−𝑡)) + Γ𝑟0 (𝑒
𝑟0(𝑇−𝑡) − 1)]

(A.12)

and the value function

𝑉 (𝑥) = 𝑒−E(𝑇−𝑠) [𝑥𝑒𝑟0(𝑇−𝑠) − Γ𝑟0 (𝑒
𝑟0(𝑇−𝑠) − 1) − 𝑘]2 . (A.13)
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[6] N. Bäuerle, “Benchmark and mean-variance problems for
insurers,”MathematicalMethods of Operations Research, vol. 62,
no. 1, pp. 159–165, 2005.

[7] L. Bai and H. Zhang, “Dynamic mean-variance problem with
constrained risk control for the insurers,” Mathematical Meth-
ods of Operations Research, vol. 68, no. 1, pp. 181–205, 2008.

[8] Y. Zeng, Z. Li, and J. Liu, “Optimal strategies of benchmark
and mean-variance portfolio selection problems for insurers,”
Journal of Industrial and Management Optimization, vol. 6, no.
3, pp. 483–496, 2010.

[9] Y. Zeng and Z. Li, “Optimal time-consistent investment and
reinsurance policies for mean-variance insurers,” Insurance:
Mathematics and Economics, vol. 49, no. 1, pp. 145–154, 2011.

[10] M. C. Chiu and H. Y. Wong, “Mean-variance asset-liability
management: cointegrated assets and insurance liability,” Euro-
pean Journal of Operational Research, vol. 223, no. 3, pp. 785–
793, 2012.

[11] M. C. Chiu and H. Y. Wong, “Mean–variance asset–liability
management with asset correlation risk and insurance liabili-
ties,” Insurance: Mathematics and Economics, vol. 59, pp. 300–
310, 2014.

[12] Y. Zeng, Z. Li, and Y. Lai, “Time-consistent investment and
reinsurance strategies for mean–variance insurers with jumps,”
Insurance:Mathematics & Economics, vol. 52, no. 3, pp. 498–507,
2013.

[13] Y. Shen and Y. Zeng, “Optimal investment-reinsurance strategy
for mean-variance insurers with square-root factor process,”
Insurance: Mathematics & Economics, vol. 62, pp. 118–137, 2015.

[14] D. Talay and Z. Zheng, “Worst case model risk management,”
Finance and Stochastics, vol. 6, no. 4, pp. 517–537, 2002.

[15] S. Mataramvura and B. Øksendal, “Risk minimizing portfolios
and HJBI equations for stochastic differential games,” Stochas-
tics, vol. 80, no. 4, pp. 317–337, 2008.

[16] X. Zhang and T. K. Siu, “Optimal investment and reinsurance
of an insurer with model uncertainty,” Insurance: Mathematics
and Economics, vol. 45, no. 1, pp. 81–88, 2009.

[17] X. Lin, C. Zhang, and T. K. Siu, “Stochastic differential portfolio
games for an insurer in a jump-diffusion risk process,” Mathe-
matical Methods of Operations Research, vol. 75, no. 1, pp. 83–
100, 2012.

[18] J. Grandell, Aspects of Risk Theory, Springer, 1991.
[19] H. Schmidli, Stochastic Control in Insurance, Probability and Its

Applications (New York), Springer, London, UK, 2008.
[20] B. Øksendal, Stochastic Differential Equations, Springer, 2003.
[21] B. Øksendal and A. Sulem, Applied stochastic control of jump

diffusions, Universitext, Springer, Berlin, Germany, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


