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We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic
properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions
defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we
give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we
also give a concept of almost automorphic functions onmore general time scales that can unify the concepts of almost automorphic
functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the
existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.

1. Introduction

Because the theory of quantum calculus has important
applications in quantum theory (see Kac and Cheung [1]),
it has received much attention. For example, since Bohner
and Chieochan [2] introduced the concept of the periodicity
for functions defined on the quantum time scale, quite a few
authors have devoted themselves to the study of the period-
icity for dynamic equations on the quantum time scale [3–6].

However, in reality, the almost periodic phenomenon is
more common and complicated than the periodic one. In
addition, the almost automorphy, which was introduced in
the literature by Bochner in 1955 [7, 8], is a generalization of
the almost periodicity and plays an important role in under-
standing the almost periodicity. Therefore, to study the al-
most automorphy of dynamic equations on the quantum time
scale is more interesting and more challenging.

Recently, on almost periodic time scales or called the
invariant time scales under translations, papers [9, 10] intro-
duced the concept of weighted pseudo almost automorphic
functions and the concept of almost automorphic functions,
respectively. Several other works, for instance, papers [11–18]
also studied the almost automorphy on almost periodic time
scales. The almost periodic time scale is a kind of additive
time scales, while the quantum time scale is not an additive

time scale; it is a kind of multiplicative time scales.Therefore,
the concept of almost automorphic functions on almost peri-
odic time scales is not suitable for dealing with almost auto-
morphic problems on the quantum time scale and all of the
results obtained in [9–18] can not be directly applied to the
quantum time scale’s case.

Motivated by the above, our main purpose of this paper
is to propose two types of definitions of almost automorphic
functions on the quantum time scale, study some of their
basic properties, and establish the existence of almost auto-
morphic solutions of nonautonomous linear dynamic equa-
tions on the quantum time scale.

The organization of this paper is as follows: In Section 2,
we introduce some notations and definitions of time scale cal-
culus. In Section 3, we propose the concepts of almost auto-
morphic functions on the quantum time scale and investigate
some of their basic properties. In Section 4, we introduce a
transformation and give an equivalent definition of almost
automorphic functions on the quantum time scale.Moreover,
following the idea of the transformation, we also give a
concept of almost automorphic functions on more general
time scales that can unify the concepts of almost automorphic
functions on almost periodic time scales and on the quantum
time scale. In Section 5, as an application of the results, we
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study the existence of almost automorphic solutions for semi-
linear dynamic equations on the quantum time scale. We
draw a conclusion in Section 6.

2. Preliminaries

In this section, we shall recall some basic definitions of time
scale calculus.

A time scale T is an arbitrary nonempty closed subset of
the real numbers; the forward and backward jump operators
𝜎, 𝜌 : T → T and the forward graininess 𝜇 : T → R+ are
defined, respectively, by

𝜎 (𝑡) fl inf {𝑠 ∈ T : 𝑠 > 𝑡} ,
𝜌 (𝑡) fl sup {𝑠 ∈ T : 𝑠 < 𝑡} ,
𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(1)

A point 𝑡 is said to be left-dense if 𝑡 > inf T and 𝜌(𝑡) = 𝑡,
right-dense if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) <
𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. If T has a left-scattered
maximum 𝑚, then T𝜅 = T \ 𝑚; otherwise T𝜅 = T . If T has
a right-scattered minimum 𝑚, then T𝜅 = T \ 𝑚; otherwise
T𝑘 = T .

LetX be a (real or complex) Banach space. A function 𝑓 :
T → X is right-dense continuous or rd-continuous provided
it is continuous at right-dense points in T and its left-sided
limits exist (finite) at left-dense points in T . If𝑓 is continuous
at each right-dense point and each left-dense point, then 𝑓 is
said to be a continuous function on T .

For 𝑓 : T → X and 𝑡 ∈ T𝑘, 𝑓 is called delta differentiable
at 𝑡 ∈ T if there exists 𝑐 ∈ X such that, for any given 𝜀 ≥ 0,
there is an open neighborhood 𝑈 of 𝑡 satisfying

󵄩󵄩󵄩󵄩[𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)] − 𝑐 [𝜎 (𝑡) − 𝑠]󵄩󵄩󵄩󵄩 ≤ 𝜀 |𝜎 (𝑡) − 𝑠| (2)

for all 𝑠 ∈ 𝑈. In this case, 𝑐 is called the delta derivative of𝑓 at
𝑡 ∈ T and is denoted by 𝑐 = 𝑓Δ(𝑡). For T = R, we have 𝑓Δ =
𝑓󸀠, the usual derivative, for T = Z we have the backward dif-
ference operator,𝑓Δ(𝑡) = Δ𝑓(𝑡) fl 𝑓(𝑡+1)−𝑓(𝑡), and for T =
𝑞Z (𝑞 > 1), the quantum time scale, we have the 𝑞-deriva-
tive:

𝑓Δ (𝑡) fl 𝐷𝑞𝑓 (𝑡) =
{{{{
{{{{{

𝑓(𝑞𝑡) − 𝑓 (𝑡)
(𝑞 − 1) 𝑡 , 𝑡 ̸= 0,

lim
𝑡→0

𝑓 (𝑞𝑡) − 𝑓 (𝑡)
(𝑞 − 1) 𝑡 , 𝑡 = 0.

(3)

Remark 1. Note that

𝐷𝑞𝑓 (0) = 𝑑𝑓 (0)𝑑𝑡 (4)

if 𝑓 is continuously differentiable.

A function 𝑝 : T → R is called regressive provided 1 +
𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝜅. An 𝑛 × 𝑛-matrix-valued function
𝐴 on a time scale T is called regressive provided 𝐼 + 𝜇(𝑡)𝐴(𝑡)
is invertible for all 𝑡 ∈ T𝜅.

Definition 2 (see [19]). A time scale T is called an almost peri-
odic time scale or an invariant time scale under translations
if

Π = {𝜏 ∈ R : 𝑡 ± 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (5)

For more details about the theory of time scale calculus
and the theory of quantum calculus, the reader may want to
consult [1, 20–22].

3. Almost Automorphic Functions on
the Quantum Time Scale

In this section, we propose two types of concepts of almost
automorphic functions on the quantum time scale and study
some of their basic properties. Our first type of concepts of
almost automorphic functions on the quantum time scale is
as follows.

Definition 3. Let X be a (real or complex) Banach space and
𝑓 : 𝑞Z → X a (strongly) continuous function.We say that𝑓 is
almost automorphic if, for every sequence of integer numbers
{𝑠󸀠𝑛} ⊂ Z, there exists a subsequence {𝑠𝑛} such that

𝑔 (𝑡) fl lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛) (6)

is well defined for each 𝑡 ∈ 𝑞Z and

lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛) = 𝑓 (𝑡) (7)

for each 𝑡 ∈ 𝑞Z.
Remark 4. Since 𝑞Z has only one right-dense point 0 and all
of the other points of it are isolated points, so 𝑓 : 𝑞Z → X is
a (strongly) continuous function if and only if lim𝑡→0+𝑓(𝑡) =𝑓(0).
Theorem5. If𝑓, 𝑓1, and𝑓2 are almost automorphic functions
𝑞Z → X, then the following are true:

(i) 𝑓1 + 𝑓2 is almost automorphic.
(ii) 𝑐𝑓 is almost automorphic for every scalar c.
(iii) 𝑓𝑎(𝑡) ≡ 𝑓(𝑡𝑞𝑎) is almost automorphic for each fixed

𝑎 ∈ Z.
(iv) sup𝑡∈R‖𝑓(𝑡)‖ < ∞; that is, 𝑓 is a bounded function.

(v) The range 𝑅𝑓 = {𝑓(𝑡) | 𝑡 ∈ 𝑞Z} of 𝑓 is relatively
compact inX.

Proof. The proofs of (i), (ii), and (iii) are obvious.
The proof of (iv): If (iv) is no true, then sup

𝑡∈𝑞Z
‖𝑓(𝑡)‖ =

∞. Hence, there exists a sequence {𝑠󸀠𝑛} ⊂ Z such that

lim𝑛⇀∞
󵄩󵄩󵄩󵄩󵄩󵄩𝑓 (𝑞𝑠

󸀠
𝑛)󵄩󵄩󵄩󵄩󵄩󵄩 = ∞. (8)

Since𝑓 is almost automorphic, one can extract a subsequence
{𝑠𝑛} ⊂ {𝑠󸀠𝑛} such that

lim
𝑛⇀∞

𝑓 (𝑞𝑠𝑛) = 𝜉 (9)
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exists; that is, lim𝑛⇀∞‖𝑓(𝑞𝑠𝑛)‖ = ‖𝜉‖ < ∞, which is a
contradiction. The proof of (iv) is completed.

The proof of (v): For any sequence {𝑓(𝑞𝑠󸀠𝑛)} in 𝑅𝑓, where
{𝑠󸀠𝑛} ⊂ Z, because 𝑓 is almost automorphic, one can extract a
subsequence {𝑠𝑛} of {𝑠󸀠𝑛} such that

lim
𝑛→∞

𝑓 (𝑞𝑠𝑛) = 𝑔 (1) . (10)

Thus, 𝑅𝑓 is relatively compact in X. The proof is complete.

Remark 6. It is easy to see that

sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑔 (𝑡)󵄩󵄩󵄩󵄩 ≤ sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑓 (𝑡)󵄩󵄩󵄩󵄩 , (11)

and 𝑅𝑔 ⊆ 𝑅𝑓, where 𝑔 is the function that appears in
Definition 3.

Theorem 7. If 𝑓 : 𝑞Z → X is almost automorphic, define a
function 𝑓⋆ : 𝑞Z \ {0} → X by 𝑓⋆(𝑡) ≡ 𝑓(𝑡−1), if 𝑓⋆(0) fl
lim𝑛→−∞𝑓⋆(𝑞𝑛) exists. Then 𝑓⋆ : 𝑞Z → X is almost auto-
morphic.

Proof. For any given sequence {𝑠󸀠𝑛} ⊂ Z, there exists a
subsequence {𝑠𝑛} of {𝑠󸀠𝑛} such that

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛) = 𝑔 (𝑡) (12)

is well defined for each 𝑡 ∈ 𝑞Z and

lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛) = 𝑓 (𝑡) (13)

for each 𝑡 ∈ 𝑞Z.
Define a function 𝑔⋆(𝑡) ≡ 𝑔(𝑡−1), 𝑡 ∈ 𝑞Z, and set 𝜎𝑛 =−𝑠𝑛, 𝑛 = 1, 2, . . .; we get
lim
𝑛→∞

𝑓⋆ (𝑡𝑞𝜎𝑛) = lim
𝑛→∞

𝑓 (𝑡−1𝑞−𝜎𝑛) = lim
𝑛→∞

𝑓 (𝑡−1𝑞𝑠𝑛)
= 𝑔 (𝑡−1) = 𝑔⋆ (𝑡) ,

lim
𝑛→∞

𝑔⋆ (𝑡𝑞−𝜎𝑛) = lim
𝑛→∞

𝑔 (𝑡−1𝑞𝜎𝑛) = lim
𝑛→∞

𝑔 (𝑡−1𝑞−𝑠𝑛)
= 𝑓 (𝑡−1) = 𝑓⋆ (𝑡)

(14)

pointwise on 𝑞Z. Since 𝑓⋆(0) = lim𝑛→−∞𝑓⋆(𝑞𝑛) exists, 𝑓⋆ :
𝑞Z → X is well defined and continuous.Thus,𝑓⋆(𝑡) is almost
automorphic. The proof is complete.

Theorem 8. LetX and Y be two Banach spaces and 𝑓 : 𝑞Z →
X an almost automorphic function. If 𝜙 : X → Y is a
continuous function, then the composite function 𝜙(𝑓) : 𝑞Z →
Y is almost automorphic.

Proof. Since𝑓 is almost automorphic, for any sequence {𝑠󸀠𝑛} ⊂
Z, we can extract a subsequence {𝑠𝑛} of {𝑠󸀠𝑛} such that

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛) = 𝑔 (𝑡) (15)

is well defined for each 𝑡 ∈ 𝑞Z and

lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛) = 𝑓 (𝑡) (16)

for each 𝑡 ∈ 𝑞Z.
Since 𝜙(𝑓) : 𝑞Z → Y is continuous, we have

lim
𝑛→∞

𝜑 (𝑓 (𝑡𝑞𝑠𝑛)) = 𝜑 ( lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛)) = 𝜑 (𝑔 (𝑡)) (17)

is well defined for each 𝑡 ∈ 𝑞Z and

lim
𝑛→∞

𝜑 (𝑔 (𝑡𝑞−𝑠𝑛)) = 𝜑 ( lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛)) = 𝜑 (𝑓 (𝑡)) (18)

for each 𝑡 ∈ 𝑞Z.
That is, the composite function 𝜙(𝑓) : 𝑞Z → Y is almost

automorphic. The proof is complete.

Corollary 9. If 𝐴 is a bounded linear operator in X and 𝑓 :
𝑞Z → X is an almost automorphic function, then 𝐴(𝑓)(𝑡) is
also almost automorphic.

Proof. The proof is obvious.

Theorem 10. Let𝑓 be almost automorphic. If𝑓(𝑞𝑛) = 0 for all
𝑛 > 𝑛0 for some integer number 𝑛0, then𝑓(𝑡) ≡ 0 for all 𝑡 ∈ 𝑞Z.
Proof. It suffices to prove that 𝑓(𝑡) = 0 for 𝑡 ≤ 𝑞𝑛0 . Since 𝑓
is almost automorphic, for the sequence of natural numbers
N = {𝑛}, one can extract a subsequence {𝑛𝑘} ⊂ N such that

lim
𝑘→∞

𝑓 (𝑡𝑞𝑛𝑘) = 𝑔 (𝑡) , for each 𝑡 ∈ 𝑞Z \ {0} , (19)

lim
𝑘→∞

𝑔 (𝑡𝑞−𝑛𝑘) = 𝑓 (𝑡) , for each 𝑡 ∈ 𝑞Z \ {0} . (20)

It is clear that, for any 𝑡 ≤ 𝑞𝑛0 , we can find {𝑛𝑘𝑗} ⊂ {𝑛𝑘} with𝑡𝑞𝑛𝑘𝑗 > 𝑞𝑛0 for all 𝑗 = 1, 2, . . .. Thus, 𝑓(𝑡𝑞𝑛𝑘𝑗) = 0 for all 𝑗 =
1, 2, . . .. By (19), 𝑔(𝑡) = lim𝑗→∞𝑓(𝑡𝑞𝑛𝑘𝑗) = 0 for 𝑡 ∈ 𝑞Z \ {0}.
Hence, according to formula (20), we obtain 𝑓(𝑡) = 0 for 𝑡 ∈
𝑞Z \ {0}. Since 𝑓 is continuous at 𝑡 = 0, 0 = lim𝑛→−∞𝑓(𝑞𝑛) =
𝑓(0).Therefore, 𝑓(𝑡) = 0 for 𝑡 ∈ 𝑞Z. The proof is complete.

Theorem 11. Let {𝑓𝑛} be a sequence of almost automorphic
functions such that lim𝑛→∞𝑓𝑛(𝑡) = 𝑓(𝑡) uniformly in 𝑡 ∈ 𝑞Z.
Then 𝑓 is almost automorphic.

Proof. For any given sequence {𝑠󸀠𝑛} ⊂ Z, by the diagonal
procedure one can extract a subsequence {𝑠𝑛} of {𝑠󸀠𝑛} such that

lim
𝑛→∞

𝑓𝑖 (𝑡𝑞𝑠𝑛) = 𝑔𝑖 (𝑡) (21)

for each 𝑖 = 1, 2, . . . and each 𝑡 ∈ 𝑞Z.
We claim that the sequence of function {𝑔𝑖(𝑡)} is a Cauchy

sequence. In fact, for any 𝑖, 𝑗 ∈ N, we have

𝑔𝑖 (𝑡) − 𝑔𝑗 (𝑡) = 𝑔𝑖 (𝑡) − 𝑓𝑖 (𝑡𝑞𝑠𝑛) + 𝑓𝑖 (𝑡𝑞𝑠𝑛) − 𝑓𝑗 (𝑡𝑞𝑠𝑛)
+ 𝑓𝑗 (𝑡𝑞𝑠𝑛) − 𝑔𝑗 (𝑡) ,

(22)
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and hence
󵄩󵄩󵄩󵄩󵄩𝑔𝑖 (𝑡) − 𝑔𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑡) − 𝑓𝑖 (𝑡𝑞𝑠𝑛)󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡𝑞𝑠𝑛) − 𝑓𝑗 (𝑡𝑞𝑠𝑛)󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝑓𝑗 (𝑡𝑞𝑠𝑛) − 𝑔𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 .

(23)

For each 𝜀 > 0, from the uniform convergence of {𝑓𝑛}, there
exists a positive integer𝑁(𝜀) such that, for all 𝑖, 𝑗 > 𝑁,

󵄩󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡𝑞𝑠𝑛) − 𝑓𝑗 (𝑡𝑞𝑠𝑛)󵄩󵄩󵄩󵄩󵄩 < 𝜀, (24)

for all 𝑡 ∈ 𝑞Z and all 𝑛 = 1, 2, . . ..
It follows from (21) and the completeness of the space

X that the sequence {𝑔𝑖(𝑡)} converges pointwise on 𝑞Z to a
function, say to function 𝑔(𝑡).

Now, we will prove

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛) = 𝑔 (𝑡) ,
lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛) = 𝑓 (𝑡) (25)

pointwise on 𝑞Z.
Indeed, for each 𝑖 = 1, 2, . . ., we have

󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛) − 𝑔 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛) − 𝑓𝑖 (𝑡𝑞𝑠𝑛)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡𝑞𝑠𝑛) − 𝑔𝑖 (𝑡)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑡) − 𝑔 (𝑡)󵄩󵄩󵄩󵄩 .

(26)

For any 𝜀 > 0, we can find some positive integer𝑁0(𝑡, 𝜀) such
that

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛) − 𝑓𝑁0 (𝑡𝑞𝑠𝑛)󵄩󵄩󵄩󵄩󵄩 < 𝜀 (27)

for every 𝑡 ∈ 𝑞Z, 𝑛 = 1, 2, . . ., and ‖𝑔𝑁0(𝑡) − 𝑔(𝑡)‖ < 𝜀 for
every 𝑡 ∈ 𝑞Z. Hence, by formula (26), we get

󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛) − 𝑔 (𝑡)󵄩󵄩󵄩󵄩 < 2𝜀 + 󵄩󵄩󵄩󵄩󵄩𝑓𝑁0 (𝑡𝑞𝑠𝑛) − 𝑔𝑁0 (𝑡)󵄩󵄩󵄩󵄩󵄩 (28)

for every 𝑡 ∈ 𝑞Z, 𝑛 = 1, 2, . . ..
In view of (21), for every 𝑡 ∈ 𝑞Z, there is some positive

integer𝑀 = 𝑀(𝑡,𝑁0) such that
󵄩󵄩󵄩󵄩󵄩𝑓𝑁0 (𝑡𝑞𝑠𝑛) − 𝑔𝑁0 (𝑡)󵄩󵄩󵄩󵄩󵄩 < 𝜀 (29)

for every 𝑛 > 𝑀. From this and (28), we obtain
󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛) − 𝑔 (𝑡)󵄩󵄩󵄩󵄩 < 3𝜀 (30)

for 𝑛 ≥ 𝑁0(𝑡, 𝜀).
Similarly, we can prove that

lim
𝑛→∞

𝑔 (𝑡𝑞𝑠𝑛) = 𝑓 (𝑡) for each 𝑡 ∈ 𝑞Z. (31)

The proof is complete.

Remark 12. If we denote by 𝐴𝐴(X) the set of all almost
automorphic functions 𝑓 : 𝑞Z → X, then by Theorem 5, we
see that𝐴𝐴(X) is a vector space, and according toTheorem 11,
this vector space equipped with the norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐴𝐴(X) = sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑓 (𝑡)󵄩󵄩󵄩󵄩 (32)

is a Banach space.

Definition 13. A continuous function 𝑓 : 𝑞Z ×X→ X is said
to be almost automorphic in 𝑡 ∈ 𝑞Z for each𝑥 ∈ X, if, for each
sequence of integer numbers {𝑠󸀠𝑛}, there exists a subsequence{𝑠𝑛} such that

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛 , 𝑥) = 𝑔 (𝑡, 𝑥) (33)

exists for each 𝑡 ∈ 𝑞Z and each 𝑥 ∈ X, and

lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛 , 𝑥) = 𝑓 (𝑡, 𝑥) (34)

exists for each 𝑡 ∈ 𝑞Z and each 𝑥 ∈ X.

Theorem 14. If 𝑓1, 𝑓2 : 𝑞Z ×X → X are almost automorphic
functions in 𝑡 for each 𝑥 ∈ X, then the following functions are
also almost automorphic in 𝑡 for each 𝑥 ∈ X:

(i) 𝑓1 + 𝑓2
(ii) 𝑐𝑓1: 𝑐 is an arbitrary scalar.

Proof. The proof is obvious. We omit it here. The proof is
complete.

Theorem 15. If 𝑓(𝑡, 𝑥) are almost automorphic in 𝑡 for each
𝑥 ∈ X, then

sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)󵄩󵄩󵄩󵄩 = 𝑀𝑥 < ∞ (35)

for each 𝑥 ∈ X.

Proof. Suppose the opposite. Assume, to the contrary, that

sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥0)󵄩󵄩󵄩󵄩 = ∞ (36)

for some 𝑥0 ∈ X. Thus, there exists a sequence of integer
numbers {𝑠󸀠𝑛} such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩𝑓 (𝑞𝑠
󸀠
𝑛 , 𝑥0)󵄩󵄩󵄩󵄩󵄩󵄩 = ∞. (37)

Since 𝑓(𝑡, 𝑥0) is almost automorphic in 𝑡, one can extract a
subsequence {𝑠𝑛} from {𝑠󸀠𝑛} such that

sup
𝑡∈𝑞Z

󵄩󵄩󵄩󵄩𝑓 (𝑞𝑠𝑛 , 𝑥0)󵄩󵄩󵄩󵄩 = 𝑔 (1, 𝑥0) , (38)

which is a contradiction. The proof is complete.
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Theorem 16. If 𝑓 is almost automorphic in 𝑡 for each 𝑥 ∈ X,
then the function 𝑔 in Definition 13 satisfies

sup
𝑡∈R

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥)󵄩󵄩󵄩󵄩 = 𝑁𝑥 < ∞ (39)

for each 𝑥 ∈ X.

Proof. The proof is obvious. We omit it here. The proof is
complete.

Theorem 17. If 𝑓 is almost automorphic in 𝑡 for each 𝑥 ∈ X

and if 𝑓 satisfies the Lipschitzian condition in 𝑥 uniformly in 𝑡,
that is, there exists a positive constant 𝐿 > 0 such that, for each
pair 𝑥, 𝑦 ∈ X,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)󵄩󵄩󵄩󵄩 < 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 (40)

uniformly in 𝑡 ∈ 𝑞Z, then 𝑔 satisfies the same Lipschitz
condition in 𝑥 uniformly in 𝑡.
Proof. Because for each sequence of integer numbers {𝑠󸀠𝑛},
there exists a subsequence {𝑠𝑛} such that

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛 , 𝑥) = 𝑔 (𝑡, 𝑥) (41)

exists for each 𝑡 ∈ 𝑞Z and each 𝑥 ∈ X, for any 𝑡 ∈ 𝑞Z and any
given 𝜀 > 0, we have

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑓 (𝑡𝑞𝑠𝑛 , 𝑥)󵄩󵄩󵄩󵄩 < 𝜀2 ,
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑦) − 𝑓 (𝑡𝑞𝑠𝑛 , 𝑦)󵄩󵄩󵄩󵄩 < 𝜀2

(42)

for 𝑛 sufficiently large.
Hence, for 𝑛 sufficiently large we find

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑓 (𝑡𝑞𝑠𝑛 , 𝑥)
+ 𝑓 (𝑡𝑞𝑠𝑛 , 𝑥) − 𝑓 (𝑡𝑞𝑠𝑛 , 𝑦) + 𝑓 (𝑡𝑞𝑠𝑛 , 𝑦) − 𝑔 (𝑡, 𝑦)󵄩󵄩󵄩󵄩
< 𝜀 + 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(43)

Letting 𝜀 → 0+, we get
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 (44)

for each 𝑥, 𝑦 ∈ X. The proof is complete.

Theorem 18. Let 𝑓 : 𝑞Z × X → X be almost automorphic
in 𝑡 for each 𝑥 ∈ X and assume that 𝑓 satisfies a Lipschitz
condition in 𝑥 uniformly in 𝑡 ∈ 𝑞Z. Let 𝜑 : 𝑞Z → X be almost
automorphic. Then the function 𝐹 : 𝑞Z → X defined by 𝐹(𝑡) =
𝑓(𝑡, 𝜑(𝑡)) is almost automorphic.

Proof. It is easy to see that, for any given sequence {𝑠󸀠𝑛}, there
exists a subsequence {𝑠𝑛} ⊂ {𝑠󸀠𝑛} such that

lim
𝑛→∞

𝑓 (𝑡𝑞𝑠𝑛 , 𝑥) = 𝑔 (𝑡, 𝑥) (45)

for each 𝑡 ∈ 𝑞Z and 𝑥 ∈ X,

lim
𝑛→∞

𝜑 (𝑡𝑞𝑠𝑛) = 𝜙 (𝑡) (46)

for each 𝑡 ∈ 𝑞Z,
lim
𝑛→∞

𝑔 (𝑡𝑞−𝑠𝑛 , 𝑥) = 𝑓 (𝑡, 𝑥) (47)

for each 𝑡 ∈ 𝑞Z and 𝑥 ∈ X, and

lim
𝑛→∞

𝜙 (𝑡𝑞−𝑠𝑛) = 𝜑 (𝑡) (48)

for each 𝑡 ∈ 𝑞Z.
Consider the function 𝐺 : 𝑞Z → X defined by 𝐺(𝑡) =

𝑔(𝑡, 𝜙(𝑡)), 𝑡 ∈ 𝑞Z. We will show that lim𝑛→∞𝐹(𝑡𝑞𝑠𝑛) = 𝐺(𝑡),
for each 𝑡 ∈ 𝑞Z and lim𝑛→∞𝐺(𝑡𝑞−𝑠𝑛) = 𝐹(𝑡), for each 𝑡 ∈ 𝑞Z.

In fact, noting that
󵄩󵄩󵄩󵄩𝐹 (𝑡𝑞𝑠𝑛) − 𝐺 (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛 , 𝜑 (𝑡𝑞𝑠𝑛)) − 𝑓 (𝑡𝑞𝑠𝑛 , 𝜙 (𝑡))
+ 𝑓 (𝑡𝑞𝑠𝑛 , 𝜙 (𝑡)) − 𝑔 (𝑡, 𝜙 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝜑 (𝑡𝑞𝑠𝑛)
− 𝜙 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑓 (𝑡𝑞𝑠𝑛 , 𝜙 (𝑡)) − 𝑔 (𝑡, 𝜙 (𝑡))󵄩󵄩󵄩󵄩 ,

(49)

by (45) and formula (46), we get

lim
𝑛→∞

𝐹 (𝑡𝑞𝑠𝑛) = 𝐺 (𝑡) , for each 𝑡 ∈ 𝑞Z. (50)

Similarly we can prove that lim𝑛→∞𝐺(𝑡𝑞−𝑠𝑛) = 𝐹(𝑡) for each
𝑡 ∈ 𝑞Z. This completes the proof.

Before ending this section, we give the second type of
concepts of almost automorphic functions on the quantum
time scale as follows.

Definition 19. LetX be a (real or complex) Banach space and
𝑓 : 𝑞Z → X a (strongly) continuous function.We say that𝑓 is
almost automorphic if, for every sequence of integer numbers
{𝑠󸀠𝑛} ⊂ Z, there exists a subsequence {𝑠𝑛} such that

𝑔 (𝑡) fl lim
𝑛→∞

𝑞𝑠𝑛𝑓 (𝑡𝑞𝑠𝑛) (51)

is well defined for each 𝑡 ∈ 𝑞Z and

lim
𝑛→∞

𝑞−𝑠𝑛𝑔 (𝑡𝑞−𝑠𝑛) = 𝑓 (𝑡) (52)

for each 𝑡 ∈ 𝑞Z.
Definition 20. A continuous function 𝑓 : R × X → X is said
to be almost automorphic in 𝑡 ∈ 𝑞Z for each𝑥 ∈ X, if, for each
sequence of integer numbers {𝑠󸀠𝑛}, there exists a subsequence{𝑠𝑛} such that

lim
𝑛→∞

𝑞𝑠𝑛𝑓 (𝑡𝑞𝑠𝑛 , 𝑥) = 𝑔 (𝑡, 𝑥) (53)

exists for each 𝑡 ∈ 𝑞Z and each 𝑥 ∈ X, and

lim
𝑛→∞

𝑞−𝑠𝑛𝑔 (𝑡𝑞−𝑠𝑛 , 𝑥) = 𝑓 (𝑡, 𝑥) (54)

exists for each 𝑡 ∈ 𝑞Z and each 𝑥 ∈ X.
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Remark 21. It is easy to check that all the results of this section
hold for almost automorphic functions defined by Defini-
tions 3 and 13 which are also valid for almost automorphic
functions defined by Definitions 19 and 20.

4. An Equivalent Definition of
Almost Automorphic Functions on
the Quantum Time Scale

In this section, we will give an equivalent definition of almost
automorphic functions on the quantum time scale 𝑞Z. To this
end, we introduce a notation−∞𝑞 and stipulate 𝑞−∞𝑞 = 0, 𝑡±
(−∞𝑞) = 𝑡, and 𝑡 > −∞𝑞 for all 𝑡 ∈ Z. Let 𝑓 ∈ 𝐶(𝑞Z,X); we
define a function 𝑓 : Z ∪ {−∞𝑞} → X by

𝑓 (𝑡) = {{{
𝑓 (𝑞𝑡) , 𝑡 ∈ Z,
𝑓 (0) , 𝑡 = −∞𝑞;

(55)

that is,

𝑓 (𝑡) = {{{
𝑓(log𝑞 𝑡) , 𝑡 ∈ 𝑞Z,
lim
𝑡→0+

𝑓 (𝑡) , 𝑡 = 0. (56)

Since𝑓(𝑡) is right continuous at 𝑡 = 0, it is clear that the above
definition is well defined.

Moreover, for 𝑓 ∈ 𝐶(𝑞Z × X,X), we define a function
𝑓 : Z ∪ {−∞𝑞} ×X→ X by

𝑓 (𝑡, 𝑥) = {{{
𝑓 (𝑞𝑡, 𝑥) , (𝑡, 𝑥) ∈ Z ×X,
𝑓 (0, 𝑥) , 𝑡 = −∞𝑞, 𝑥 ∈ X; (57)

that is,

𝑓 (𝑡, 𝑥) = {{{
𝑓(log𝑞 𝑡, 𝑥) , (𝑡, 𝑥) ∈ 𝑞Z ×X,
lim
𝑡→0

𝑓 (𝑡, 𝑥) , 𝑡 = 0, 𝑥 ∈ X. (58)

Since 𝑓(𝑡, 𝑥) is continuous at (0, 𝑥), it is clear that the above
definition is well defined.

Definition 22. A function𝑓 : Z∪{−∞𝑞} → X is called almost
automorphic if for every sequence (𝑠󸀠𝑛) ⊂ Z there exists a
subsequence (𝑠𝑛) ⊂ (𝑠󸀠𝑛) such that

lim
𝑛→∞

𝑓 (𝑡 + 𝑠𝑛) = 𝑔 (𝑡) (59)

is well defined for each 𝑡 ∈ Z ∪ {−∞𝑞}, and
lim
𝑛→∞

𝑔 (𝑡 − 𝑠𝑛) = 𝑓 (𝑡) (60)

for each 𝑡 ∈ Z ∪ {−∞𝑞}.
Definition 23. A function 𝐹 : (Z ∪ {−∞𝑞}) × X → X is
called almost automorphic if for every sequence (𝑠󸀠𝑛) ⊂ Z

there exists a subsequence (𝑠𝑛) ⊂ Z such that

lim
𝑛→∞

𝐹 (𝑡 + 𝑠𝑛, 𝑥) = 𝐺 (𝑡, 𝑥) (61)

is well defined for each 𝑡 ∈ Z ∪ {−∞𝑞}, and
lim
𝑛→∞

𝐺 (𝑡 − 𝑠𝑛, 𝑥) = 𝐹 (𝑡, 𝑥) (62)

for each 𝑡 ∈ Z ∪ {−∞𝑞} and 𝑥 ∈ X.

Remark 24. We can view Z ∪ {−∞𝑞} as a kind of generalized
integer number set. Obviously, the automorphic functions
defined by Definitions 22 and 23 (which are defined on Z ∪
{−∞𝑞} or Z ∪ {−∞𝑞} × X) share the same properties as the
ordinary automorphic functions defined on Z or Z ×X.

Definition 25. A function 𝑓 ∈ 𝐶(𝑞Z,X) is called almost
automorphic if and only if the function 𝑓(𝑡) defined by (55)
is almost automorphic.

Definition 26. A function 𝑓 ∈ 𝐶(𝑞Z × X,X) is called almost
automorphic in 𝑡 ∈ 𝑞Z for each 𝑥 ∈ X if and only if the
function 𝑓(𝑡, 𝑥) defined by (57) is almost automorphic in
𝑡 ∈ 𝑞Z for each 𝑥 ∈ X.

Obviously, Definitions 25 and 26 are equivalent to Defini-
tions 3 and 13, respectively.Moreover, by Remark 24, all of the
properties of almost automorphic functions on the quantum
time scale can be directly obtained from the corresponding
properties of the ordinary almost automorphic functions
defined on Z or Z ×X.

Before ending this section, following the idea of the
transformation of this section, we can propose a concept of
almost automorphy on a more general time scale.

Definition 27. Let T be a time scale and T̃ be an almost
periodic time scale defined by Definition 2. A continuous
function 𝑓 : T × X → X is said to be almost automorphic
in 𝑡 ∈ T for each 𝑥 ∈ X, if there exists a one-to-one
transformation 𝜍 : T̃ → T such that 𝜍(T̃) = T and, for
each sequence of integer numbers {𝑠󸀠𝑛} ⊂ Π̃, there exists a
subsequence {𝑠𝑛} such that

lim
𝑛→∞

𝑓 (𝜍 (𝑡 + 𝑠𝑛) , 𝑥) = 𝑔 (𝜍 (𝑡) , 𝑥) (63)

exists for each 𝑡 ∈ T̃ and each 𝑥 ∈ X, and

lim
𝑛→∞

𝑔 (𝜍 (𝑡 − 𝑠𝑛) , 𝑥) = 𝑓 (𝜍 (𝑡) , 𝑥) (64)

exists for each 𝑡 ∈ T̃ and each 𝑥 ∈ X, where Π̃ = {𝜏 ∈ R :
𝑡 ± 𝜏 ∈ T̃ , ∀𝑡 ∈ T̃}.
Remark 28. Obviously, in Definition 27, if T is an almost
periodic time scale defined by Definition 2, by taking 𝜍 =
𝐼, the identity mapping, then Definition 27 coincides with
Definition 3.2 in [9] and Definition 3.20 in [10], respectively,
which are the definitions of almost automorphic functions
on almost periodic time scales. If 𝑇 = 𝑞Z, by taking the
transformation 𝜍 defined by (57), then Definition 27 agrees
with Definition 13. Therefore, Definition 27 can unify the
cases of almost periodic time scales and the quantum time
scale.
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5. Automorphic Solutions for
Semilinear Dynamic Equations on
the Quantum Time Scale

In this section, we will study the existence of automorphic
solutions of semilinear dynamic equations on the quantum
time scale. Throughout this section, we use the letter E to
stand for either R or C.

Consider the semilinear dynamic equation on the quan-
tum time scale:

𝐷𝑞𝑥 (𝑡) = 𝐵 (𝑡) 𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡𝑞−𝜎(𝑡))) ,
𝑡 ∈ 𝑞Z,

(65)

where 𝜎 : T → [0,∞)T is a scalar delay function and satisfies
𝑡 − 𝜎(𝑡) ∈ T for all 𝑡 ∈ T , 𝐵(𝑡) is a regressive, rd-continuous
𝑛×𝑛matrix valued function, and 𝑔 ∈ 𝐶rd(T ×E2𝑛,E𝑛). Under
transformation (57), (65) is transformed to

Δ𝑥 (𝑛) = 𝐴 (𝑛) 𝑥 (𝑛) + 𝑓 (𝑛, 𝑥 (𝑛) , 𝑥 (𝑛 − 𝜏 (𝑛))) ,
𝑛 ∈ Z ∪ {−∞𝑞} ,

(66)

and vice visa, where 𝐴(𝑛) = (𝑞 − 1)𝑞𝑛𝐵(𝑛), 𝑓(𝑛) = (𝑞 −
1)𝑞𝑛𝑔(𝑛, 𝑥(𝑛), 𝑥(𝑛 − 𝜎(𝑛))), 𝜏(𝑛) = 𝜎̃(𝑛).

Clearly, 𝑥(𝑡) is a solution of (65) if and only if 𝑥(𝑛) is a
solution of (66).

Definition 29 (see [14]). Let 𝐴(𝑡) be an 𝑛 × 𝑛 rd-continuous
matrix value function on T ; the linear system

𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ T (67)

is said to admit an exponential dichotomy on T if there
exist positive constants 𝐾1, 𝐾2 and 𝛼1, 𝛼2 and an invertible
projection 𝑃 commuting with 𝑋(𝑡), where 𝑋(𝑡) is principal
fundamental matrix solution of (67) satisfying

󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) 𝑃𝑋−1 (𝑠)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐾1𝑒⊖𝛼1 (𝑡, 𝑠) ,
𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,

󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) (𝐼 − 𝑃)𝑋−1 (𝑠)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐾2𝑒⊖𝛼2 (𝑠, 𝑡) ,
𝑠, 𝑡 ∈ T , 𝑡 ≤ 𝑠.

(68)

Theorem 30 (see [14]). Let T be an almost periodic time
scale. Supposing that linear homogeneous system (67) admits
an exponential dichotomy with the positive constants 𝐾1, 𝐾2
and 𝛼1, 𝛼2 and invertible projectionP commuting with 𝑋(𝑡),
where 𝑋(𝑡) is principal fundamental matrix solution of (67),
then the nonhomogeneous system

𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , (69)

has a solution 𝑥(𝑡) of the form
𝑥 (𝑡) = ∫𝑡

−∞
𝑋 (𝑡)P𝑋−1 (𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠

− ∫∞
𝑡
𝑋(𝑡) (1 −P) 𝑋−1 (𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠.

(70)

Moreover, we have

‖𝑥‖ ≤ (𝐾1 + 𝛼1𝛼1 + 𝐾2𝛼2 )
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 . (71)

Consider the following semilinear dynamic equation on
almost periodic time scale T :

𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) , (72)

where 𝜏 : T → [0,∞)T is a scalar delay function and satisfies
𝑡 − 𝜏(𝑡) ∈ T for all 𝑡 ∈ T , 𝐴(𝑡) is a regressive, rd-continuous
𝑛 × 𝑛 matrix valued function, and 𝑓 ∈ 𝐶rd(T × E2𝑛,E𝑛). The
corresponding linear homogeneous system of (72) is

𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) . (73)

We make the following assumptions:

(𝐴1) Functions 𝜏(𝑡), 𝐴(𝑡), and 𝑓(𝑡, 𝑢, V) are almost auto-
morphic in 𝑡.

(𝐴2)There exists a constant 𝐿1, 𝐿2 > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢1, V2) − 𝑓 (𝑡, 𝑢2, V2)󵄩󵄩󵄩󵄩
≤ 𝐿1 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩 + 𝐿2 󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩
(74)

for all 𝑡 ∈ T and for any vector valued functions 𝑢 and
V defined on T .

(𝐴3) Linear homogeneous system (73) admits an exponen-
tial dichotomywith the positive constants𝐾1, 𝐾2 and𝛼1, 𝛼2 and invertible projection 𝑃 commuting with
𝑋(𝑡), where 𝑋(𝑡) is principal fundamental matrix
solution of (73).

Now, define the mapping Ψ by

(Ψ𝑥) (𝑡) fl ∫𝑡
−∞
𝑋 (𝑡)P𝑋−1 (𝜎 (𝑠))

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) Δ𝑠 − ∫∞
𝑡
𝑋 (𝑡) (1 −P)

⋅ 𝑋−1 (𝜎 (𝑠)) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) Δ𝑠.

(75)

The following result can be proven similar to Lemma 6 in
[11]; hence we omit it.

Lemma 31. Suppose (𝐴 1)–(𝐴3) hold. Then the mapping Ψ
maps AA(E𝑛) into AA(E𝑛).
Theorem 32. Suppose (𝐴 1)–(𝐴3) hold. Assume further that

(𝐴4) ((𝐾1 + 𝛼1)/𝛼1 + 𝐾2/𝛼2)(𝐿1 + 𝐿2) < 1.
Then (72) has a unique almost automorphic solution.
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Proof. For any 𝑥, 𝑦 ∈ AA(E𝑛), we have
󵄩󵄩󵄩󵄩Ψ𝑥 − Ψ𝑦󵄩󵄩󵄩󵄩 = sup

𝑡∈T

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

−∞
𝑋 (𝑡)P𝑋−1 (𝜎 (𝑠))

⋅ [𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))
− 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝑠 − 𝜏 (𝑠)))] Δ𝑠 − ∫∞

𝑡
𝑋 (𝑡) (𝐼 −P)

⋅ 𝑋−1 (𝜎 (𝑠)) [𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))
− 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝑠 − 𝜏 (𝑠)))] Δ𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ sup

𝑡∈T

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

−∞
𝐾1𝑒⊖𝛼1

⋅ (𝑡, 𝜎 (𝑠)) (𝐿1 + 𝐿2) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 Δ𝑠 − ∫
∞

𝑡
𝐾2𝑒⊖𝛼2

⋅ (𝜎 (𝑠) , 𝑡) (𝐿1 + 𝐿2) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 Δ𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (

𝐾1 + 𝛼1
𝛼1

+ 𝐾2𝛼2 ) (𝐿1 + 𝐿2)
󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(76)

Hence, Φ is a contraction. Therefore, Φ has a unique fixed
point in AA(E𝑛), so (72) has a unique almost automorphic
solution.

In Theorem 32, if we take T = Z ∪ {−∞𝑞}, then we have
the following.

Theorem33. Suppose (𝐴 1)–(𝐴4) hold.Then (66) has a unique
almost automorphic solution, and so (65) has a unique almost
automorphic solution.

Consider a linear quantum difference equation

𝐷𝑞𝑥 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝑞Z, (77)

where 𝐴 is an 𝑛 × 𝑛 matrix valued function and 𝑓 is an 𝑛-
dimensional vector valued function. Under transformation
(55), (77) transforms to

Δ𝑥 (𝑛) = (𝑞 − 1) 𝑞𝑛𝐴 (𝑛) 𝑥 (𝑛) + (𝑞 − 1) 𝑞𝑛𝑓 (𝑛) ,
𝑛 ∈ Z ∪ {−∞𝑞} ,

(78)

and vice versa.
Consider the following nonautonomous linear difference

equation:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝑓 (𝑘) , 𝑘 ∈ Z ∪ {−∞𝑞} , (79)

where𝐴(𝑘) are given nonsingular 𝑛×𝑛matriceswith elements
𝑎𝑖𝑗(𝑘), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑓 : Z → E𝑛 is a given 𝑛 × 1
vector function, and 𝑥(𝑘) is an unknown 𝑛 × 1 vector with
components 𝑥𝑖(𝑘), 1 ≤ 𝑖 ≤ 𝑛. Its associated homogeneous
equation is given by

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) , 𝑘 ∈ Z ∪ {−∞𝑞} . (80)

Similar to Definition 2.11 in [23], we give the following
definition.

Definition 34. Let 𝑈(𝑘) be the principal fundamental matrix
of difference system (80). System (80) is said to possess an
exponential dichotomy if there exist a projection 𝑃, which
commutes with𝑈(𝑘), and positive constants 𝜂, ], 𝛼, 𝛽 such
that, for all 𝑘, 𝑙 ∈ Z ∪ {−∞𝑞}, we have

󵄩󵄩󵄩󵄩󵄩𝑈 (𝑘) 𝑃𝑈−1 (𝑙)󵄩󵄩󵄩󵄩󵄩 ≤ 𝜂𝑒−𝛼(𝑘−𝑙), 𝑘 ≥ 𝑙,
󵄩󵄩󵄩󵄩󵄩𝑈 (𝑘) (𝐼 − 𝑃)𝑈−1 (𝑙)󵄩󵄩󵄩󵄩󵄩 ≤ 𝜐𝑒−𝛽(𝑙−𝑘), 𝑙 ≥ 𝑘.

(81)

Similar to the proof ofTheorem 3.1 in [12], one can easily
show the following.

Theorem 35. Suppose 𝐴(𝑘) is discrete almost automorphic
and a nonsingular matrix and the set {𝐴−1(𝑘)}𝑘∈Z∪{−∞𝑞} is
bounded. Also, suppose the function 𝑓 : Z ∪ {−∞𝑞} → E𝑛

is a discrete almost automorphic function and (80) admits an
exponential dichotomy with positive constants ], 𝜂, 𝛽, and
𝛼. Then, system (79) has an almost automorphic solution on
Z ∪ {−∞𝑞}.
Corollary 36. Suppose 𝐵(𝑛) fl (𝑞 − 1)𝑞𝑛𝐴(𝑛) + 𝐼 is discrete
almost automorphic and a nonsingular matrix and the set
{𝐵−1(𝑛)}𝑛∈Z∪{−∞𝑞} is bounded. Also, suppose the function 𝑔 fl
(𝑞 − 1)𝑞𝑛𝑓(𝑛) : Z ∪ {−∞𝑞} → E𝑛 is a discrete almost
automorphic function and equation

Δ𝑦 (𝑛) = 𝐵 (𝑛) 𝑦 (𝑛) + 𝑔 (𝑛) (82)

admits an exponential dichotomy with positive constants
], 𝜂, 𝛽, and 𝛼. Then, system (77) has an almost automorphic
solution on 𝑞Z.

6. Conclusion

In this paper, we proposed two types of concepts of almost
automorphic functions on the quantum time scale and
studied some of their basic properties. Moreover, based
on the transformation between functions defined on the
quantum time scale and functions defined on the set of
generalized integer numbers, we gave equivalent definitions
of almost automorphic functions on the quantum time scale.
As an application of our results, we established the existence
of almost automorphic solutions for semilinear dynamic
equations on the quantum time scale. By using the methods
and results of this paper, for example, one can study the
almost automorphy of neural networks on the quantum time
scale and population dynamical models on the quantum time
scale and so on. Furthermore, by using the transformation
and the set of generalized integer numbers introduced in
Section 3 of this paper, or similar to Definition 27, one
can propose concepts of almost periodic functions, pseudo
almost periodic functions, weighted pseudo almost automor-
phic functions, almost periodic set-valued functions, almost
periodic functions in the sense of Stepanov on the quantum
time scale, and so on.
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morphic mild solutions for some semilinear abstract dynamic

equations on time scales,” Nonlinear Studies, vol. 22, no. 3, pp.
381–395, 2015.
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