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A boundedly rational user equilibrium model with restricted unused routes (R-BRUE) considering the restrictions of both used
route cost and unused route cost is proposed.The proposedmodel hypothesizes that for eachODpair no traveler can reduce his/her
travel time by an indifference band by unilaterally changing route. Meanwhile, no route is unutilized if its travel time is lower than
sumof indifference band and the shortest route cost.The largest and smallest used route sets are defined usingmathematical expres-
sion.We also show that, with the increase of the indifference band, the largest and smallest used route sets will be augmented, and the
critical values of indifference band to augment these two path sets are identified by solving themathematical programswith equilib-
rium constraints. Based on the largest and smallest used route sets, the R-BRUE route set without paradoxical route is generated.The
R-BRUE solution set can then be obtained by assigning all trafficdemands to the corresponding generated route set. Various numeri-
cal examples are also provided to illustrate the essential ideas of the proposedmodel and structure of R-BRUE route flow solution set.

1. Introduction

Perfect rationality is widely used in studying traditional
transportation network models in which traveler always
chooses the shortest (i.e., least utility) route, such as user
equilibrium (UE [1]) and stochastic user equilibrium (SUE
[2]) traffic assignment models. However, travelers may not
always choose shortest route due to (1) lack of perfect travel
information; (2) incapability of obtaining the shortest route
with the complex traffic situations; and (3) certain “inertia”
in decision making. Therefore people do not always choose
the route with the maximum utility. They tend to seek a
satisfactory route instead.

In the literature of evaluating habitual routes in route
choice behavior, only 30% of respondents from Boston [3],
59% from Cambridge, Massachusetts [4], and 86.8% from
Turin, Italy [5] chose the shortest routes. Based on GPS stud-
ies, Zhu [6] found that 90% of subjects in the Minneapolis-
St. Paul region choose routes one-fifth longer than average
commute time. All findings above revealed that people do not

usually take the shortest routes and the used routes generally
have higher costs than shortest ones.

It is more practical that traveler is boundedly rational
(BR); traveler will not change his/her route if his/her travel
time is a little longer than the shortest route. A series of exper-
imentswere conducted to empirically validate bounded ratio-
nality [7–13].The results showed that, in the repeated learning
process, commuters would not change their routes unless the
difference between preferred arrival time and actual arrival
time exceeded a threshold. And boundedly rational route
choicemodeling observed from experiments provided a valid
description of actual commuter daily behavior.

Simon, in 1957 [14], first proposed the notion of bounded
rationality. And in 1987 [7], Mahmassani and Chang intro-
duced it to traffic modeling. Since then, bounded rationality
has received considerable attention in various transportation
models, such as traffic safety [15], transportation planning [16,
17], traffic policymaking [18–20], traffic assignment, and net-
work design [21–28]. All these studies indicated that traveler
is boundedly rational in his/her decision-making process.
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Boundedly rational user equilibrium (BRUE) is a network
state such that travelers can take any route whose travel time
is within a threshold of the shortest route time [22, 23, 25–
28]. Such a threshold is phrased by Mahmassani and Chang
[7] as “indifference band.” In other words, no one can reduce
his/her travel time by an indifference band by unilaterally
changing his/her route. The indifference band is estimated
from either laboratory experiment data or a behavioral study
of road users (e.g., by surveys [7, 29]). By introducing indiffer-
ence band for eachODpair, the BRUE relaxesUE assumption
that travelers only take the shortest routes at equilibrium.

However, unlike the conventional UE model, the traffic
flow under BRUE may not utilize any shortest or least-cost
route; in another word the unused route cost may be lower
than the used one. For example, the route flows are 0, 5,
and 7 for three different routes on one OD pair, and the
travel times are 10, 12, and 13, respectively. If the indifference
band is 3, the above route flow solution is a BRUE solution.
From the behavioral point of view, one might question the
plausibility of this that the least travel time route has no traffic
on it. Therefore, to make the model become behavioral more
defensible, not only the used route cost should be restricted,
but also the unused route cost should be restricted.

Uncertainties are unavoidable in transportation systems
and make people become boundedly rational. Travelers do
not know exactly the time that they arrive at the destination
due to the travel time variability which is made by uncertain-
ties. However, in many cases (such as going to work, having
a meeting, and catching the train), travelers care more about
arrive time than travel time; no one wants to be late; thus the
largest and smallest route sets exist in travels’ trip process.

This paper makes contributions in three major areas:
(1) considering both the restrictions of used route cost and
unused route cost in the route decision process, we present
a boundedly rational user equilibrium model with restricted
unused routes (R-BRUE). This new model hypothesizes that
for each OD pair no traveler can reduce his/her travel
time by an indifference band by unilaterally changing route.
Meanwhile, no route is unutilized if its travel time is lower
than sum of indifference band and the shortest route cost.
(2)We propose the largest and smallest used route sets which
can be used to generate the used route set of R-BRUE model.
These two used route sets are defined as the union and
intersection of all R-BRUE solution set patterns, respectively.
And (3) we develop two mathematical programs (MP) with
equilibrium constraint to solve the critical values which is
used to augment the largest and smallest used route sets.

The remainder of the paper is organized as follows. In
Section 2, 𝜀-R-BRUE (𝜀 denotes the indifference band) is
defined and its mathematical formulation is established. In
Section 3, the largest and smallest 𝜀-used route sets are
defined, and their properties are studied. In Section 4, 𝜀-R-
BRUE route set without paradoxical route is generated. In
Section 5, 𝜀-R-BRUE route flow set without paradoxical route
is constructed, and some examples are presented to illustrate
the essential ideas of proposed model and the structure of R-
BRUE route flow solution set. Finally, some conclusions and
future work are provided.

2. Definition of 𝜀-R-BRUE and
Mathematical Formulation

In this section, we propose 𝜀-boundedly rational user equi-
librium model with restricted unused routes (R-BRUE) and
the mathematical formulation of proposed model.

2.1. Definition of 𝜀-R-BRUE. Consider a transportation net-
work𝐺 = [𝑁,𝐴], where𝑁 and𝐴 denote the sets of nodes and
links, respectively. Let𝑊 denote the set of ODpairs for which
travel demand 𝑞𝜔 is generated between OD pair 𝜔 ∈ 𝑊, and
let 𝑓𝜔𝑘 denote the traffic flow on route 𝑘 ∈ 𝐾𝜔, where 𝐾𝜔 is
the set of routes connecting OD pair 𝜔 and all 𝐾𝜔 constitute
𝐾. The feasible route flow set is to assign the traffic demand
on the feasible routes: 𝐹 ≜ {f : f ≥ 0, ∑𝑘∈𝐾𝜔 𝑓𝜔𝑘 = 𝑞𝜔, ∀𝜔 ∈𝑊}. Below is formal definition of 𝜀-boundedly rational user
equilibrium with restricted unused routes (R-BRUE).

Definition 1. 𝜀-boundedly rational user equilibrium with
restricted unused routes (𝜀-R-BRUE) is a network state such
that the travel cost of all used route is less than or equal to
the sum of given indifference band 𝜀 = (𝜀𝜔)𝜔∈𝑊 ≥ 0 and the
shortest route cost; meanwhile, the travel cost of the unused
route is greater than or equal to the sum of 𝜀 and the shortest
route cost; that is,

𝑓𝜔𝑘 > 0 󳨐⇒
𝐶𝜔𝑘 (f) ≤ min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔,

∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,
𝑓𝜔𝑘 = 0 󳨐⇒

𝐶𝜔𝑘 (f) ≥ min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f) + 𝜀𝜔,

∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,

(1)

where f is the vector form of traffic flow 𝑓𝜔𝑘 : f = (. . . , 𝑓𝜔𝑘 ,
. . .)𝑇 and 𝐶𝜔𝑘 (⋅) is the route cost function on route 𝑘 between
OD pair 𝜔.

We should point out that boundedly rational user equi-
librium (BRUE) model only considers 𝑓𝜔𝑘 > 0 ⇒ 𝐶𝜔𝑘 (f) ≤
min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f) + 𝜀𝜔 which do not take the cost of unused
route into consideration. We first use 𝑓𝜔𝑘 = 0 ⇒ 𝐶𝜔𝑘 (f) ≥
min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f) + 𝜀𝜔 to restrict the “irrational solutions.”

Equation (1) gives a necessary condition judging whether
a flow pattern is R-BRUE and is equivalent to the following
condition:

𝐶𝜔𝑘 (f) > min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f) + 𝜀𝜔 󳨐⇒

𝑓𝜔𝑘 = 0,
𝐶𝜔𝑘 (f) < min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔 󳨐⇒

𝑓𝜔𝑘 > 0.

(2)

In otherwords, a used route has lower cost than anunused
one, which is the same as that in the UE (user equilibrium)
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setting. When 𝜀𝜔 = 0 for each 𝜔, the R-BRUE definition is
reduced to the UE problem.

Theorem 2. Any 𝜀-R-BRUE solution is also a 𝜀-BRUE solu-
tion. 𝜀-BRUE solution may not, however, necessarily fulfill 𝜀-
R-BRUE conditions.

Proof. let f be a route flow pattern to 𝜀-R-BRUEmodel.Then,
for 𝑓𝜔𝑘 > 0, 𝐶𝜔𝑘 (f) ≤ min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f) + 𝜀𝜔 hold for all 𝑘 ∈ 𝐾𝜔
and 𝜔 ∈ 𝑊; that is, 𝑓𝜔𝑘 > 0 ⇒ 𝐶𝜔𝑘 (f) ≤ min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f) + 𝜀𝜔,∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊, which satisfies 𝜀-BRUE model.

For the converse situation, suppose that a flow allocation
satisfies 𝜀-BRUE conditions and in addition has an unused
route which has a cost less than the sum of 𝜀 and the shortest
route. Then 𝜀-R-BRUE conditions are violated.

Usually 𝜀-R-BRUE is nonunique. Denote a set containing
all route flow patterns satisfying Definition 1 as 𝜀-R-BRUE
route flow solution set:

𝐹𝜀R-BRUE ≜ {f ∈ 𝐹 : 𝑓𝜔𝑘 > 0 󳨐⇒ 𝐶𝜔𝑘 (f) ≤ min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f)

+ 𝜀𝜔, 𝑓𝜔𝑘 = 0 󳨐⇒ 𝐶𝜔𝑘 (f) ≥ min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f) + 𝜀𝜔, ∀𝑘

∈ 𝐾𝜔, 𝜔 ∈ 𝑊} .

(3)

Theorem 3. If the link cost function is continuous, 𝜀-R-BRUE
solution (𝜀 ≥ 0) is nonempty.

Proof. First, Patriksson [30] showed that, when the link cost
function is continuous, UE solution exists. Let fUE ∈ 𝐹UE be
oneUE route flow pattern, and set f1 ≜ {𝑓𝑖 : 𝑓𝑖 ∈ fUE, 𝑓𝑖 > 0},
f0 ≜ {𝑓𝑖+𝛿 : 𝑓𝑖 ∈ fUE, 𝑓𝑖 = 0, 𝐶𝜔𝑘 (𝑓𝑖) < min𝑖∈𝐾𝜔𝐶𝜔𝑖 (fUE)+𝜀𝜔},
where 𝛿 is a very small positive parameter. Let f = [f0, f1],
when 𝜀 ≥ 0,

𝑓𝜔𝑘 > 0 󳨐⇒
𝐶𝜔𝑘 (f) < min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔 ≤ min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔,

𝑓𝜔𝑘 = 0 󳨐⇒
𝐶𝜔𝑘 (f) ≥ min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔,

∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊.

(4)

So f is 𝜀-R-BRUE solution (𝜀 ≥ 0); that is, f ∈ 𝐹𝜀R-BRUE. Given
the continuous link cost function, at least one 𝜀-R-BRUE flow
pattern exists, and therefore 𝐹𝜀R-BRUE ̸= ⌀.

2.2. R-BRUE Mathematical Formulation. We use slack vari-
ables 𝜌𝜔𝑘 to define R-BRUE mathematically. f is a R-BRUE
distribution if and only if there exists 𝜋𝜔 whose physical
meaning is the minimum route cost for every 𝜔 such that

𝐶𝜔𝑘 (f) − 𝜋𝜔 − 𝜌𝜔𝑘 = 0, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,

𝑓𝜔𝑘 (𝜀𝜔 − 𝜌𝜔𝑘 )
{
{
{
= 0, if 𝜀𝜔 ≤ 𝜌𝜔𝑘 ,
> 0, o.w., ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,

∑
𝑘∈𝐾𝜔

𝑓𝜔𝑘 = 𝑞𝜔, ∀𝜔 ∈ 𝑊,

𝑓𝜔𝑘 ≥ 0, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,
𝜌𝜔𝑘 ≥ 0, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊,

(5)

where 𝑞𝜔 is the traffic demand between OD pair 𝜔. Note that
when 𝜀 = 0 for all 𝜔, 2.2 reduces to 0 ≤ 𝑓𝜔𝑘 ⊥ 𝐶𝜔𝑘 (f) − 𝜋𝜔 ≥ 0,∑𝑘∈𝐾𝜔 𝑓𝜔𝑘 = 𝑞𝜔 which is the conventional UE conditions.

3. Largest and Smallest 𝜀-Used Route Sets

In this section, we give the definition of the largest and
smallest 𝜀-used route sets, and we also discuss the properties
of two proposed route sets.

3.1. Definitions. Here we give three definitions of used route
set, largest 𝜀-used route set (𝜀-URS) and smallest 𝜀-URS of
𝜀-R-BRUE model as follows.

Definition 4. Given 𝜀-R-BRUE route pattern f ∈ 𝐹𝜀R-BRUE,
the used route carries flow, while its travel cost is within the
shortest cost plus the indifference band; that is,

𝑎𝜀 (f) = {𝑘 ∈ 𝐾𝜔 : 𝑓𝑘 > 0, 𝐶𝜔𝑘 (f) ≤ min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f)

+ 𝜀𝜔, ∀𝜔 ∈ 𝑊} .
(6)

Definition 5. A largest 𝜀-URS contains all used routes for
every flow pattern in 𝜀-R-BRUE flow set, mathematically:

𝐾𝜀𝑙 = ⋃
f∈𝐹𝜀R-BRUE

𝑎𝜀 (f) . (7)

Definition 6. A smallest 𝜀-URS contains the used routes
which all flow patterns in 𝜀-R-BRUE flow set have, mathe-
matically:

𝐾𝜀𝑠 = ⋂
f∈𝐹𝜀R-BRUE

𝑎𝜀 (f) . (8)

3.2. Monotonically Nondecreasing Largest 𝜀-URS. In the fol-
lowing, we will discuss the impact of the value of 𝜀 on the size
of the largest 𝜀-URS.

Theorem 7. If 0 ≤ 𝜀 < 𝜀󸀠, then 𝐾𝜀𝑙 ⊆ 𝐾𝜀
󸀠

𝑙 , where 𝐾𝜀𝑙 is defined
in (7).

Proof. Let f𝜀 ∈ 𝐹𝜀M-BRUE be one 𝜀-R-BRUE route flow pattern,
and set f1 ≜ {𝑓𝑖 : 𝑓𝑖 ∈ f𝜀, 𝑓𝑖 > 0}, f0 ≜ {𝑓𝑖 + 𝛿 : 𝑓𝑖 ∈
f𝜀, 𝑓𝑖 = 0, 𝐶𝜔𝑘 (𝑓𝑖) < min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f𝜀) + 𝜀󸀠}, where 𝛿 is a very
small positive parameter. Let f𝜀

󸀠 = [f0, f1]; then
𝑓𝜔𝑘 > 0 󳨐⇒

𝐶𝜔𝑘 (f) < min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f) + 𝜀𝜔
󸀠 ≤ min
𝑖∈𝐾𝜔

𝐶𝜔𝑖 (f) + 𝜀𝜔
󸀠 ,
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Figure 1: Test network and routes characteristics.
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Figure 2: The UE traffic flow of route 1 under different demand.

𝑓𝜔𝑘 = 0 󳨐⇒
𝐶𝜔𝑘 (f) ≥ min

𝑖∈𝐾𝜔
𝐶𝜔𝑖 (f) + 𝜀𝜔

󸀠 ,

∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑊.
(9)

So f𝜀
󸀠

is 𝜀󸀠-R-BRUE solution, and 𝑎𝜀(f) ⊆ 𝑎𝜀󸀠(f). Based on (7),
we can get that𝐾𝜀𝑙 ⊆ 𝐾𝜀

󸀠

𝑙 .

3.3. Paradoxical Route and Property of Smallest 𝜀-URS. We
will give the definition of paradoxical route first.

Definition 8. With the increasing of OD demand, the traffic
flow on route 𝑝 first increases and then decreases at the UE
state. And the route 𝑝 is defined as a paradoxical route.

This phenomenon contradicts our intuition. Following
that, we use an example to illustrate this paradox.

The network topology of the test network, link, and traffic
demand characteristics are depicted in Figure 1. The network
consists of 4 nodes, 5 links, and 1 OD pair. Red curves on the
right indicate 3 routes.

The equilibrium route flow 𝑓1 by varying the traffic
demand 𝑞 from zero to infinity is shown in Figure 2. When
the traffic demand is lower than 4, all the travelers pick route
1; and 𝑓1 is increasing with the increasing of demand. While
𝑞 reached to 4, 𝑓1 is decreasing with the increasing of 𝑞. And
when the demand reaches to 24, the flow on route 1 becomes
0. Based on Definition 8, we can get that route 1 is the para-
doxical route.

When 0 ≤ 𝜀 < 𝜀󸀠, 𝐾𝜀𝑠 ⊆ 𝐾𝜀󸀠𝑠 , where the network
contains paradoxical route, monotonically nondecreasing
property of smallest 𝜀-URSmay not be satisfied due to exiting
paradoxical route in the network. Consider the test network
in Figure 3 which consists of 4 nodes, 6 links, and 1 OD pair.
The link travel time functions and traffic demand are reported
in Figure 3. Red curves on the right indicate 4 routes.

q = 32
1 2 3 4

x1 + 12

2x2 x3 2x4

5x6

x5 + 12

Route 1

Route 2

Route 3

Route 4

Figure 3: Test network and routes characteristics.

Solving the UEwhere 𝜀 = 0 for the R-BRUE, we have𝑓1 =0.25, 𝑓2 = 11.25, 𝑓3 = 11.25, and 𝑓4 = 9.25. Therefore, the
smallest 𝜀-URS is𝐾0𝑠 = {1, 2, 3, 4}. When 𝜀 = 48, 𝑓1 = 0, 𝑓2 =15, 𝑓3 = 15, and 𝑓4 = 2, the travel time is 𝐶1 = 60, 𝐶2 = 57,𝐶3 = 57, and𝐶4 = 10.TheminimumOD travel time is 10 and
all the utilized routes have travel times of no more than 10 +
48 = 58. Therefore, the route flow pattern is a valid R-BRUE
flow. However, the smallest 𝜀-URS which is 𝐾48𝑠 = {2, 3, 4}
does not satisfy the monotonically nondecreasing property.

Theorem 9 (monotonically nondecreasing smallest 𝜀-URS
without paradoxical route). If 0 ≤ 𝜀 < 𝜀󸀠, then 𝐾𝜀𝑠 ⊆ 𝐾𝜀

󸀠

𝑠

for a network without paradoxical route, where 𝐾𝜀𝑠 is defined
in (8).

Proof. Assume that there exist two bands 𝜀 and 𝜀󸀠 which
satisfy that 0 ≤ 𝜀 < 𝜀󸀠 such that 𝐾𝜀𝑠 ̸⊂ 𝐾𝜀󸀠𝑠 . Then, there must
exist a route 𝑘 such that 𝑘 ∈ 𝐾𝜀𝑠 and 𝑘 ∉ 𝐾𝜀

󸀠

𝑠 . In another
word, 𝑓𝜀𝑘 ≥ 0 for all 𝜀-R-BRUE route flow patterns, and 𝑓𝜀󸀠𝑘
can be equal to 0 for some 𝜀󸀠-R-BRUE route flow patterns.
And this contradicts the assumption that the network has no
paradoxical route.

When 𝜀 varies from zero to infinity, the minimum
number of routes the largest 𝜀-URS and smallest 𝜀-URS
without paradoxical route contains is the UE shortest routes
when 𝜀 = 0; that is, 𝐾0𝑙 = 𝐾0𝑠 ≜ 𝐾UE. The maximum number
of routes the largest 𝜀-URS and smallest 𝜀-URS without
paradoxical route contains is all feasible routes, meaning all
feasible routes will be utilized if the indifference band is too
large. Then we have𝐾UE ⊆ 𝐾𝜀𝑙 ⊆ 𝐾 and𝐾UE ⊆ 𝐾𝜀𝑠 ⊆ 𝐾.

Given 𝜀, the largest 𝜀-URS (defined in (7)) is a set of all
used routes under 𝜀-R-BRUE set. And the smallest 𝜀-URS
(defined in (8)) is a set of the used routes which must have
traffic flows under all 𝜀-R-BRUE set. It is possible that some
used routes for one 𝜀-R-BRUE flow pattern are not used
for other flow patterns and vice versa. This necessitates the
exploration of the interior structure of 𝜀-R-BRUE route set.
Theorems 7 and 9 provide us with one approach of analyzing
the structure of 𝜀-R-BRUE without paradoxical route by
varying values of 𝜀.

4. Generation of 𝜀-R-BRUE Route Set without
Paradoxical Route

The route set is finite, while 𝜀 is treated as a continuous
parameter for the time being. Starting with the UE route set
when 𝜀 = 0, provided the network topology and the link
cost functions, UE can be determined by some established
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algorithms, for example, simplicial decomposition with dis-
aggregated (DSD) algorithm [31], gradient projection algo-
rithm [32], or origin-based algorithm [33]. According to
Theorems 7 and 9, when 𝜀 is gradually increased, more routes
will be included in the largest and smallest 𝜀-URS, and we
should be able to identify those used routes one by one, until
all alternative routes are included. This offers the theoretical
foundation for deriving different combinations of used routes
by varying 𝜀 subsequently.

4.1. Definition of Critical Points in 𝜀-R-BRUE. It is assumed
that there are 𝑛 alternative routes for OD pair 𝜔; that is, 𝐾 =
{1, . . . , 𝑛} and |𝐾| = 𝑛, where |𝐾| is the cardinality of set 𝐾.
Among these 𝑛 routes, there are 𝑟 shortest routes at the UE;
that is, 𝐾UE = {1, . . . , 𝑟} and |𝐾UE| = 𝑟 ≤ 𝑛. Below are the
definitions of critical points of the largest and smallest 𝜀-URS
in R-BRUE without paradoxical route.

Definition 10. The largest/smallest 𝜀-URS will remain the
same until 𝜀 reaches a special value, and we define this value
as critical points of the largest/smallest 𝜀-URS for OD pair
Omega; that is,

𝜀∗𝑙,1 ≜ inf
𝜀>0
{𝐾UE ⊂ 𝐾𝜀𝑙 } ;
...

𝜀∗𝑙,𝑗 ≜ inf
𝜀>0
{𝐾𝜀
∗
𝑙,𝑗−1

𝑙
⊂ 𝐾𝜀𝑙 } ,

...
𝜀∗𝑙,𝐽 ≜ inf

𝜀>0
{𝐾𝜀𝑙 = 𝐾} .

(10)

𝜀∗𝑠,1 ≜ inf
𝜀>0
{𝐾UE ⊂ 𝐾𝜀𝑠 } ;
...

𝜀∗𝑠,𝑖 ≜ inf
𝜀>0
{𝐾𝜀∗𝑠,𝑖−1𝑠 ⊂ 𝐾𝜀𝑠} ;
...

𝜀∗𝑠,𝐼 ≜ inf
𝜀>0
{𝐾𝜀𝑠 = 𝐾} ,

(11)

where 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝐼 are the unique sequences of
finite critical points 𝜀∗𝑙 and 𝜀∗𝑠 , with 𝜀∗𝑙,0 = 𝜀∗𝑠,0 = 0, 𝜀∗𝑙,𝐽+1 =
𝜀∗𝑠,𝐼+1 = ∞.

We give the physical meaning of 𝜀∗𝑙 and 𝜀∗𝑠 . A “newly
added route” of the largest 𝜀-URS is defined as the route
which is unavailable under 𝜀∗𝑙,𝑗−1 but available when 𝜀 = 𝜀∗𝑙,𝑗.
And a “newly added route” of the smallest 𝜀-URS is defined
as the route which is available under 𝜀∗𝑠,𝑧 : ∀𝑧 ≥ 𝑖 for all route
flow patterns, but unavailable under 𝜀∗𝑠,𝑖−1 for some route flow
patterns. We can define their “newly added route” as 𝑟∗𝑗 ≜
{𝑘 ∈ 𝐾 : 𝑘 ∈ 𝐾𝜀

∗
𝑙,𝑗

𝑙
, 𝑘 ∉ 𝐾𝜀

∗
𝑙,𝑗−1

𝑙
} and 𝑡∗𝑖 ≜ {𝑘 ∈ 𝐾 : 𝑘 ∈ 𝐾𝜀

∗
𝑠,𝑖
𝑠 , 𝑘 ∉

𝐾𝜀∗𝑠,𝑖−1𝑠 }, respectively. We should notice that the number of
“newly added routes” may be two or more at the same time.

K
𝜀𝑗
l

K

K

. .
.

. .
.

. .
.

. .
.

KUE

KUE
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s
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{KUE, r∗1 }

{KUE, r∗1 , . . . , r
∗
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{KUE, t∗1 , . . . , t
∗
i }

Figure 4: Monotonically nondecreasing property of critical points.

We use Figure 4 to more intuitively illustrate the defini-
tion of critical points of the largest and smallest 𝜀-URS in R-
BRUE without paradoxical route.

Clearly, from Figure 4, we can observe that the largest and
smallest 𝜀-URS can be described as𝐾𝜀𝑙 = {𝐾UE, 𝐾𝜀

∗
1

𝑙
, . . . , 𝐾𝜀∗𝑃

𝑙
}

and 𝐾𝜀𝑠 = {𝐾UE, 𝐾𝜀
∗
1
𝑠 , . . . , 𝐾𝜀

∗
𝑄

𝑠 } with a fixed indifference band
𝜀, where 𝜀∗𝑙,𝑀 ≤ 𝜀 < 𝜀∗𝑙,𝑀+1, 𝜀∗𝑠,𝑁 ≤ 𝜀 < 𝜀∗𝑠,𝑁+1, 𝑃 = min{𝑀, 𝐽},
and = min{𝑁, 𝐼}.
4.2. 𝜀-R-BRUE Route Set without Paradoxical Route for One
OD Pair. Definition 10 says that the largest and smallest 𝜀-
URS in R-BRUE without paradoxical route includes more
routes when 𝜀 increases to some critical values. Thus, the
mathematical programs (MP) with equilibrium constraint
can be developed to solve these critical values in largest and
smallest 𝜀-URS. Below is the MP equation for calculating
largest 𝜀-URS:

min 𝜀𝑙,𝑗 (12)

s.t. 𝐶𝑘 (f) − 𝜋 − 𝜌𝑘 = 0, ∀𝑘 ∈ 𝐾, (13a)

𝑓𝑘 (𝜀𝑙,𝑗 − 𝜌𝑘)
{
{
{
= 0, if 𝜀𝑙,𝑗 ≤ 𝜌𝑘,
> 0, o.w.,

∀𝑘 ∈ 𝐾, (13b)

∑
𝑘∈𝐾

𝑓𝑘 = 𝑞, (13c)

𝑓𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, (13d)

𝜌𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, (13e)

∑
𝑗∈𝐾
𝜀∗
𝑙,𝑗−1

𝑙

𝑓𝑗 < 𝑞, (13f)

where 𝑗 = 1, . . . , 𝐽. Equations (13a)–(13e) are to guarantee the
route flow pattern is a feasible R-BRUE; (13f) tries to push a
small amount of flow from the largest used route set 𝐾𝜀

∗
𝑙,𝑗−1

𝑙
to some newly largest used route if 𝜀𝑙 is increased a little bit.
When (13a), (13b), (13c), (13d), (13e), and (13f) are solved,
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Figure 5: Test network and routes characteristics.

optimal solutions (f∗, 𝜀∗𝑙,𝑗, 𝜋∗)will be obtained. And the newly
added route 𝑟∗𝑗 can be derived from the traffic flow f∗.

For any route 𝑖 ∈ 𝐾, following MP equation is used to get
the smallest 𝜀-URS:

max 𝜀𝑠,𝑖 (14)

s.t. 𝐶𝑘 (f) − 𝜋 − 𝜌𝑘 = 0, ∀𝑘 ∈ 𝐾, (15a)

𝑓𝑘 (𝜀𝑠,𝑖 − 𝜌𝑘)
{
{
{
= 0, if 𝜀𝑠,𝑖 ≤ 𝜌𝑘,
> 0, o.w.,

∀𝑘 ∈ 𝐾, (15b)

∑
𝑘∈𝐾

𝑓𝑘 = 𝑞, (15c)

𝑓𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, (15d)

𝜌𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, (15e)

𝑓𝑖 = 0. (15f)

Equations (15a)–(15e) are to guarantee the route flow pattern
is a feasible R-BRUE; and (15f) is to insure that no traffic flow
travels on route 𝑖. When 𝜀𝑠,𝑖 for all routes are worked out,
𝜀𝑠,𝑖 are sorted by their size. Then we get the form of 𝜀𝑠,𝑖 as
(11).When (15a), (15b), (15c), (15d), (15e), and (15f) are solved,
optimal solutions (f∗, 𝜀∗𝑠,𝑖, 𝜋∗)will be obtained. And the newly
added route 𝑡∗𝑖 can be derived from the traffic flow f∗.

Equations (13b), (13f), and (15b) are inequalities without
equal sign. A small positive parameter 𝛿 (such as 0.01) is
introduced to deal with this problem. And (13b), (13f), and
(15b) are replaced by

𝑓𝑘 (𝜀𝑙,𝑗 − 𝜌𝑘)
{
{
{
= 0, if 𝜀𝑙,𝑗 ≤ 𝜌𝑘,
≥ 𝛿, o.w.,

− ∑
𝑗∈𝐾
𝜀∗
𝑙,𝑗−1

𝑙

𝑓𝑗 ≥ (𝛿 − 1) 𝑞,

𝑓𝑘 (𝜀𝑠,𝑖 − 𝜌𝑘)
{
{
{
= 0, if 𝜀𝑠,𝑖 ≤ 𝜌𝑘,
≥ 𝛿, o.w.

(16)

Equations (13a), (13b), (13c), (13d), (13e), (13f), (15a), (15b),
(15c), (15d), (15e), and (15f) can be solved by GAMS software
[25, 34].

4.3. Instance of 𝜀-R-BRUE Route Set without Paradoxical
Route. The network topology of the test network, travel time
functions, and traffic demand are depicted in Figure 5. The

Route 4

Route 3

Route 2

Route 1

Value of 𝜀
0 1 2 3 4 5 6

Smallest 𝜀-URS
Largest 𝜀-URS

𝜀∗l,2 = 1.1

𝜀∗l,1 = 1

𝜀∗s,1 = 2.85

𝜀∗s,2 = 4.9

Figure 6: 𝜀-URS under all the critical points.

network consists of 3 nodes, 5 links, and 1ODpair. Red curves
on the right indicate 4 routes. The UE is 𝑓1 = 10, 𝑓2 = 10,𝑓3 = 0, and 𝑓4 = 0.

Solving (13a), (13b), (13c), (13d), (13e), (13f), (15a), (15b),
(15c), (15d), (15e), and (15f), we have the largest critical values
𝜀∗𝑙,0 = 0, 𝜀∗𝑙,1 = 1, 𝜀∗𝑙,2 = 1.1, and 𝜀∗𝑙,3 = ∞ and the smallest
critical values 𝜀∗𝑠,0 = 0, 𝜀∗𝑠,1 = 2.85, 𝜀∗𝑠,2 = 4.9, and 𝜀∗𝑠,3 = ∞.
There are three cases for the largest 𝜀-URS:

(1) 0 ≤ 𝜀 < 1 : 𝐾𝜀𝑙 = {1, 2}, and when 𝜀 = 0, f =
[10, 10, 0, 0], C = [10, 10, 10, 11.1].

(2) 1 ≤ 𝜀 < 1.1 : 𝐾𝜀𝑙 = {1, 2, 3}, and when 𝜀 = 1, f =
[10, 10, 0+, 0], C = [10, 10, 10, 11.1].

(3) 𝜀 ≥ 1.1 : 𝐾𝜀𝑙 = {1, 2, 3, 4}, and when 𝜀 = 1.1, f =
[10, 10, 0+, 0+], C = [10, 10, 10, 11.1].

And there are three cases for the smallest 𝜀-URS:
(1) 0 ≤ 𝜀 < 2.85 : 𝐾𝜀𝑠 = {1, 2}, and when 𝜀 = 0, f =
[10, 10, 0, 0], C = [10, 10, 10, 11.1].

(2) 2.85 ≤ 𝜀 < 4.9 : 𝐾𝜀𝑠 = {1, 2, 4}, and when 𝜀 = 2.85,
f = [11.1, 7.6, 1.3, 0+], C = [11.1, 8.25, 11.1, 11.1].

(3) 𝜀 ≥ 4.9 : 𝐾𝜀𝑠 = {1, 2, 3, 4}, and when 𝜀 = 4.9, f =
[7.1, 12, 0+, 0.9], C = [7.1, 12, 12, 12].

All largest and smallest 𝜀-URS are also illustrated in
Figure 6. For route 3, we can see that when the critical value 𝜀
reaches 1, route 3 will join in the used route set for some route
flow patterns; and when 𝜀 reaches 4.9, route 3 will be the used
route for all route flow patterns. In other words, the yellow
bar in Figure 6 means the route is either the used route or
unused route in different route flow patterns, while the blue
bar represents the routemust be a used route for all route flow
patterns. If 𝜀 is calibrated from empirical data as 3, then𝐾3𝑙 =
{1, 2, 3, 4},𝐾3𝑠 = {1, 2, 4}. Therefore, routes 1, 2, and 4 must be
the used routes, and route 3 may carry traffic flow or not.The
used route can be described as 𝐾3 = {{1, 2, 4}, {1, 2, 3, 4}}.
4.4. 𝜀-R-BRUE Route Set without Paradoxical Route for Mul-
tiple OD Pairs. For a network with total𝑊 OD pairs, let 𝜀∗𝜔𝑙,𝑗
and 𝜀∗𝜔𝑠,𝑖 be the largest and smallest critical points for OD pair
𝜔 ∈ 𝑊, 𝑗 = 0, 1, . . . , 𝐽𝜔, 𝑖 = 0, 1, . . . , 𝐼𝜔, respectively. Then,
𝜀∗𝑙,𝑗 ≜ {𝜀∗𝜔𝑙,𝑗 } and 𝜀∗𝑠,𝑖 ≜ {𝜀∗𝜔𝑠,𝑖 } are the sets of largest and smallest
critical points for all OD pairs.
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For one OD pair V ∈ 𝑊, we also can use (13a), (13b),
(13c), (13d), (13e), (13f), (15a), (15b), (15c), (15d), (15e), and
(15f) to solve the largest and smallest critical points. The only
difference is route costs need the information of route flows
across all OD pairs. And route flows f𝜔, 𝜔 ∈ 𝑊, 𝜔 ̸= V are
parameters when calculating the critical points of V.Then, we
modify (13a), (13b), (13c), (13d), (13e), (13f), (15a), (15b), (15c),
(15d), (15e), and (15f) as follows:

min 𝜀V𝑙,𝑗
s.t. 𝐶V

𝑘 (f) − 𝜋V − 𝜌V𝑘 = 0, ∀𝑘 ∈ 𝐾V,

𝑓V𝑘 (𝜀V𝑙,𝑗 − 𝜌V𝑘)
{
{
{
= 0, if 𝜀V𝑙,𝑗 ≤ 𝜌V𝑘 ,
> 0, o.w., ∀𝑘 ∈ 𝐾𝜔,

∑
𝑘∈𝐾𝜔

𝑓𝜔𝑘 = 𝑞𝜔, ∀𝜔 ∈ 𝑊,

𝑓V𝑘 ≥ 0, ∀𝑘 ∈ 𝐾V,
𝜌V𝑘 ≥ 0, ∀𝑘 ∈ 𝐾V,
∑
𝑗∈𝐾
𝜀∗V
𝑙,𝑗−1

𝑙

𝑓V𝑗 < 𝑞V,

max 𝜀V𝑠,𝑖
s.t. 𝐶V

𝑘 (f) − 𝜋V − 𝜌V𝑘 = 0, ∀𝑘 ∈ 𝐾V,

𝑓V𝑘 (𝜀V𝑠,𝑖 − 𝜌V𝑘)
{
{
{
= 0, if 𝜀V𝑠,𝑖 ≤ 𝜌V𝑘 ,
> 0, o.w., ∀𝑘 ∈ 𝐾𝜔,

∑
𝑘∈𝐾𝜔

𝑓𝜔𝑘 = 𝑞𝜔, ∀𝜔 ∈ 𝑊,

𝑓V𝑘 ≥ 0, ∀𝑘 ∈ 𝐾V,
𝜌V𝑘 ≥ 0, ∀𝑘 ∈ 𝐾V,
𝑓V𝑖 = 0.

(17)

Then the same approach can be used to generate the 𝜀-
R-BRUE route set without paradoxical route for multiple OD
pairs.

By far we have proposed how to solve 𝜀-R-BRUE route set
without paradoxical route for both single OD pair and mul-
tiple OD pairs. The following will discuss the methodology
of constructing 𝜀-R-BRUE route flow set without paradoxical
route.

5. Construction of 𝜀-R-BRUE Route Flow Set
without Paradoxical Route

We have already analyzed the interior structure of 𝜀-R-
BRUE route set without paradoxical route last section. As the
indifference band gradually increases, more routes will begin
to carry flows (the largest R-BRUE route set), andmore routes
must carry flows (the smallest R-BRUE route set). Based on
this characteristic, we decompose 𝜀-R-BRUE route set into
small subsets which are easier to study.

5.1. 𝜀-R-BRUE Flow Set without Paradoxical Route for One OD
Pair. Define a sequence of sets 𝐹𝜀𝑘 , 𝑘 = 0, . . . ,𝑀 − 𝑁, where
𝑀 and𝑁 are the cardinalities of largest and smallest 𝜀-URS.
Then we assign all the traffic demands as follows:

𝐹𝜀0 ≜ {f ∈ 𝐹 : ∀𝑖1, 𝑖2 ∈ 𝐾𝜀𝑠 : 𝑓𝑖1 , 𝑓𝑖2 > 0,
󵄨󵄨󵄨󵄨󵄨𝐶𝑖1 − 𝐶𝑖2

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀, ∑𝑓𝑖 = 𝑞; ∀𝑗 ∈ 𝐾𝜀𝑙 \ 𝑖 : 𝑓𝑗 = 0, 𝐶𝑗 −min𝐶𝑖 ≥ 𝜀} ,

𝐹𝜀1 ≜ {f ∈ 𝐹 : ∀ℎ ∈ 𝐾𝜀𝑙 \ 𝐾𝜀𝑠 ; ∀𝑝1, 𝑝2 ∈ 𝐾𝜀𝑠 , ℎ : 𝑓𝑝1 , 𝑓𝑝2 > 0,
󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 − 𝐶𝑝2

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀, ∑𝑓𝑝 = 𝑞; ∀𝑗 ∈ 𝐾𝜀𝑙 \ 𝑝 : 𝑓𝑗 = 0, 𝐶𝑗
−min𝐶𝑝 ≥ 𝜀} , ℎ = 𝐾𝜀𝑙,1, . . . , 𝐾𝜀𝑙,𝑀−𝑁 \ 𝐾𝜀𝑠 ,

𝐹𝜀𝑘 ≜ {f ∈ 𝐹 : ∀ℎ1, . . . , ℎ𝑘 ∈ 𝐾𝜀𝑙 \ 𝐾𝜀𝑠 ; ∀𝑝1, 𝑝2 ∈ 𝐾𝜀𝑠 , ℎ1, . . . , ℎ𝑘 : 𝑓𝑝1 , 𝑓𝑝2 > 0,
󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 − 𝐶𝑝2

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀, ∑𝑓𝑝 = 𝑞; ∀𝑗 ∈ 𝐾𝜀𝑙 \ 𝑝 : 𝑓𝑗
= 0, 𝐶𝑗 −min𝐶𝑝 ≥ 𝜀} , ℎ1, . . . , ℎ𝑘 : every 𝑘 routes in 𝐾𝜀𝑙,1, . . . , 𝐾𝜀𝑙,𝑀−𝑁 exclude 𝐾𝜀𝑠 , 𝑘 = 0, . . . ,𝑀 − 𝑁.

(18)

We use a bridge network to illustrate (18) in detail. The
network topology of the test network, travel time functions,
and traffic demand are depicted in Figure 7. The network
consists of 4 nodes, 6 links, and 1 OD pair. Red curves on the
right indicate 4 routes. The indifference band 𝜀 is set as 4, 10,
15, 30, and 60.

The UE is 𝑓1 = 10, 𝑓2 = 0, 𝑓3 = 0, and 𝑓4 = 10. That is,
routes 1 and 4 are utilized under UE. Substitute𝐾𝜀∗𝑙,0

𝑙
= 𝐾𝜀∗𝑠,0𝑠 =

{1, 4}, route costs, and the demand into (13a), (13b), (13c),
(13d), (13e), and (13f), we obtain the largest critical values

𝜀∗𝑙,0 = 0, 𝜀∗𝑙,1 = 5, 𝜀∗𝑙,2 = 11.3, and 𝜀∗𝑙,3 = ∞. Solving (15a),
(15b), (15c), (15d), (15e), and (15f), then we obtain the smallest
critical values 𝜀∗𝑠,0 = 0, 𝜀∗𝑠,1 = 17.5, 𝜀∗𝑠,2 = 52.5, and 𝜀∗𝑠,3 = ∞.
There are three cases for the largest 𝜀-URS:

(1) 0 ≤ 𝜀 < 5 : 𝐾𝜀𝑙 = {1, 4}, and when 𝜀 = 0, f =
[10, 0, 0, 10], C = [50, 65, 55, 50].

(2) 5 ≤ 𝜀 < 11.3 : 𝐾𝜀𝑙 = {1, 3, 4}, and when 𝜀 = 5, f =
[10, 0, 0+, 10], C = [50, 65, 55, 50].

(3) 𝜀 ≥ 11.3 : 𝐾𝜀𝑙 = {1, 2, 3, 4}, and when 𝜀 = 11.3, f =
[9.26, 0+, 2.59, 8.15], C = [49.63, 60.93, 60.93, 49.63].
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Figure 7: A bridge network and routes characteristics.

And there are three cases for the smallest 𝜀-URS:
(1) 0 ≤ 𝜀 < 17.5 : 𝐾𝜀𝑠 = {1, 4}, and when 𝜀 = 0, f =
[10, 0, 0, 10], C = [50, 65, 55, 50].

(2) 17.5 ≤ 𝜀 < 52.5 : 𝐾𝜀𝑠 = {1, 3, 4}, and when 𝜀 = 17.5,
f = [7.5, 0, 0+, 12.5], C = [40, 60, 57.5, 57.5].

(3) 𝜀 ≥ 52.5 : 𝐾𝜀𝑠 = {1, 2, 3, 4}, and when 𝜀 = 52.5, f =
[17.5, 0+, 0+, 2.5], C = [80, 80, 47.5, 27.5].

Then we assign all the traffic demands with diffident 𝜀 as
follows.

(1) When 𝜀 = 4, 𝐾4𝑙 = 𝐾4𝑠 = {1, 4}, and𝑀 = 𝑁 = 2, then
𝐹40 ≜ {f ∈ 𝐹 : 𝑓1, 𝑓4 > 0, 󵄨󵄨󵄨󵄨𝐶1 (f) − 𝐶4 (f)󵄨󵄨󵄨󵄨 ≤ 4, 𝑓1 + 𝑓4
= 20} .

(19)

(2) When 𝜀 = 10, 𝐾10𝑙 = {1, 3, 4}, 𝐾10𝑠 = {1, 4},𝑀 = 3,
and𝑁 = 2, then

𝐹100 ≜ {f ∈ 𝐹 : 𝑓1, 𝑓4 > 0, 󵄨󵄨󵄨󵄨𝐶1 (f) − 𝐶4 (f)󵄨󵄨󵄨󵄨 ≤ 10, 𝑓1
+ 𝑓4 = 20; 𝑓3 = 0, 𝐶3 (f) −min {𝐶1 (f) , 𝐶4 (f)}
≥ 10} ,

𝐹101 ≜ {f ∈ 𝐹 : ∀𝑖1, 𝑖2 ∈ {1, 4} , ℎ ∈ {3} ; ∀𝑝1, 𝑝2
∈ {1, 3, 4} : 𝑓𝑝1 , 𝑓𝑝2 > 0,

󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 (f) − 𝐶𝑝2 (f)
󵄨󵄨󵄨󵄨󵄨

≤ 10, 𝑓1 + 𝑓3 + 𝑓4 = 20} .

(20)

(3) When 𝜀 = 15, 𝐾15𝑙 = {1, 2, 3, 4}, 𝐾15𝑠 = {1, 4},𝑀 = 4,
and𝑁 = 2, then

𝐹150 ≜ {f ∈ 𝐹 : 𝑓1, 𝑓4 > 0, 󵄨󵄨󵄨󵄨𝐶1 (f) − 𝐶4 (f)󵄨󵄨󵄨󵄨 ≤ 15, 𝑓1
+ 𝑓4 = 20; ∀𝑗 ∈ {2, 3} : 𝑓𝑗 = 0, 𝐶𝑗
−min {𝐶1 (f) , 𝐶4 (f)} ≥ 15} ,

𝐹151 ≜ {f ∈ 𝐹 : ∀ℎ ∈ {2, 3} ; ∀𝑝1, 𝑝2
∈ {1, 4} , ℎ : 𝑓𝑝1 , 𝑓𝑝2 > 0,

󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 (f) − 𝐶𝑝2 (f)
󵄨󵄨󵄨󵄨󵄨

≤ 15, ∑𝑓𝑝 = 20; ∀𝑗 ∈ {1, 2, 3, 4} \ 𝑝 : 𝑓𝑗 = 0, 𝐶𝑗
−min𝐶𝑝 ≥ 15} , ℎ = 2, 3,

𝐹152 ≜ {f ∈ 𝐹 : ∀ℎ1, ℎ2 ∈ {2, 3} ; ∀𝑝1, 𝑝2
∈ {1, 2, 3, 4} : 𝑓𝑝1 , 𝑓𝑝2 > 0,

󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 (f) − 𝐶𝑝2 (f)
󵄨󵄨󵄨󵄨󵄨

≤ 15, ∑𝑓𝑝 = 20} .
(21)

(4) When 𝜀 = 30,𝐾30𝑙 = {1, 2, 3, 4},𝐾30𝑠 = {1, 3, 4},𝑀 = 4,
and𝑁 = 3, then

𝐹300 ≜ {f ∈ 𝐹 : ∀𝑖1, 𝑖2 ∈ {1, 3, 4} : 𝑓𝑖1 , 𝑓𝑖2
> 0, 󵄨󵄨󵄨󵄨󵄨𝐶𝑖1 (f) − 𝐶𝑖2 (f)

󵄨󵄨󵄨󵄨󵄨 ≤ 30, 𝑓1 + 𝑓3 + 𝑓4 = 20; 𝑓2
= 0, 𝐶2 (f) −min𝐶𝑖 ≥ 30} ,

𝐹301 ≜ {f ∈ 𝐹 : ℎ ∈ {2} ; ∀𝑝1, 𝑝2 ∈ {1, 2, 3, 4} : 𝑓𝑝1 , 𝑓𝑝2
> 0, 󵄨󵄨󵄨󵄨󵄨𝐶𝑝1 (f) − 𝐶𝑝2 (f)

󵄨󵄨󵄨󵄨󵄨 ≤ 30, 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4
= 20} .

(22)

(5) When 𝜀 = 60, 𝐾60𝑙 = 𝐾60𝑠 = {1, 2, 3, 4}, and𝑀 = 𝑁 =
4, then

𝐹600 ≜ {f ∈ 𝐹 : ∀𝑖1, 𝑖2 ∈ {1, 2, 3, 4} : 𝑓𝑖1 , 𝑓𝑖2
> 0, 󵄨󵄨󵄨󵄨󵄨𝐶𝑖1 (f) − 𝐶𝑖2 (f)

󵄨󵄨󵄨󵄨󵄨 ≤ 60, 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4
= 20} .

(23)

For convenience, we only show the R-BRUE solution sets
with 𝜀 = 4, 10, 15 in Figure 8. Due to the flow conservation
of the fixed demand, its R-BRUE solution sets can be
characterized by routes 1, 3, and 4 in Figures 8(b) and 8(c).
Figure 8(a) is composed of a 2-route green subset; Figure 8(b)
is composed of a 2-route green subset and 3-route yellow
subset; Figure 8(c) is composed of a 2-route green subset,
3-route yellow subset, and 4-route blue subset. The magenta
legend denotes that the solutions do not satisfy 𝜀-R-BRUE.

From Figure 8, we can see that (1) when 𝜀 = 15, in 𝐹150
(green subset), only routes 1 and 4 carry flow, so the subset
is a line. In 𝐹151 (yellow subset), route 3 begins to carry flow
and 𝑓3 > 0. In 𝐹152 (blue subset), route 2 begins to carry flow
and 𝑓2 > 0; (2) the solution set is bounded; this is because
𝐹𝜀R-BRUE ⊂ 𝐹 : 𝐹 ≜ {f : f ≥ 0, ∑𝑘∈𝐾𝜔 𝑓𝜔𝑘 = 𝑞𝜔, ∀𝜔 ∈ 𝑊},
while its closeness cannot be guaranteed due to 𝐶𝜔𝑘 (f) <
min𝑖∈𝐾𝜔𝐶𝜔𝑖 (f) + 𝜀𝜔 ⇒ 𝑓𝜔𝑘 > 0. In Figure 8(b), the travel time
of the UE solution fUE = [10, 0, 0, 10] on the magenta line is
CUE = [50, 65, 55, 50], and𝐶3 = 55 < 50+15, so𝑓3 should be
greater than 0 in R-BRUEmodel; henceCUE do not satisfy 10-
R-BRUE; (3) without considering the boundary point of 𝜀-R-
BRUE, the solution set is monotonically nondecreasing with
the increase of 𝜀; and (4) the subset is not necessarily convex
even though the link performance function is affine linear;
this is because the constraint condition of 𝐶𝑗 − min𝐶𝑖 ≥𝜀 is nonconvex. This property can be seen in the yellow
block which is nonconvex in Figure 8(c). Hence, we cannot
guarantee the convexity of 𝜀-R-BRUE solution set.



Discrete Dynamics in Nature and Society 9

f
4

10.6

10.4

10.2

10

9.8

9.6

f1

9.6 9.8 10 10.2 10.4 10.6

(9.43, 10.57)

UE: (10, 10)

(10.57, 9.43)

Solution set: F4
0

(a) R-BRUE solution set with 𝜀 = 4

f
4

12

11

10

9

8

7

f
3

4
2

0

f1

8 9 10 11 12

UE

(8.57, 0, 11.43)

(9, 0, 11)

(9.41, 2.06, 8.53)

(11.43, 0, 8.57)

(11.18, 0.88, 7.94)

Point out of solution set
Line out of solution set

Solution set: F10
0

F10
1

(b) R-BRUE solution set with 𝜀 = 10

Points out of solution set
Lines out of solution set

Solution set: F15
0

F15
2

F15
1

f
4

14

12

10

8

6

4

f
3

10
5

0

f1

5 6 7 8 9 10 11 12 13

UE

(5.56, 6.30, 4.44)
f2 = 3.70

(7.86, 0, 12.14)

(12.14, 0, 7.86)

(c) R-BRUE solution set with 𝜀 = 15

Figure 8: R-BRUE solution sets illustration.

5.2. 𝜀-R-BRUEFlowSetwithout Paradoxical Route forMultiple
OD Pairs. In the last section, we obtain 𝜀-R-BRUE route set
without paradoxical route for multiple OD pairs. Then, it is
not difficult to generalize the methodology of constructing

𝜀-R-BRUE flow set without paradoxical route for a single OD
pair to multiple OD pairs. We assign all the traffic demands
to the routes as follows:

𝐹𝜀0 ≜ {f ∈ 𝐹 : ∀𝜔 ∈ 𝑊, ∀𝑖𝜔1 , 𝑖𝜔2 ∈ 𝐾𝜀
𝜔

𝑠 : 𝑓𝑖𝜔1 , 𝑓𝑖𝜔2 > 0,
󵄨󵄨󵄨󵄨󵄨𝐶𝑖𝜔1 − 𝐶𝑖𝜔2

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀𝜔, ∑𝑓𝑖𝜔 = 𝑞𝜔; ∀𝑗𝜔 ∈ 𝐾𝜀
𝜔

𝑙 \ 𝑖𝜔 : 𝑓𝑗𝜔 = 0, 𝐶𝑗𝜔

−min𝐶𝑖𝜔 ≥ 𝜀𝜔} ,

𝐹𝜀𝑘 ≜ {f ∈ 𝐹 : ∀𝜔 ∈ 𝑊, ∀ℎ𝜔1 , . . . , ℎ𝜔𝑘𝜔 ∈ 𝐾𝜀
𝜔

𝑙 \ 𝐾𝜀
𝜔

𝑠 ; ∀𝑝𝜔1 , 𝑝𝜔2 ∈ 𝐾𝜀
𝜔

𝑠 , ℎ𝜔1 , . . . , ℎ𝜔𝑘𝜔 : 𝑓𝑝𝜔1 , 𝑓𝑝𝜔2 > 0,
󵄨󵄨󵄨󵄨󵄨𝐶𝑝𝜔1 − 𝐶𝑝𝜔2

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀𝜔, ∑𝑓𝑖𝜔

= 𝑞𝜔; ∀𝑗𝜔 ∈ 𝐾𝜀𝜔𝑙 \ 𝑝𝜔 : 𝑓𝑗𝜔 = 0, 𝐶𝑗𝜔 −min𝐶𝑝𝜔 ≥ 𝜀𝜔} ,

ℎ𝜔1 , . . . , ℎ𝜔𝑘𝜔 : every 𝑘𝜔 routes in 𝐾𝜀
𝜔

𝑙,1 , . . . , 𝐾𝜀
𝜔

𝑙,𝑀−𝑁 exclude 𝐾𝜀𝜔𝑠 , ∑𝑘𝜔 = 𝑘, 𝑘 = 0, . . . ,𝑀 − 𝑁.

(24)
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6. Conclusions

In this paper, a boundedly rational user equilibrium model
with restricted unused routes (R-BRUE) was proposed. This
new model assumes that travel cost of all used route is less
than or equal to the sum of given indifference band and the
shortest route cost; meanwhile, the travel cost of the unused
route is greater than or equal to the sum of indifference band
and the shortest route cost. The mathematical formulation of
the proposed model was then established.

Before constructing the R-BRUE flow set, largest and
smallest used route sets were explored first. As the value of the
indifference band increases, some routes which were not uti-
lized before will be taken, and thus the route set that contains
the equilibrium flow was named as the largest used route set.
As the value of the indifference band increases, some routes
which must be utilized for all R-BRUE flow patterns will be
taken, and this route set was defined as the smallest used route
set. Paradoxical route is defined as that with the increasing of
OD demand; the UE flow on the paradoxical route increases
first and then decreases. The monotonically nondecreasing
property of largest and smallest used route sets without
paradoxical route is proved.

The critical values of the indifference band to augment
the largest and smallest used route sets can be identified by
sequentially solving a class of mathematical programs. After
the largest and smallest used route sets are obtained, the
whole R-BRUEflow set can be obtained by assigning all traffic
demands to the corresponding generated route set.

The proposed model is appealing in modeling realistic
travel behavior. But due to the nonconvexity of the feasible
region, it is difficult to get the solution using mathematical
programming method, and our method which is separation
of the solution sets takes heavy computational burdens. In
future research, we will study the solution algorithm and then
apply the built model to real traffic network, such as the
autonomous vehicles. Also, it is worthwhile to extend the pro-
posedmodel to the network design problem, such as enhanc-
ing capacities of the established links, congestion pricing, and
adding new links to an existing road network.
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