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In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented.
We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The
operationalmatrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations,
and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly,
illustrated examples are included to demonstrate the validity and applicability of the technique.

1. Introduction

Fractional calculus is a branch of mathematics that deals with
generalization of the well-known operations of differentia-
tions to arbitrary orders. Many papers on fractional calculus
have been published for the real-world applications in science
and engineering such as viscoelasticity [1], bioengineering
[2], biology [3], and more can be found in [4, 5]. Moreover
fractional partial differential equations also arewidely used in
the areas of signal processing [6], mechanics [7], economet-
rics [8], fluid dynamics [9], and electromagnetics [10]. As the
analytical solutions of fractional partial differential equations
are not easy to derive, the scholars are committed to obtain
their numerical solutions of these equations.

In recent years, various numerical methods have been
proposed for solving fractional diffusion equations, these
methods include wavelets methods [11–17], Jacobi, Legendre,
and Chebyshev polynomials methods [18–21], spectral meth-
ods [22, 23], finite element method [24], wavelet Galerkin
method [25], and finite difference methods [26, 27]. In [28],
a new matrix method is proposed to solve two-dimensional
time-dependent diffusion equations with Dirichlet boundary
conditions. In [29], the authors utilize the second kind
Chebyshev wavelets to obtain the numerical solutions of the

convection diffusion equations. Xie et al. use the Cheby-
shev operational matrix method to numerically solve one-
dimensional fractional convection diffusion equations in
[30]. In this paper, we apply the second kind Chebyshev
wavelet method to obtain the numerical solutions of one-
dimensional fractional nonsteady heat transfer model. The
obtained numerical solutions by our method have been
compared with those obtained by CAS wavelet method.

The current paper is organized as follows: Section 2 intro-
duces the basic definitions of fractional calculus. In Section 3,
the mathematical model of nonsteady heat transfer problem
is proposed. Section 4 illustrates the second kind Chebyshev
wavelets and their properties. In Section 5, we apply the sec-
ond kind Chebyshev wavelet for solving fractional nonsteady
heat transfer model. Numerical examples are presented to
test the proposed method in Section 6. Finally, a conclusion
is drawn in Section 7.

2. One-Dimensional Nonsteady Heat
Transfer Model

For one infinite plate sample, as shown in Figure 1, the
height is 𝛿, the upper surface and the edge are adiabatic,
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Figure 1: Nonsteady heat transfer model with constant temperature
boundary condition.

and the lower surface is contacted with the fluid, which its
temperature is 𝑡𝑤. The heat conductivity coefficient of the
sample is𝜆, the density is𝜌, and the specific heat capacity is 𝑐𝑝.
The initial temperature is 𝑡0, taking the origin of coordinates
on the sample adiabatic surfaces, and the nonsteady heat
transfer model with the initial-boundary condition can be
defined as follows [31]:

𝜕𝑡𝜕𝜏 = 𝜆𝜕2𝑡𝜌𝑐𝑝𝜕𝑥2 ,
𝜏 = 0,
𝑡 = 𝑡0,
𝑥 = 0,
𝜕𝑡𝜕𝑥 = 0,
𝑥 = 𝜎,
𝑡 = 𝑡𝑤.

(1)

Obviously, when the sample density𝜌, heat conductivity coef-
ficient 𝜆, specific heat capacity 𝑐𝑝, and thickness 𝛿 are known,
we can obtain the temperature distribution at any position𝑥 and any time 𝜏, which is the nonsteady heat conduction
model with constant temperature boundary condition. Based
on the above-mentioned model, we give the fractional-order
nonsteady heat transfer model of the following form:

𝜕𝑇𝜕𝑡 = 𝜆𝜕𝛼𝑇𝜌𝑐𝑝𝜕𝑥𝛼 + 𝑔 (𝑥, 𝑡) ,
0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, 1 < 𝛼 ≤ 2,

(2)

with the initial condition:

𝑇 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1, (3)

and the boundary conditions:

𝑇 (0, 𝑡) = 𝑔0 (𝑡) ,
𝑇 (1, 𝑡) = 𝑔1 (𝑡) ,

0 ≤ 𝑡 ≤ 1,
(4)

where 𝑔(𝑥, 𝑡) denotes source term, 𝑓(𝑥) is a given function,
and 𝑔0(𝑡), 𝑔1(𝑡) are continuous functions with first-order
derivative.

3. Preliminaries of the Fractional Calculus

In this section, we give some necessary definitions and
mathematical preliminaries on fractional calculus which will
be used further in this paper.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator 𝐼𝛼 (𝛼 > 0) of a function 𝑓(𝑡) is defined as follows [4]:

𝐼𝛼𝑓 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) d𝜏,

𝛼 > 0, 𝛼 ∈ R+.
(5)

Some properties of the operator 𝐼𝛼 are as follows:
𝐼𝛼𝐼𝛽𝑓 (𝑡) = 𝐼𝛼+𝛽𝑓 (𝑡) , (𝛼 > 0, 𝛽 > 0) , (6)

𝐼𝛼𝑡𝛾 = Γ (1 + 𝛾)
Γ (1 + 𝛾 + 𝛼)𝑡𝛼+𝛾, (𝛾 > −1) . (7)

Definition 2. The Caputo fractional derivative 0𝐷𝛼𝑡 of a
function 𝑓(𝑡) is defined as follows [4]:

0𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0

𝑓𝑛 (𝜏)
(𝑡 − 𝜏)𝑛−𝛼+1 d𝜏,

(𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁) .
(8)

Some properties of the Caputo fractional derivative are as
follows:

0𝐷𝛼𝑡 𝑡𝛽 = Γ (1 + 𝛽)
Γ (1 + 𝛽 − 𝛼)𝑡𝛽−𝛼,

0 < 𝛼 < 𝛽 + 1, 𝛽 > −1,
𝐼𝛼𝐷𝛼𝑓 (𝑡) = 𝑓 (𝑡) − 𝑛−1∑

𝑘=0

𝑓(𝑘) (0+) 𝑡𝑘𝑘! ,
𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁.

(9)

4. The Second Kind Chebyshev
Wavelet and Its Operational Matrix of
Fractional Integration

4.1. The Second Kind Chebyshev Wavelet and Its Properties.
The second kind Chebyshev wavelet 𝜓𝑛𝑚(𝑡) = 𝜓(𝑘, 𝑛,𝑚, 𝑡)
has four arguments, 𝑛 = 1, 2, . . . , 2𝑘−1, 𝑘 ∈ 𝑁∗. They are
defined on the interval [0, 1) as follows [19]:
𝜓𝑛𝑚 (𝑡)
= {{{

2𝑘/2𝑈̃𝑚 (2𝑘𝑡 − 2𝑛 + 1) , 𝑛 − 12𝑘−1 ≤ 𝑡 < 𝑛2𝑘−1 ,0, o.w.
(10)

with

𝑈̃𝑚 (𝑡) = √ 2𝜋𝑈𝑚 (𝑡) , 𝑚 = 0, 1, 2, . . . ,𝑀 − 1. (11)
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Here 𝑈𝑚(𝑡) are the second kind Chebyshev polynomials
which are orthogonal with respect to the weight function𝑤(𝑡) = √1 − 𝑡2 and satisfy the following recursive formula:

𝑈0 (𝑡) = 1,
𝑈1 (𝑡) = 2𝑡,

𝑈𝑚+1 (𝑡) = 2𝑡𝑈𝑚 (𝑡) − 𝑈𝑚−1 (𝑡) , 𝑚 = 1, 2, . . . .
(12)

A function 𝑓(𝑡) defined over [0, 1) may be expanded in
terms of the second kind Chebyshev wavelet as follows:

𝑓 (𝑡) ≃ 2
𝑘−1

∑
𝑛=1

𝑀−1∑
𝑚=0

𝑐𝑛𝑚𝜓𝑛𝑚 (𝑡) = 𝐶𝑇Ψ (𝑡) , (13)

where

𝑐𝑛𝑚 = (𝑓 (𝑡) , 𝜓𝑛𝑚 (𝑡))𝜔𝑛 = ∫
1

0
𝜔𝑛 (𝑡) 𝜓𝑛𝑚 (𝑡) d𝑡, (14)

and the weight function 𝑤𝑛(𝑡) = 𝑤(2𝑘𝑡 − 2𝑛 + 1).Moreover,𝐶 and Ψ(𝑡) are 𝑚̂ = (2𝑘−1𝑀) column vectors given by

𝐶 = [𝑐10, 𝑐11, . . . , 𝑐1(𝑀−1), 𝑐20, 𝑐21, . . . , 𝑐2(𝑀−1), . . . , 𝑐2𝑘−10, . . . ,
𝑐2𝑘−1(𝑀−1)]𝑇 ,

Ψ (𝑡) = [𝜓10, 𝜓11, . . . , 𝜓1(𝑀−1), 𝜓20, 𝜓21, . . . , 𝜓2(𝑀−1), . . . ,
𝜓2𝑘−10, . . . , 𝜓2𝑘−1(𝑀−1)]𝑇 .

(15)

Take the collocation points as follows:

𝑡𝑖 = 2𝑖 − 12𝑘𝑀 , 𝑖 = 1, 2, . . . , 2𝑘−1𝑀, 𝑚̂ = 2𝑘−1𝑀. (16)

We define the second kind Chebyshev wavelet matrix Φ𝑚̂×𝑚̂
as

Φ𝑚̂×𝑚̂ = [Ψ( 12𝑚̂) , Ψ ( 32𝑚̂) , . . . , Ψ (2𝑚̂ − 12𝑚̂ )] . (17)

An arbitrary function of two variables𝑇(𝑥, 𝑡)defined over[0, 1)× [0, 1)may be expanded into Chebyshev wavelets basis
as follows:

𝑇 (𝑥, 𝑡) ≃ 𝑚̂∑
𝑖=1

𝑚̂∑
𝑗=1

𝑑𝑖𝑗𝜓𝑖 (𝑥) 𝜓𝑗 (𝑡) = Ψ𝑇 (𝑥)𝐷Ψ (𝑡) , (18)

where𝐷 = [𝑑𝑖𝑗]𝑚̂×𝑚̂ and 𝑑𝑖𝑗 = (𝜓𝑖(𝑥), (𝑇(𝑥, 𝑡), 𝜓𝑗(𝑡))).
The following theorem discusses the convergence and

accuracy estimation of the proposed method.

Theorem 3. Let 𝑓(𝑡) be a second-order derivative square-
integrable function defined over [0, 1) with bounded second-
order derivative, satisfying |𝑓󸀠󸀠(𝑡)| ≤ 𝐵 for some constants 𝐵;
then

(1) 𝑓(𝑡) can be expanded as an infinite sum of the second
kind Chebyshev wavelets and the series converge to𝑓(𝑡)
uniformly, that is,

𝑓 (𝑡) = ∞∑
𝑛=0

∞∑
𝑚∈𝑍

𝑐𝑛𝑚𝜓𝑛𝑚 (𝑡) , (19)

where 𝑐𝑛𝑚 = ⟨𝑓(𝑡), 𝜓𝑛𝑚(𝑡)⟩𝐿2
𝜔
[0,1).

(2)

𝜎𝑓,𝑘,𝑀 < √𝜋𝐵23 (
∞∑
𝑛=2𝑘−1+1

1𝑛5
∞∑
𝑚=𝑀

1
(𝑚 − 1)4)

1/2 , (20)

where 𝜎𝑓,𝑘,𝑀 = (∫1
0
|𝑓(𝑡) −

∑2𝑘−1𝑛=1 ∑𝑀−1𝑚=0 𝑐𝑛𝑚𝜓𝑛𝑚(𝑡)|2𝜔𝑛(𝑡)𝑑𝑡)1/2.
4.2. Operational Matrix of Fractional Integration. On the
interval [0, 1), we defined a 𝑚̂ – set of block-pulse functions
(BPFs) as

𝑏𝑖 (𝑡) = {{{
1, 𝑖̂𝑚 ≤ 𝑡 < 𝑖 + 1𝑚̂ ,
0, o.w. 𝑖 = 0, 1, 2, . . . , 𝑚̂ − 1. (21)

The functions {𝑏𝑖(𝑡)} are disjoint and orthogonal:

𝑏𝑖 (𝑡) 𝑏𝑗 (𝑡) = {{{
0, 𝑖 ̸= 𝑗,
𝑏𝑖 (𝑡) , 𝑖 = 𝑗,

∫1
0
𝑏𝑖 (𝑠) 𝑏𝑗 (𝑠) d𝑠 = {{{{{

0, 𝑖 ̸= 𝑗,
1𝑚, 𝑖 = 𝑗.

(22)

Similarly, the second kind Chebyshev wavelet may be
expanded into an 𝑚̂-term block-pulse functions as

Ψ (𝑡) = Φ𝑚̂×𝑚̂𝐵𝑚̂ (𝑡) . (23)

Kilicman has given the block-pulse functions operational
matrix of fractional integration 𝐹𝛼 of following form:

(𝐼𝛼𝐵𝑚̂) (𝑡) ≈ 𝐹𝛼𝐵𝑚̂ (𝑡) , (24)

where

𝐵𝑚̂ (𝑡) = [𝑏0 (𝑡) , 𝑏1 (𝑡) , . . . , 𝑏𝑚̂−1 (𝑡)]𝑇 ,

𝐹𝛼 = 1̂𝑚𝛼 1Γ (𝛼 + 2)

[[[[[[[[[[[[
[

1 𝜉1 𝜉2 𝜉3 ⋅ ⋅ ⋅ 𝜉𝑚̂−10 1 𝜉1 𝜉2 ⋅ ⋅ ⋅ 𝜉𝑚̂−20 0 1 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑚̂−3... ... d d
...

0 0 ⋅ ⋅ ⋅ 0 1 𝜉10 0 0 ⋅ ⋅ ⋅ 0 1

]]]]]]]]]]]]
]

. (25)

Next, we derive the second kind Chebyshev wavelet opera-
tional matrix of fractional integration. Let

(𝐼𝛼Ψ) (𝑡) = 𝑃𝛼𝑚̂×𝑚̂Ψ (𝑡) , (26)

where 𝑃𝛼𝑚̂×𝑚̂ is called the second kind Chebyshev wavelet
operational matrix of fractional integration and it can be
given by

𝑃𝛼𝑚̂×𝑚̂ = Φ𝑚̂×𝑚̂𝐹𝛼Φ−1𝑚̂×𝑚̂. (27)

For More details, see [29].



4 Discrete Dynamics in Nature and Society

5. Numerical Implementation

In this section, we use the second kind Chebyshev wavelets
method for numerically solving the nonsteady fractional-
order heat transfer model with initial-boundary conditions.
In order to solve this problem, we assume

𝜕3𝑇𝜕𝑡𝜕𝑥2 = Ψ𝑇 (𝑥)𝐷Ψ (𝑡) , (28)

where 𝐷 = (𝑑𝑖𝑗)𝑚̂×𝑚̂ is an unknown matrix which should
be determined, and Ψ(⋅) is the vector defined in (15). By
integrating (28) from 0 to 𝑡, we obtain

𝜕2𝑇𝜕𝑥2 = 𝜕
2𝑇𝜕𝑥2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 + Ψ

𝑇 (𝑥)𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) . (29)

Making use of the initial condition (3) enables one to put (29)
in the following form:

𝜕
2𝑇
𝜕𝑥2 = 𝑓󸀠󸀠 (𝑥) + Ψ𝑇 (𝑥)𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) . (30)

Then we have

𝜕𝛼𝑇𝜕𝑥𝛼 = 𝐼2−𝛼𝑥 (𝜕2𝑇𝜕𝑥2 )
= 𝐼2−𝛼𝑥 ( 𝜕2𝑇𝜕𝑥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 + Ψ
𝑇 (𝑥)𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡))

= 𝐼2−𝛼𝑥 𝑓󸀠󸀠 (𝑥) + Ψ𝑇 (𝑥) (𝑃2−𝛼𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) .
(31)

By integrating (30) two times from 0 to 𝑥, we obtain
𝑇 (𝑥, 𝑡) = 𝑇 (0, 𝑡) + 𝑥 𝜕𝑇𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0 + 𝑓 (𝑥) − 𝑓 (0)
− 𝑥𝑓󸀠 (0) + Ψ𝑇 (𝑥) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) ,

(32)

and, by putting 𝑥 = 1 in (32), we get

𝑇 (𝑥, 𝑡) = 𝑇 (0, 𝑡) + 𝑥𝐻 (𝑡) + 𝑓 (𝑥) − 𝑓 (0) − 𝑥𝑓󸀠 (0)
+ Ψ𝑇 (𝑥) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) ,

(33)

where

𝐻(𝑡) = 𝑇 (1, 𝑡) − 𝑇 (0, 𝑡) + 𝑓 (0) + 𝑓󸀠 (0) − 𝑓 (1)
− Ψ𝑇 (1) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) .

(34)

By one time differentiation of (33) with respect to 𝑡, we obtain
𝜕𝑇𝜕𝑡 = 𝑇󸀠 (0, 𝑡) + 𝑥𝐻󸀠 (𝑡)

+ Ψ𝑇 (𝑥) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) ,
(35)

where

𝐻󸀠 (𝑡) = 𝑇󸀠 (1, 𝑡) − 𝑇󸀠 (0, 𝑡)
− Ψ𝑇 (1) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ (𝑡) .

(36)
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Figure 2: Analytical solution.

Now by substituting (31) and (35) into (2) and combining (4)
and taking collocation points 𝑥𝑖 = (2𝑖−1)/𝑚̂, 𝑡𝑗 = (2𝑗−1)/𝑚̂,𝑖, 𝑗 = 1, 2, 3, . . . , 𝑚̂, we obtain the following linear system of
algebraic equations:

𝑇󸀠 (0, 𝑡𝑗) + 𝑥𝑖 (𝑇󸀠 (1, 𝑡𝑗) − 𝑇󸀠 (0, 𝑡𝑗)
− Ψ𝑇 (1) (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ(𝑡𝑗)) + Ψ𝑇 (𝑥𝑖)
⋅ (𝑃2𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ(𝑡𝑗) = 𝑎𝐼2−V𝑥 𝑓󸀠󸀠 (𝑥𝑖)
+ 𝑎Ψ𝑇 (𝑥𝑖) (P2−V𝑚̂×𝑚̂)𝑇𝐷𝑃𝑚̂×𝑚̂Ψ(𝑡𝑗) + 𝑔 (𝑥𝑖, 𝑡𝑗) ,

𝑖, 𝑗, = 1, 2, 3, . . . , 𝑚̂.

(37)

By solving this system to determine 𝐷, we can get the
numerical solution of this problem by substituting 𝐷 into
(33).

6. Numerical Simulations

In this section, we use the proposed method to solve the
initial-boundary problem of nonsteady heat transfer equa-
tions.The followingnumerical examples are given to show the
effectiveness and practicability of the proposed method and
the results have been compared with the analytical solution.

Example 4. Consider the following fractional-order non-
steady heat transfer model:

𝜕𝑇𝜕𝑡 = 𝜆𝜕1.5𝑇𝜌𝑐𝑝𝜕𝑥1.5 + 𝑔 (𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, (38)

where the parameters 𝜌 = 7500, 𝑐𝑝 = 0.795, 𝜆 = 800, and𝑔(𝑥, 𝑡) = 𝑥(𝑥−1)(2𝑡−1)−0.302793571044498𝑥0.5𝑡(𝑡−1)with
initial-boundary condition 𝑇(𝑥, 0) = 𝑇(0, 𝑡) = 𝑇(1, 𝑡) = 0.
The analytical solution of this problem is 𝑇(𝑥, 𝑡) = 𝑥𝑡(𝑥 −1)(𝑡 − 1). The graph of the analytical solution is shown in
Figure 2. The graphs of the numerical solutions when 𝑘 =𝑀 = 3, 𝑘 = 𝑀 = 4, 𝑘 = 𝑀 = 5 are shown in Figures
3–5. From Examples 4, 6, and 7, it can be concluded that the
numerical solutions approximate to the analytical solution for
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Figure 3: Numerical solution with 𝑘 = 𝑀 = 3.
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Figure 4: Numerical solution with 𝑘 = 𝑀 = 4.
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Figure 5: Numerical solution with 𝑘 = 𝑀 = 5.

a given value 𝑘, as𝑀 increases, or, for a given value𝑀, as 𝑘
increases.

Example 5. Consider the following fractional-order non-
steady heat transfer equation:

𝜕𝑇𝜕𝑡 = 𝜕
1.8𝑇𝜕𝑥1.8 + 2𝑥2𝑡 − 2𝑥

0.2𝑡2Γ (1.2) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, (39)

with initial-boundary condition 𝑇(𝑥, 0) = 𝑇(0, 𝑡) = 0,𝑇(1, 𝑡) = 𝑡2. The analytical solution of this problem is𝑇(𝑥, 𝑡) = 𝑥2𝑡2. When 𝑘 = 𝑀 = 3, 𝑘 = 𝑀 = 4, 𝑘 = 𝑀 = 5,
the numerical solutions obtained by our method and those
obtained by CAS wavelet method at some values of 𝑥, 𝑡 are
listed in Table 1.

Example 6. We consider the following second-order non-
steady heat transfer model:
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Figure 6: Analytical solution.
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Figure 7: Numerical solution with 𝑘 = 3.

𝜕𝑇𝜕𝑡 = 2𝜕
2𝑇𝜕𝑥2 + 3 sin (𝑥) − sin (𝑡) − 2 cos (𝑡) ,

0 ≤ 𝑥 ≤ 1, 𝑡 > 0,
(40)

in such a way that 𝑇(𝑥, 0) = sin(𝑥) + 1, 𝑇(0, 𝑡) = cos(𝑡),𝑇(1, 𝑡) = sin(1) + cos(𝑡). The analytical solution of the system
is 𝑇(𝑥, 𝑡) = sin(𝑥) + cos(𝑡).The absolute errors between the
numerical and analytical solutions obtained by our method
and CAS wavelet method at some values of 𝑥, 𝑡 when 𝑘 = 3,(𝑀 = 3,𝑀 = 4,𝑀 = 5) are shown in Table 2. Table 2 shows
that ourmethodhas a better approximation thanCASwavelet
method.

Example 7. Consider the following second-order nonsteady
heat transfer model:

𝜕𝑇𝜕𝑡 = 𝜆𝜕2𝑇𝜌𝑐𝑝𝜕𝑥2 + 𝑔 (𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, (41)

where the parameters 𝜌 = 7500, 𝑐𝑝 = 0.795,𝜆 = 1000, and 𝑔(𝑥, 𝑡) = −𝜋 sin(𝜋𝑥) sin(𝜋𝑡) +0.167714884696017𝜋2 sin(𝜋𝑥) cos(𝜋𝑡), in such a way
that 𝑇(𝑥, 0) = sin(𝜋𝑥), 𝑇(0, 𝑡) = 𝑇(1, 𝑡) = 0.The analytical
solution of this problem is 𝑇(𝑥, 𝑡) = sin(𝜋𝑥) cos(𝜋𝑡). The
graphs of the analytical and numerical solutions, when𝑀 = 3, (𝑘 = 3, 4, 5), are shown in Figures 6–9.

Example 8. Consider (41), with 𝛼 = 2, 1.9, 1.8, 1.7; the
numerical solutions when 𝑘 = 𝑀 = 4 at 𝑡 = 0.3, 0.6, 0.95
are shown in Figure 10. This example is introduced to verify
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Figure 8: Numerical solution with 𝑘 = 4.
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Figure 9: Numerical solution with 𝑘 = 5.
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Figure 10: The numerical solutions with 𝛼 = 2, 1.9, 1.8, 1.7 when 𝑘 = 𝑀 = 4.
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the robustness of the proposed method; when the fractional
order gradually approaches to 2, the numerical solutions are
in agreement with the analytical solution.

7. Conclusions

This paper presents a numerical technique for approximat-
ing solutions of one-dimensional fractional nonsteady heat
transfer model by combining the second kind Chebyshev
wavelet with its operational matrix of fractional-order inte-
gration. In the proposed method, a small number of grid
points guarantee the necessary accuracy.Themain advantage
of wavelet method for solving the kinds of equations is that,
after dispersing the coefficients, matrix of algebraic equations
is sparse. The solution is convenient, even though the size
of increment may be large. Several examples are given to
demonstrate the powerfulness of the proposed method.
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