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We present a multilayer model to characterize the weekday and weekend patterns in terms of the spatiotemporal flow size
distributions in subway networks, based on trip data and operation timetables obtained from the Beijing Subway System. We also
investigate the disparity of incoming and outgoing flows at a given station to describe the different spatial structure performance
between transfer and nontransfer stations. In addition, we describe the essential interactions between PFN and TFN by defining
an indicator, real load. By comparing with the two patterns on weekday and weekend, we found that the substantial trends have
roughly the same form, with noticeable lower sizes of flows on weekend ascribed to the essential characteristics of travel demand.

1. Introduction

In recent years, complex network theory has become an
important approach to the study of the structure and dynam-
ics of traffic networks. Mining spatiotemporal statistical
regularities of the human behavior is a common focus of sta-
tistical physics and complexity sciences.The human behavior
spatiotemporal regularities are the bases of reasonable traffic
infrastructure planning, improvement of level of service, and
traffic jam control. The patterns on weekday and weekend
have been paid more attentions because they affect common
lives. Because subway is an important subsystem of urban
commuting transportation system, the travel demands on
weekdays are quite different from that on weekends.

Transportation engineers studied the differences of
human travel behaviors between weekdays and weekends by
collecting databases with the survey data [1–7]. However,
some problems are still observed in the survey data approach.
For example, survey data is disadvantaged by high cost, low
frequency, and small sample size [7]. Moreover, it still lacks a
precisemethod to analyze the statistical regularities of a single
mean of transportation.

Nowadays, with the development of electronic technique,
more andmore approaches (such as mobile phone data, GPS,

and smart card) can be used for recording the data of human
individual spatiotemporal movements. The data provide a
possibility to analyze human travel behavior statistically [8–
13]. Complex network theory is a research field that is concer-
ned with the connections and interactions among compo-
nents in a system, and it has offered an important approach
to study the structure of subway systems [14–20]. Recently,
studies of metro traffic flow distributions underlying the
physical topology with a weighted network-based approach
have proved that complex network is a useful method for
human travel behavior statistical analysis [21–27]. Kurant and
Thiran [21, 22] were the first researchers to analyze train flow
networks using timetables from Warsaw’s mass transporta-
tion system; they found the edge weight and node strength
distributions to be heavily right-skewed and heterogeneous,
although they did not focus on the differences between week-
days train flowpatterns and those onweekends. Soh et al. [24]
applied a complex weighted network to the passenger flows
of the Singapore Rapid Transit System (RTS) and concluded
that weighted eigenvector centralities elucidated significant
differences in the passenger flows onweekdays andweekends,
although they use an average weight to describe passenger
moving between the different nodes on weekdays and week-
end. But they have focused only on passenger flow networks.
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Table 1: Parameters used in studies of different travel behaviors on weekdays and weekends.

Study Data type Period Scope Time
Seoul metropolitan area [1] Survey data Weekend 3,700 households June 2002

Montreal and Quebec [2] Survey data 81 weekdays and 32
weekend days 1,400,000 households From August 24 to December

13, 1998
Calgary [3] Survey data Weekdays and weekends 13,000 records Late 2001 and early 2002
The greater Phoenix
metropolitan area in Arizona [4] Survey data Weekend 4,400 households 2008-2009

Paris region [5] Survey data Weekdays and weekends 23,656 persons in 2001
and 23,601 in 1983 1983 and 2001

San Francisco bay area [6] Survey data
2-day period (Friday and
Saturday or on Sunday

and Monday)
15,000 households 2000

Chicago metropolitan region [7] Survey data 1-day or 2-day survey 10,552 households
(32,366 individuals)

Between January 2007 and
February 2008

Singapore [8] Smart card data One complete week Over 36 million
individual trip records

FromMarch 19, 2012,
(Monday) till March 25, 2012

(Sunday)
Rennes Métropole [9] Smart card data The month of April 2014 — 2014
Our study (Beijing Subway
System) Smart card data Weekday and weekend Over 27 million

individual trip records
April 15, 2014, and April 19,

2014

However, because traffic data is difficult to collect, previous
studies have usually focused on the physical topology of sub-
way systems, whereas few studies have considered the differ-
ences between traffic flow characteristics on weekdays and
weekends.

First, this paper aims to obtain statistical properties,
such as weights and strengths distributions, that characterize
the structure and behavior of both passenger flow network
(PFN) and train flow network (TFN) on weekday (WDPFN,
WDTFN) and weekend (WEPFN, WETFN). Second, we
suggest appropriateways tomeasure the essential interactions
between patterns in PFN and TFN and to explain the mean-
ing of these results moreover. Third, we give helpful sugges-
tion to improve the organizations of metro systems.

A comparison between our work and the existing litera-
ture considering travel behaviors on weekdays and weekends
is given by Table 1.

This paper is organized as follows. In Section 2 we
present a multilayer model to analyze traffic flow patterns in
subway networks based on trip data and operation timetables
obtained from the Beijing Subway System. Section 3 presents
the weekday and weekend patterns and the differences
between these two patterns. Section 4 summarizes the results.

2. Data Preparation

2.1. Graph Dataset. In this study, we define a graph of a sub-
way network with 𝑁 stations connected by 𝐸 bi-directional
edges. Our data contains the stations with their physical
coordinates in Beijing Subway System (BSS). As of May, 2015,
the BSS network has 18 lines; 𝑁 = 319 unique stations and
𝐸 = 612 sections between stations in operation, which can be
seen in Figure 1.

2.2. Smart Card Data. The smart card system used in BSS is
called Yikatong electronic ticketing. The Yikatong electronic
ticketing dataset contains precise timing and location infor-
mation for both boarding and alighting.

This present study is conducted based on smart card
records on Tuesday, April 15, 2014, and Saturday, April 19,
2014.

2.3. Timetables. BSS operation timetable describes the arrival
and departure times for each station at which the trains stop,
the length of time that each train stays at each station, and the
running times for each track section.

Our train flow analysis uses BSS operation timetable from
the same dates. It is important to note there are two different
timetables on weekdays and weekends.

2.4. Case Study. Because the data is difficulty to collect, our
study focuses on a subsystem network that consists of 5 lines;
𝑁 = 100 unique stations, and 𝐸 = 192 sections.

Moreover, the weekday datasets encompassed a total of
44,424 trains and 27,197,333 individual passengers moving
through the network on Tuesday, April 15, 2014. And the
weekend datasets encompassed a total of 42,965 trains and
7,060,927 individual passengers.

A train flow matrix 𝐴 and a passenger flow matrix 𝐵
were constructed to analyze the BSS train and passenger trip
data. The elements of 𝐴 and 𝐵, respectively, represented the
numbers of trains and passengers taking trips between a pair
of adjacent stations over a given period time. All of the data
was divided into half-hour segments, so that the given period
Δ𝑡 = 30min was the time interval over which the numbers
of passenger movements were aggregated. The analysis of
these flow matrices over several time intervals at different
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Figure 1: The subway real physical network of the BSS. The metro network and the road network are presented by white and gray lines,
respectively. Moreover, the five lines we studied in this paper are shown by color.

operational times of day will explicitly define the traffic flow
patterns within the network.

3. Model

We constructed two directed weighted networks TFN and
PFNof a subway systemby incorporating the trip data and the
timetables. Figure 2 presents a simplified example of how the
passenger transport demand through an operation service
network (train flow network) and finally forms a passenger
flow network on a physical network of 𝑁 = 8 nodes and
𝐸 = 14 directed edges. Sometimes the passenger demand
cannot be satisfied by the train capacity; bottleneck occurs in
the subway system. Thus, the passenger flow network is not
mapped directly by the passenger transport demand network
when the bottleneck occurs.

As shown in Figure 2, there are a passenger demand
network and two traffic flow networks PFN and TFN, which
are represented as three directed weighted graph 𝐺𝑑, 𝐺𝑝, and𝐺𝑡.

3.1.Weight and Strength. In order to have a preliminary grasp
on the data, we firstly analyze the weight and strength of
traffic flow. An associated weighted adjacency matrix 𝑊𝑡 ={𝑤𝑡(𝑖𝑗)} representing the train flow from station 𝑖 to station 𝑗
and an associated weighted adjacency matrix𝑊𝑝 = {𝑤𝑝(𝑖𝑗)}

representing the passenger flow from station 𝑖 to station 𝑗 as
follows

𝑤𝑡 (𝑖𝑗) = train flow from 𝑖 to 𝑗,
𝑤𝑝 (𝑖𝑗) = passenger flow from 𝑖 to 𝑗. (1)

The above subscripts 𝑖 and 𝑗 appear as destination-source
station; for example,𝑓𝑡(𝑖𝑗) denotes the train flow of departure
(outflow) of station 𝑖, moving in the 𝑖 → 𝑗 direction, while
𝑓𝑡(𝑖𝑗) denotes the train flow of arrival (inflow) of station 𝑖,
moving in the 𝑗 → 𝑖 direction. It is noted that in our content
the subscripts particularly refer to a pair of two adjacent
stations unless otherwise mentioned.

Subsequently, in TFN, a node’s strength of station 𝑖 noted
as 𝑠𝑡(𝑖) is simply denoted as the sumof theweights on the edge
incident upon it and shall be defined as

𝑠𝑡 (𝑖) = ∑
𝑗

𝑤𝑡 (𝑗𝑖) +∑
𝑗

𝑤𝑡 (𝑖𝑗)

= node strength of station 𝑖 in TFN.
(2)

In PFN, the node strength of station 𝑖 noted as 𝑠𝑝(𝑖) shall
be defined as

𝑠𝑝 (𝑖) = ∑
𝑗

𝑤𝑝 (𝑗𝑖) +∑
𝑗

𝑤𝑝 (𝑖𝑗)

= node strength of station 𝑖 in PFN.
(3)



4 Discrete Dynamics in Nature and Society

A
B C

D

E

F

G

H

(c) Passenger flow network

(b) Operation network (train flow network)

(a) Passenger demand 

A
B C

D

E

F

G

H

F

Line 1
Line 2

A
B C

D

E

G

H

Gd

Gt

Gp

Figure 2: Schematic representation of an example of (a) the
passenger transport demand of the subway infrastructure network
with𝑁 nodes and𝑁(𝑁 − 1) edges, (b) the train flow network with
𝑁 nodes and 𝐸 edges, and (c) the corresponding passenger flow
network with𝑁 nodes and 𝐸 edges.

Thus, we define the traffic flows on weekday and week-
end, respectively, as 𝑤𝑝wd(𝑖𝑗) and 𝑤𝑝we(𝑖𝑗) and 𝑤𝑡wd(𝑖𝑗) and
𝑤𝑡we(𝑖𝑗) and the strength as 𝑠𝑝wd(𝑖) and 𝑠𝑝we(𝑖) and 𝑠𝑡wd(𝑖) and
𝑠𝑡we(𝑖).

Furthermore, in PFN, there are considerable passenger
flows moving into station 𝑖 from outside the network and
moving out of the network for the same station, which can
be denoted by 𝛿𝑝(o𝑖) and 𝜑𝑝(𝑖o) as follows

𝛿𝑝 (o𝑖) = passenger flow from outside to 𝑖,
𝜑𝑝 (𝑖o) = passenger flow from 𝑖 to outside.

(4)

We define the incoming flow 𝑈𝑝(𝑖) and outgoing flow
𝑉𝑝(𝑖) at a given station 𝑖 in order to explore the average
crowdedness and utilization rate of a station.

𝑈𝑝 (𝑖)
= ∑
𝑗

𝑤𝑝 (𝑗𝑖)

+ 𝛿𝑝 (o𝑖) passenger flow incoming station 𝑖,
𝑉𝑝 (𝑖)
= ∑
𝑗

𝑤𝑝 (𝑖𝑗)

+ 𝜑𝑝 (𝑖o) passenger flow outgoing form station 𝑖.

(5)

3.2. Disparity. We now define the time averaged incoming
passenger flow and outgoing flow at a given station:

𝑈in (𝑖) = ∑
𝑗

𝑈𝑝 (𝑖) average passenger flow incoming station 𝑖,

𝑉out (𝑖) = ∑
𝑗

𝑉𝑝 (𝑖) average passenger flow outgoing station 𝑖. (6)

And we define that the disparity [28, 29] in the weights of
a given station 𝑖 can be evaluated by the quantities𝑌2-in(𝑖) and𝑌2-out(𝑖) defined as [30, 31]

𝑌2-in (𝑖)

= ∑
𝑗

[ 𝑤𝑗𝑖
𝑈in (𝑖)]

2

disparity of passenger incoming flow at station 𝑖,

𝑌2-out (𝑖)

= ∑
𝑗

[ 𝑤𝑖𝑗
𝑈out (𝑖)]

2

disparity of passenger outgoing flow at station 𝑖.

(7)

3.3. Real Load. The real load [21, 22] of a node 𝑙(𝑖) is the sum
of the weights of all logical edges whose paths traverse this
node. In a subway system, there are three kinds of real load:
𝑙𝑡(𝑖), 𝑙𝑝(𝑖), and 𝑙𝑝-𝑡(𝑖). The first two are the train flows and
passenger flows loading on the physical topology of subway
system network, which can be presented by node strength.
However, the third one is to measure the passenger flows
average crowdedness underlying the TFN, which fully reveals
the essential interactions between PFN and TFN.

An associated weighted adjacency matrix 𝐿𝑝-𝑡 = {𝑙𝑝-𝑡(𝑖)}
representing the passenger flow underlying the train flow
network from station 𝑖 to station j:

𝑙𝑝-𝑡 (𝑖) = ∑
𝑗

𝑤𝑝 (𝑖𝑗)
𝑤𝑡 (𝑖𝑗) the real load moving from 𝑖 to 𝑗. (8)

4. Results and Discussions

4.1. Weight and Strength Distributions. In order to get a pre-
liminary grasp on the data, we first obtain statistical prop-
erties of the train flow and passenger flow networks for the
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Table 2: Statistical properties of the PFN and TFN on weekday and
weekend.

Property WDPFN WEPFN WDTFN WETFN
Weight range (0, 22220) (0, 9437) (0, 14) (0, 10)
Average weight,
⟨𝑤⟩ 2951.10 2261.26 4.81 4.07

Strength range (0, 116123) (0, 48805) (0, 125) (0, 66)
Average strength,
⟨𝑠⟩ 12689.78 7905.14 21.16 17.50

Weight fitted
distribution Power law Power law Weibull Weibull

Strength fitted
distribution Power law Power law Weibull Weibull
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Figure 3: In PFN, flow weight and node strength distributions. The
weights of passenger flow 𝑤𝑝wd and 𝑤𝑝we can be fitted by power law
distributions with exponents 𝛾 = 0.96 and 𝛾 = 0.90, respectively.
The goodness-of-fit (𝑅2) are all 0.99. And the strengths 𝑠𝑝wd and 𝑠𝑝we
can be fitted by power law distributions with exponents 𝛾 = 0.73 and
𝛾 = 0.50, respectively. The goodness-of-fit (𝑅2) are 0.99 and 0.56.

BSS. The basic statistical properties of weight and strength
distributions are listed in Table 2. According to Table 2, the
sizes and fitted distributions of PFN and TFN are obviously
different. In order to get a deeper insight of these two net-
works, we carried out a weighted analysis and plotted the
results, respectively, in Figures 3 and 4. Figure 3 shows the
distributions of the number of passenger trips between two
adjacent stations and the distributions of the number of
passengers one station handles, respectively, on weekday and
weekend.

There are three aspects that have to be addressed and
can be seen in Figure 3. Firstly, it is observed that all of the
passenger flow weight and strength distributions 𝑃(𝑤𝑝) and𝑃(𝑠𝑝) are significant right-skilled on log-log scale which can
be fitted by power law distributions. This indicates that the
passenger flowpatterns vary in intensity, and there exist travel
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Figure 4: In TFN, flow weight and node strength distributions.
The weights of train flow 𝑤𝑡wd and 𝑤𝑡we can be fitted by Weibull
distributions with parameters 𝛽 = 3.13 and 𝜂 = 274.73 and 𝛽 = 3.69
and 𝜂 = 654.45, respectively. The goodness-of-fit (𝑅2) are 0.77
and 0.93. And the strengths 𝑠𝑡wd and 𝑠𝑡we can be fitted by Weibull
distributions with parameters 𝛽 = 1.65 and 𝜂 = 219.64 and 𝛽 = 0.82
and 𝜂 = 16.64, respectively. The goodness-of-fit (𝑅2) are 0.90 and
0.90.

routes and hub nodes with very high traffic. This kind of
heterogeneous passenger flow organization is corroborated
by previous studies [23, 24, 27]. However, compared to
previous studies, our case networks are more significant than
the Metropolitan Seoul Subway system (𝛾 = 0.56) [23] and
more noticeable than the Singapore Rapid Transit system
(𝛾 = 1.664 on weekday and 𝛾 = 1.637 on weekend) [24] but
are similar to the total system of BSS (𝛾 = 1.02) [27].This can
be attributed to the heterogeneous flow intensities caused by
an urban spatial mismatch. Secondly, the sizes of passenger
flows onweekend are considerably lower than those onweek-
day, especially at the travel routes and hub nodes handling
high traffic.This indicates that the travel demand onweekend
is lower than that on weekday.This discrepancy inmagnitude
shown here implies different travel patterns between week-
days and weekends, as people would have to choose different
way to fulfill their goals (such as shopping, socializing, enter-
tainment, and leisure) on weekend, which has been reported
in human travel activities survey studies [3, 5, 6]. For example,
the average number of daily person trips for every traveler is
3.40 forweekdays and 3.14 and 2.85 for Saturdays and Sundays
[6]. Thirdly, the weight and strength distribution lines on
weekend both have a significant turning point in the plots,
which are not as smooth as those on weekday.

As shown in Figure 4, the train flow weight distributions
have significantly unimodal trend with a skewness leaned to
the front and a smoothly light tail on log-log scales, which can
be fitted by Weibull distributions. The strength distributions
present a clear right-skewed asymmetry trend and a heavy-
tailed characteristic on log-log scales, which also can be fitted
by Weibull distributions. It is clear that the sizes of train flow
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Figure 5: Incoming and outgoing passenger flows distributions. The weight of incoming flow on weekday and weekend 𝑈𝑝wd and 𝑈𝑝we can
be fitted by exponential distributions with exponents 𝜃 = 0.0167 and 𝜃 = 0.0184, respectively. The goodness-of-fit (𝑅2) are 0.97 and 0.96.The
weight of outgoing flows 𝑉𝑝wd and 𝑉𝑝we can be fitted by exponential distributions with exponents 𝜃 = 0.0173 and 𝜃 = 0.0183, respectively.
The goodness-of-fit (𝑅2) are both 0.97.

on weekend are slightly lower than those on weekday. It is
important to note that there are two different timetables on
weekday and weekend in order to match the working and
nonworking day passenger flow patterns. For the total pas-
senger trip data on weekend is an order of magnitude lower
than the data on weekday and the operational train numbers
have been reduced. Moreover, the form of fitted distributions
in TFN is the Weibull distribution, which is different from
that in PFN. The fundamental differences between these
two coexisting flow networks may be attributed to the fact
that the dynamic evolution rules of TFN are similar to a
branching process and the dynamic patterns of PFN are self-
organized. In other words, in TFN the size of newly train flow
is determined by the redistribution of the size of preexisting
flow intensities; thus the Weibull distribution is expected
to emerge [25, 32]. On the contrary, in PFN the size of
newly passenger flow is determined by not only the size of
preexisting flow but also the passenger flowsmoving between
that station and outside of the network, which will be studied
in Section 4.2

4.2. Disparity Distributions in PFN. Now we aim to find and
highlight the patterns of passenger flows both taking trips
between adjacent stations and using a station (i.e., entering
into and leaving a station). The size distributions of total
incoming flow and outgoing flow at a given station 𝑖 are
presented in Figure 5.

As detailed in Figure 5, the weight distribution patterns
of incoming and outgoing passenger flows show mostly
noticeable declined characteristics, smoothly in the middle

and rapidly at the front and the tail. First, the incoming
and outgoing flows on both weekday and weekend can be
fitted by exponential distributions. This pattern displays the
same trend as the cases observed in many works, such as
metro passenger flows [27] and Internet traffic [31]. And
this exponential trend means that the spatial structure of
total incoming and outgoing flows in PFN display a bilevel
performance [31]. Second, it is not a surprise to find that the
weights on weekday are both larger than those on weekend,
which is attributed to the travel demand. Roughly, the orders
of most visited and passenger sending stations are stable on
both weekday and weekend. To clearly characterize the fine
structure of the incoming and outgoing flows at station i, we
plot the disparity distribution in Figure 6.

There are three aspects that have to be noticed in Figure 6.
The first question involves that the 𝑃(𝑌2) distributions all
present a special bimodal structure. This is a further illustra-
tion of the bilevel performance presented in spatial patterns
structure. The second problem relates to the differences
between𝑌2-in and𝑌2-out that the𝑌2-out are larger in small value
range and𝑌2-in are larger in large value range. In PFN, a small
value of 𝑌2 means that the weights on each adjacent edge are
similar, and a large value indicates the existence of dominative
edge. Thus, the spatial patterns of incoming flows are scat-
tered and those of outgoing flows seem to be more concen-
trated. The third aspect deals with the fact that the values of
𝑌2 are similar to 1/𝐽 (𝐽 is the number of adjective stations
of station 𝑖) ≃ 1/2 = 0.5 (except for few transfer stations with
more than 2 adjective stations and terminal stations with only
1 adjective station). This high homogeneity means that the
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Figure 6:The probability distributions of 𝑌2 for both incoming and
outgoing flows on (a) weekday and (b) weekend. The distributions
on weekday are peaked for 𝑌2-in ≈ 0.45 and 𝑌2-out ≈ 0.24 and
both concentrated in the range (0.20, 0.25) and (0.30, 0.48). The
distributions on weekend are peaked for 𝑌2-in ≈ 0.45 and 𝑌2-out ≈
0.43 and both concentrated in the range (0.20, 0.26) and (0.30, 0.50).

weights of incoming and outgoing flows in each level are
relatively close.

4.3. Real Load Distribution. Next we investigate the real load
distributions of the two network systems: WD and WE. It is
important to note that the real load distribution here is an
important indicator to analyze the correlation between PFN
and TFN. This indicator can be seen as appropriate measure
of the train capacity utilization rate in the metro system,
which can be interpreted as the passenger density in a train.
Figure 7 shows the distributions and the temporal patterns
of the real load on weekday and weekend. In order to get
a deeper insight into the structure of the two real load
networks, we present the spatial patterns in Figure 8.

In Figure 7(a), we can clearly observe that the real load
distributions 𝑃(𝑙𝑝-𝑡wd) and 𝑃(𝑙𝑝-𝑡we) are remarkable right-
skilled on log-log scale which can be fitted by power law
distributions and showmarkedly heavy-tailed characteristics.
Moreover, the quantities of 𝑙𝑝-𝑡we are lower than 𝑙𝑝-𝑡wd in the
tail part of distribution line, indicating that the real load on
weekend is less than that on weekday. Figure 7(b) presents
the temporal patterns of passenger traveling in TFN onweek-
day. It is clear that there are two distinct peaks—07:00∼
10:00 and 18:00∼20:00 corresponding to the peak hours on
working day. Moreover, themorning peak is more prominent

than the evening peak in both the traffic density and the
temporal duration. As apparent from Figure 7(c), there are
two moderate morning and evening peaks, 07:00∼09:00 and
19:00∼22:00with themorning peakmore prominent in traffic
density and the evening peak more prominent in the tem-
poral duration. Comparing Figures 7(b) and 7(c), the peaks
on weekend are much lower than those on weekday, which
indicates a highly uneven utilization of the underlying train
flow network on weekday and a highly level of service sup-
plied by the metro system on weekend. It could be concluded
that the temporal pattern on weekday and weekend networks
presents a dissimilar match as expected.

As illustrated by Figure 8(a), the spatial clustering of a
large number of heavy-burdennodes is distributed alongLine
1’s east-west route and Line 5’s north-south route on weekday.
On the other hand, the spatial pattern on weekend presents
the clustering phenomenon around the transfer stations. In
summary, the dense distribution areas in the spatiotemporal
pattern indicate bottlenecks in the train capacity, which can
aid in the effective operation of train services.

In this paper, we found and highlighted the statistical
properties and spatiotemporal patterns including the size dis-
tributions in PFN that can be well approximatedwith a power
law distribution which indicates that the passenger flow
patterns vary in intensity with hub nodes and busy edges on
both weekday andweekend; by contrast, the fitted form of the
size distributions in TFN isWeibull, which may be attributed
to the fact that the dynamic evolution in TFN is similar to
a branching process for there are no train flows exchanged
between TFN and outside. We also suggest using a quantity
𝑌2 to measure the disparity of each node in PFN, and the
results show a significant two-level performance caused by
the different dynamics flows evolution process between the
transfer and nontransfer stations.

By comparing with the two patterns on weekday and
weekend, we found that the substantial trends have the
roughly same form, with noticeable lower sizes of flows on
weekend ascribed to the essential characteristics of travel
demand on weekends. As a result, the real load on weekend
presents a loose and comfortable performance on spatiotem-
poral patterns.

5. Conclusions

Prior work has documented that complex network methods
are useful for studying the underlying physical topology of
traffic flows in metro systems. However, little research has
been conducted on both passenger and train flow patterns or
intrinsic differences between weekday and weekend.

In this paper, we found and highlighted the statistical
properties and spatiotemporal patterns in PFN and TFN
based on a contribution of two directed weighted networks
using the trip dataset collected from smart card transactions
and the train movement dataset processed from operation
timetable. We characterized the flow weight and strength
distributions and found that the heterogeneous feature of pas-
senger flow shows a self-organized pattern in which spatial
mismatch occurs as individual passengers commute through
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Figure 7: Real load (a) distributions on log-log scale and temporal patterns of (b) weekday and (c) weekend. In (a), the real loads 𝑙𝑝-𝑡wd and
𝑙𝑝-𝑡we can be fitted by power law fits with exponents 0.55 and 0.56, respectively. The 𝑅2 are all 0.97.

the city’s center; on the other hand, the train flows evolu-
tion dynamics present a redistribution of preexisting flow
intensities. We also investigated the disparity of incoming
and outgoing flows at a given station to describe the bilevel
performance (transfer and nontransfer stations) of the spatial
structure. We further discussed the fundamental correlation
betweenPFNandTFNby defining an indicator, real load, and
characterizing the size distribution and spatiotemporal pat-
terns on weekday and weekend, respectively. By comparing
with the two different patterns, we found that the real load
on weekend presents a loose and comfortable performance
in whole temporal duration and that on weekday shows two
obvious congested periods of time, which are the results of
the sizes of flows on weekend that are noticeably lower than

those on weekday ascribed to the essential characteristics of
travel demand on weekends.

The empirical findings can give us some useful insights
on patterns of urban human mobility within a large metro
network on both weekday and weekend. As travel demand
increases and infrastructure construction is constrained, traf-
fic congestion takes place not only at morning and evening
peak hours on weekdays but also in major shopping centers,
sports arenas, and recreational areas in big cities over week-
ends. Adopting a complex network approach to study the
passenger and train flow patterns can therefore be beneficial
for effective operation of train services.

This study is limited in that only five subway lines
were analyzed because of the difficulty associated with data



Discrete Dynamics in Nature and Society 9

(a) Real load on weekday

(b) Real load on weekend

Figure 8: Real load spatial patterns on weekday and weekend.

collection, and research on the overall systemwithmore lines
should be conducted to further validate the above conclu-
sions.Moreover, other traffic flowmodels of subway networks
could be explored from a variety of layered perspectives.
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[31] M. Barthélemy, B. Gondran, and E. Guichard, “Spatial structure
of the internet traffic,” Physica A: Statistical Mechanics & Its
Applications, vol. 319, no. 7, pp. 633–642, 2003.

[32] S. Goh, H. W. Kwon, M. Y. Choi, and J.-Y. Fortin, “Emergence
of skew distributions in controlled growth processes,” Physical
Review E, vol. 82, no. 6, Article ID 061115, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


