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In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented.
We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The
operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations,
and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly,

illustrated examples are included to demonstrate the validity and applicability of the technique.

1. Introduction

Fractional calculus is a branch of mathematics that deals with
generalization of the well-known operations of differentia-
tions to arbitrary orders. Many papers on fractional calculus
have been published for the real-world applications in science
and engineering such as viscoelasticity [1], bioengineering
[2], biology [3], and more can be found in [4, 5]. Moreover
fractional partial differential equations also are widely used in
the areas of signal processing [6], mechanics [7], economet-
rics [8], fluid dynamics [9], and electromagnetics [10]. As the
analytical solutions of fractional partial differential equations
are not easy to derive, the scholars are committed to obtain
their numerical solutions of these equations.

In recent years, various numerical methods have been
proposed for solving fractional diffusion equations, these
methods include wavelets methods [11-17], Jacobi, Legendre,
and Chebyshev polynomials methods [18-21], spectral meth-
ods [22, 23], finite element method [24], wavelet Galerkin
method [25], and finite difference methods [26, 27]. In [28],
a new matrix method is proposed to solve two-dimensional
time-dependent diffusion equations with Dirichlet boundary
conditions. In [29], the authors utilize the second kind
Chebyshev wavelets to obtain the numerical solutions of the

convection diffusion equations. Xie et al. use the Cheby-
shev operational matrix method to numerically solve one-
dimensional fractional convection diffusion equations in
[30]. In this paper, we apply the second kind Chebyshev
wavelet method to obtain the numerical solutions of one-
dimensional fractional nonsteady heat transfer model. The
obtained numerical solutions by our method have been
compared with those obtained by CAS wavelet method.

The current paper is organized as follows: Section 2 intro-
duces the basic definitions of fractional calculus. In Section 3,
the mathematical model of nonsteady heat transfer problem
is proposed. Section 4 illustrates the second kind Chebyshev
wavelets and their properties. In Section 5, we apply the sec-
ond kind Chebyshev wavelet for solving fractional nonsteady
heat transfer model. Numerical examples are presented to
test the proposed method in Section 6. Finally, a conclusion
is drawn in Section 7.

2. One-Dimensional Nonsteady Heat
Transfer Model

For one infinite plate sample, as shown in Figure 1, the
height is 8, the upper surface and the edge are adiabatic,
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FIGURE 1: Nonsteady heat transfer model with constant temperature
boundary condition.

and the lower surface is contacted with the fluid, which its
temperature is f,. The heat conductivity coefficient of the
sample is A, the density is p, and the specific heat capacity is c,,.
The initial temperature is ¢, taking the origin of coordinates
on the sample adiabatic surfaces, and the nonsteady heat
transfer model with the initial-boundary condition can be
defined as follows [31]:

o e
ot pc,0x?’
T=0,
t=t,,
x=0, €))
LU
ox
x =0,
t=t,.

Obviously, when the sample density p, heat conductivity coef-
ficient A, specific heat capacity c,, and thickness & are known,
we can obtain the temperature distribution at any position
x and any time 7, which is the nonsteady heat conduction
model with constant temperature boundary condition. Based
on the above-mentioned model, we give the fractional-order
nonsteady heat transfer model of the following form:

or _ AT +g(x,t)
ot _pcpax"‘ gVetls @)

0<x<1,t>0, 1<a<?2,

with the initial condition:

T(x,0)=f(x), 0<x<1, (3)
and the boundary conditions:
T(0,t) = g, (1),
T(1,t) =g, (1), (4)
0<t<l,

where g(x,t) denotes source term, f(x) is a given function,
and g,(t), g,(t) are continuous functions with first-order
derivative.
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3. Preliminaries of the Fractional Calculus

In this section, we give some necessary definitions and
mathematical preliminaries on fractional calculus which will
be used further in this paper.

Definition 1. The Riemann-Liouville fractional integral oper-
ator I (« > 0) of a function f(¢) is defined as follows [4]:

F) = ﬁ L (t- 1% F (o) dr, 5

a>0, a€R".
Some properties of the operator I* are as follows:

rrfro=1*rw, (a>0, f>0), (6)

I'(1
It = ﬁt“*h (y>-1). (7)
F(1+y+a)
Definition 2. The Caputo fractional derivative D; of a
function f(t) is defined as follows [4]:

1

R S
PO gy | oo 0

(m-1<a<n neN).

Some properties of the Caputo fractional derivative are as
follows:

JDtP =

! 1"(1+ﬁ—0c)t

0O<a<f+1, B>-1,

)
n-1 k
IO =f0-Y P00 5
k=0 :

n-1l<a<n neN.

4. The Second Kind Chebyshev
Wavelet and Its Operational Matrix of
Fractional Integration

4.1. The Second Kind Chebyshev Wavelet and Its Properties.
The second kind Chebyshev wavelet v, (t) = y(k,n,m,t)
has four arguments, n = 1,2,...,25", k € N*. They are
defined on the interval [0, 1) as follows [19]:

Vi (£)

2T, (2% —2n+1), <t< 2’<_n-1 (10)

— 2k—1 -

0, 0.W.

with

— 2
U, ) = ;Um(t), m=0,1,2,...,M—-1. (1)



Discrete Dynamics in Nature and Society

Here U, (t) are the second kind Chebyshev polynomials
which are orthogonal with respect to the weight function

w(t) = V1 — t? and satisfy the following recursive formula:
Uy (t) =1,
U, (t) = 2t, (12)
U, @) =2tU, () -U,_, (1),

A function f(t) defined over [0, 1) may be expanded in
terms of the second kind Chebyshev wavelet as follows:

m=12,....

2K 1M1

FO=Y Guntram () = CTY (), (13)

n=1m=0

where
1
Cam = (f () Y (1), = L W, (1) Yy () At (14)

and the weight function w,(t) = w(2*t — 2n + 1). Moreover,
C and ¥(t) are i7i = (25" M) column vectors given by

C= [cw,cll,...,cl(M_l),QO,czp...,Q(M_l),...,czk_lo,...,
T
%H(M—n] ’
(15)
V() = [1//10’1//11""’WI(M—I)’WZO’WZP'"’V’Z(M—l)"")

T
WZ’HO""’WZ""(M—I)] .

Take the collocation points as follows:

2i—-1

L= o

2FM

We define the second kind Chebyshev wavelet matrix @,

as
o= [1(2) (2 ) (220)] )

An arbitrary function of two variables T'(x, t) defined over
[0,1) x [0, 1) may be expanded into Chebyshev wavelets basis
as follows:

, i=1,2...2 "M, m=2"M. (16)

T(xt) =) Y dyy; (x)y; (1) =¥ (x) DY (1),  (18)
i=1j=1
where D = [dij]fﬁxfﬁ and d,‘j = (y;(x), (T'(x, 1), V/J(t)))
The following theorem discusses the convergence and
accuracy estimation of the proposed method.

Theorem 3. Let f(t) be a second-order derivative square-
integrable function defined over [0, 1) with bounded second-
order derivative, satisfying | "' (t)| < B for some constants B;
then

(1) f(t) can be expanded as an infinite sum of the second
kind Chebyshev wavelets and the series converge to f (t)
uniformly, that is,

FO= Gunln ®)> (19)

n=0meZ

where c,,,, = (f(t)ﬂlfnm(t))Li[O,l)'

)

1/2
\/mB = 1 & 1
af,k,M < ?< Z E Z m) s (20)

n=2k"141""~ m=M

ere g - (fy 1F® -
X Y GV ()P0, (1)) 2.

where

4.2. Operational Matrix of Fractional Integration. On the
interval [0, 1), we defined a 7 — set of block-pulse functions
(BPFs) as

i

i+1

1, —<t<——7,

b (t) = m m
0

i=0,1,2,...,m—1. (21)

>,  OW.

The functions {b,(t)} are disjoint and orthogonal:

03 i ¢ j)
b (1) (1) =
bi (t) 5 i = j,
(22)
1 0, i#j,
J b, (s)bj (s)ds=17
0 —, 1=
m

Similarly, the second kind Chebyshev wavelet may be
expanded into an 7i-term block-pulse functions as

V() =D B (t). (23)

mxm=—m

Kilicman has given the block-pulse functions operational
matrix of fractional integration F* of following form:

(I"B;) (t) = F*B5 (1), (24)
where

Bn (1) = [by (£),b, (1), sy (D]

[1 51 52 53 r’ﬁ—l-
01 51 52 Er’ﬁ—Z
« 1 1 0 0 1 El m-3 (25)
% T (o + 2)
00 -0 1 §
L0 0O 0 0 1 |

Next, we derive the second kind Chebyshev wavelet opera-
tional matrix of fractional integration. Let
(I"%) (t) = PL ¥ (1), (26)

mxm

where P- _ is called the second kind Chebyshev wavelet
operational matrix of fractional integration and it can be
given by

P

mxin

For More details, see [29].

= O FO O (27)



5. Numerical Implementation

In this section, we use the second kind Chebyshev wavelets
method for numerically solving the nonsteady fractional-
order heat transfer model with initial-boundary conditions.
In order to solve this problem, we assume

o’T T
=¥" (x) DY (1), (28)
319 (x) DY (t)
where D = (d;j)zym is an unknown matrix which should

be determined, and W(:) is the vector defined in (15). By
integrating (28) from 0 to ¢, we obtain

5 = 5 +¥" (x)DP,,, .V (). (29)

t=0
Making use of the initial condition (3) enables one to put (29)
in the following form:

2
% = 1" (x) + ¥" (x) DP;, ¥ (). (30)

Then we have

T _ e az_T
ox* ¥ 0x2

s ( 82_T

* O0x?2

mxm

+ %7 (x) DP,, ¥ (t)) (D)
t=0

= P () + 9T () (PR DP,

mxin mxim

¥ ().

By integrating (30) two times from 0 to x, we obtain

T (x,t) =T (0,t) + x B_T
ox

O+f(x)—f(0)

= (32)
- xf"(0) + ¥ (%) (P;Xﬁ)T DP. -V (1),
and, by putting x = 1 in (32), we get
T (x,t) = T(0,t) + xH (t) + f (x) — f(0) — xf' (0)
+¥7 (x) (P,Enxm)T DP.. VY (1), )
where
H () =T (L,t) = T(0,6) + £ (0) + f' (0) - £ (1)
(34)

-v' () (P A)TDPA W (1).

mXm mxm

By one time differentiation of (33) with respect to t, we obtain

o _ 0,1) + xH' ()
ot (35)
VT () (P2n) DPrs¥ (1),
where
H@®=T 1,)-T' (0,1
(36)

~ ¥ (1) (P2,7)" DB (8).

mxm mxm
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FIGURE 2: Analytical solution.

Now by substituting (31) and (35) into (2) and combining (4)
and taking collocation points x; = (2i—1)/m, t; = (2j-1)/m,
i,j = 1,2,3,...,m, we obtain the following linear system of
algebraic equations:

T'(0,¢)) + x; (T’ (1,t)-T"(0,¢;)

~¥T (1) (B2,5) DPyr¥ (t)) +¥" (x)

mxm mxm

mxm

(P DB (1)) = a2 () 7

+ a7 (x) (P50) DR (&) + g (1),

mxm mxm
ij,=1,2,3,...,7.

By solving this system to determine D, we can get the
numerical solution of this problem by substituting D into
(33).

6. Numerical Simulations

In this section, we use the proposed method to solve the
initial-boundary problem of nonsteady heat transfer equa-
tions. The following numerical examples are given to show the
effectiveness and practicability of the proposed method and
the results have been compared with the analytical solution.

Example 4. Consider the following fractional-order non-
steady heat transfer model:

T A"°T

E—m 0<x<1,t=>0, (38)
P

+g(x,t),

where the parameters p = 7500, ¢, = 0.795, A = 800, and
g(x,t) = x(x—1)(2t—1)—-0.302793571044498x°°t(t— 1) with
initial-boundary condition T'(x,0) = T(0,t) = T(1,t) = 0.
The analytical solution of this problem is T'(x,t) = xt(x —
1)(t — 1). The graph of the analytical solution is shown in
Figure 2. The graphs of the numerical solutions when k =
M =3k =M =4k = M = 5 are shown in Figures
3-5. From Examples 4, 6, and 7, it can be concluded that the
numerical solutions approximate to the analytical solution for
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FIGURE 5: Numerical solution with k = M = 5.

a given value k, as M increases, or, for a given value M, as k
increases.

Example 5. Consider the following fractional-order non-
steady heat transfer equation:
or 9T
ot 0x'®

5 2x0A2t2

_ , 0<x<1,t>0, (39
r(1.2)

with initial-boundary condition T(x,0) = T(0,t) = 0,
T(1,t) = t*. The analytical solution of this problem is
T(x,t) = x*>. Whenk =M =3, k=M =4,k =M = 5,
the numerical solutions obtained by our method and those

obtained by CAS wavelet method at some values of x, ¢ are
listed in Table 1.

Example 6. We consider the following second-order non-
steady heat transfer model:

5
1
=}
2
E 05
2
E 0
B
= -0.5
=}
< 1
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£ 00 R .
FIGURE 6: Analytical solution.
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FIGURE 7: Numerical solution with k = 3.
or _o'T , ,
- =2—— +3sin(x) —sin (f) — 2 cos (f),
ot ox (40)

0<x<1,t>0,

in such a way that T'(x,0) = sin(x) + 1, T(0,t) = cos(t),
T(1,t) = sin(1) + cos(t). The analytical solution of the system
is T'(x,t) = sin(x) + cos(t). The absolute errors between the
numerical and analytical solutions obtained by our method
and CAS wavelet method at some values of x, t when k = 3,
(M =3,M = 4, M = 5) are shown in Table 2. Table 2 shows
that our method has a better approximation than CAS wavelet
method.

Example 7. Consider the following second-order nonsteady
heat transfer model:

oTf  \O°T

- - T =5 )t >
ot pc,ox? tg(nh

0<x<1,t>0, (41)
where the parameters p = 7500, ¢, = 0.795,
A = 1000, and g(x,t) = -—mwsin(mx)sin(mt) +
0.1677148846960177% sin(7rx) cos(rt), in such a way
that T'(x,0) = sin(mx), T(0,t) = T(1,t) = 0. The analytical
solution of this problem is T(x,t) = sin(mx) cos(rt). The
graphs of the analytical and numerical solutions, when
M =3, (k = 3,4,5), are shown in Figures 6-9.

Example 8. Consider (41), with « = 2,1.9,1.8,1.7; the
numerical solutions when k = M = 4att = 0.3,0.6,0.95
are shown in Figure 10. This example is introduced to verify
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the robustness of the proposed method; when the fractional
order gradually approaches to 2, the numerical solutions are
in agreement with the analytical solution.

7. Conclusions

This paper presents a numerical technique for approximat-
ing solutions of one-dimensional fractional nonsteady heat
transfer model by combining the second kind Chebyshev
wavelet with its operational matrix of fractional-order inte-
gration. In the proposed method, a small number of grid
points guarantee the necessary accuracy. The main advantage
of wavelet method for solving the kinds of equations is that,
after dispersing the coeflicients, matrix of algebraic equations
is sparse. The solution is convenient, even though the size
of increment may be large. Several examples are given to
demonstrate the powerfulness of the proposed method.
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