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A finite elementmodel is proposed for the Benjamin-Bona-Mahony-Burgers (BBM-Burgers) equationwith a high-order dissipative
term; the scheme is based on adaptivemovingmeshes.Themodel can be applied to the equationswith spatial-timemixedderivatives
and high-order derivative terms. In this scheme, new variables are needed to make the equation become a coupled system, and
then the linear finite element method is used to discretize the spatial derivative and the fifth-order Radau IIA method is used to
discretize the time derivative.The simulations of 1D and 2DBBM-Burgers equationswith high-order dissipative terms are presented
in numerical examples. The numerical results show that the method keeps a second-order convergence in space and provides a
smaller error than that based on the fixed mesh, which demonstrates the effectiveness and feasibility of the finite element method
based on the moving mesh.We also study the effect of the dissipative terms with different coefficients in the equation; by numerical
simulations, we find that the dissipative term 𝑢𝑥𝑥 plays a more important role than 𝑢𝑥𝑥𝑥𝑥 in dissipation.

1. Introduction

In mathematics, physics, and engineering, nonlinear partial
differential equations play an important role due to their rich
mathematical structures and features [1–4] as well as impor-
tant applications in fluid dynamics, plasma physics, fiber
optics, condensed matter physics, and chemistry [5–11]. It is
important to search for solutions. These nonlinear partially
differential equations can be solved exactly or numerically
to understand the properties of solutions.

In this paper, we consider the nonlinear multidimen-
sional Benjamin-Bona-Mahony-Burgers (BBM-Burgers)
equation with a dissipative term and use the finite element
method based on the moving mesh to solve its numerical
solution. The equation has the following form:

𝑢𝑡 + 𝑑∑
𝑖=1

𝛼𝑖𝑢𝑥𝑖 + 𝑑∑
𝑖=1

𝛽𝑖𝑢𝑢𝑥𝑖 − 𝛾Δ𝑢 − 𝜇Δ𝑢𝑡
+ 𝑑∑
𝑖=1

𝑝∑
𝑛=1

𝛿𝑛 𝜕2𝑛+2𝑢𝜕𝑥𝑖2𝑛+2 = 𝐹, X ∈ Ω, 𝑡 ∈ (0, 𝑇]

𝑢 (X, 𝑡) = 𝑔 (X, 𝑡) , X ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇]
𝑢 (X, 0) = 𝑢0 (X) , X ∈ Ω,

(1)

where X = (𝑥1, 𝑥2, . . . , 𝑥𝑑), 𝑑 stands for the dimension, 𝑥𝑖
stands for the corresponding spatial vector, the coefficients𝛼𝑖, 𝛽𝑖 ∈ 𝑅, 𝛾, 𝜇, 𝛿𝑛 > 0,Ω ⊆ 𝑅𝑛, Δ is a Laplace operator, and 𝑝
is one constant to define the order of the dissipative term. In
the equation, 𝐹 is a sufficiently smooth function and stands
for the source term, and 𝑔(X) and 𝑢0(X) are given functions.

Equation (1) is related to thewell-knownBenjamin-Bona-
Mahony (BBM) equation, which was advocated by Benjamin
et al. [12] in 1972 as a refinement of the Korteweg-de-Vries
(KdV) equation. There are several different transformations
of this equation; when the coefficients 𝜇 = 𝛿𝑛 = 0, 𝐹 = 0, the
equation becomes 𝑢𝑡 + ∑𝑑𝑖=1 𝛼𝑖𝑢𝑥𝑖 + ∑𝑑𝑖=1 𝛽𝑖𝑢𝑢𝑥𝑖 = 0, which
is the Burgers equation with a nonlinear term. When param-
eters 𝛾, 𝛿𝑛 = 0, (1) becomes 𝑢𝑡 + ∑𝑑𝑖=1 𝛼𝑖𝑢𝑥𝑖 + ∑𝑑𝑖=1 𝛽𝑖𝑢𝑢𝑥𝑖 −𝜇Δ𝑢𝑡 = 𝐹, which is called Regularized Long Wave (RLW)
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equation, also called BBM equation. The RLW equation is
usually used to analyze small amplitude long waves on the
surface of water in fluid dynamics. When 𝛿𝑛 = 0, (1) becomes
a generalized BBM-Burgers equation, which is a mathemat-
ical model of propagation of small-amplitude long wave in
nonlinear dispersive media and better than Korteweg-de-
Vries-Burgers (KdV-B) equation in fluid mechanics; when𝐹 = 0, 𝑑 = 1, and 𝑔(𝑥) = 0, the BBM-Burgers equation
satisfies two conservation laws:

Mass function 𝐸1 (𝑡) = ∫
Ω
𝑢 𝑑𝑥,

Energy function 𝐸2 (𝑡)
= ∫
Ω
(12𝑢2 + 𝜇2 (𝑢𝑥)2)𝑑𝑥 + 𝛼∫

𝑡

0
∫
Ω
𝑢𝑥2 (𝜍) 𝑑𝑥 𝑑𝜍.

(2)

If 𝑑 = 2, 𝑝 = 1, (1) becomes

𝑢𝑡 + 𝛼1𝑢𝑥 + 𝛼2𝑢𝑦 + 𝛽1𝑢𝑢𝑥 + 𝛽2𝑢𝑢𝑦 − 𝛾Δ𝑢 − 𝜇Δ𝑢𝑡
+ 𝛿 (𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑦𝑦𝑦𝑦) = 𝐹, (𝑥, 𝑦) ∈ Ω, 𝑡 ∈ (0, 𝑇]

𝑢 (𝑥, 𝑦, 𝑡) = 𝑔 (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇]
𝑢 (𝑥, 𝑦, 0) = 𝑢0 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω.

(3)

In physical phenomena, the effect of dispersion in the BBM-
Burgers equationwith a high-order dissipative term is similar
to the RLW equation; the effect of dissipation is similar to the
Burgers equation.

To get the approximate solution of the BBM-Burgers
equation with a high-order dissipative term, some numerical
and analytical methods have been proposed in recent years.
In the aspect of mathematical theory, Zhao et al. consider
the existence of the generalized BBM-Burgers equation with
a dissipative term and verify the corresponding convergence
in H-measures [13, 14]. Kondo and Webler apply kinetic
decomposition for the generalized BBM-Burgers equations
with a dissipative term to obtain the approximate transport
equation, and then take advantage of the averaging lemma to
get the convergence [15]. Seok states the existence and con-
servation laws of the generalized BBM-Burgers equationwith
a dissipative term [16]. For more theoretical analyses, refer to
the references in [13–16]. In the aspect of numerical solutions,
many methods have been used, like Painlev’e test, Darboux
Transformation, bilinear method, symmetry method [17],
and so on [18–21]. Hong et al. apply the homotopy per-
turbation method and He’s variational iteration method to
solve the BBM-Burgers equation. Ganji et al. put forward the
notion that the method they used in [22] is better than the
homotopy analysis method proposed in [23]. Finite element
Galerkin methods have been discussed by Kadri et al. [24],
Lee [25], Yin and Piao [26], and Dehghan et al. [27] to solve
the BBM-Burgers equations with a dissipative term. Finite
difference methods have also been widely used to solve the
equations in [28–30]; as for other numericalmethods, refer to
[31–34].

The references introducing the numerical simulations
above are mostly based on fixed meshes; in this paper, we

consider the finite element method based on the adaptive
moving mesh to solve the BBM-Burgers equation with a
high-order dissipative term. The moving mesh method is a
kind of adaptive mesh method which adds elements near
the place where the numerical solution changes rapidly and
decreases elements in the solution changing slowly; the total
element number still remains unchanged. When we compare
the finite element method based on adaptive moving mesh
with methods based on fixed mesh or proposed in [26], we
find that themovingmeshmethod takes fewer elements to get
the same distinguishability and simulates steep waves and the
transition of gap distinctly. In recent years, the moving mesh
method has witnessed further development and extensive
application [35].This method was applied to approximate the
anisotropic diffusion-convection-reaction problems to satisfy
a discretemaximumprinciple, and it was adopted to study the
porous medium equation and approximate the solution [36].
Formore information about themovingmeshmethod, please
refer to [37–41].

The remainder of this paper is divided into three sections.
In Section 2, we introduce the method we used, the dis-
cretization of the BBM-Burgers equation with a fourth-order
dissipative term in one dimension, and the implementation
of the moving mesh method. Section 3 presents 1D and
2D numerical examples of BBM-Burgers equations with a
dissipative term. Finally, Section 4 shows the conclusion we
draw from the numerical examples.

2. Finite Element Method Based on
Moving Mesh

In this section, we mainly introduce the linear finite element
method based on moving mesh and make use of the method
to solve the BBM-Burgers equationwith a high-order dissipa-
tive term. For convenience, in Section 2.2, we introduce the
finite element method of the one-dimensional equation with
a fourth-order dissipative term 𝑢𝑥𝑥𝑥𝑥; the other parts of this
section will focus on two dimensions.

2.1. Adaptive Moving Mesh Method. In this subsection, we
mainly want to show the generation of physical meshTℎ

𝑛+1

at a new time level by an adaptivemovingmesh strategy based
on theMovingMesh Partial Differential Equation (MMPDE)
[42]; at the current time level, the physical mesh Tℎ

𝑛 ={X𝑗𝑛} and the numerical solution (𝑢ℎ)𝑛 are known (the mesh
and value will be introduced clearly in the following parts).
During the strategy, one of the crucially important rules is
to view the nonuniform mesh (i.e., the physical mesh in
this paper) as a uniform mesh under the metric tensor M;
the tensor M is a symmetric and positive definite matrix.
Under the metric tensor M, the physical mesh Tℎ and the
computational mesh T𝑐 can be transformed into each other
if and only if it satisfies (the following notations and concepts
about the mesh are the same as those in [36])

|𝐾| det (M𝐾)1/2 = 󵄨󵄨󵄨󵄨𝐾𝑐󵄨󵄨󵄨󵄨 𝜎ℎ󵄨󵄨󵄨󵄨Ω𝑐󵄨󵄨󵄨󵄨 , ∀𝐾 ∈ Tℎ, (4)
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12 tr ((𝐹󸀠𝐾)−1M−1𝐾 (𝐹󸀠𝐾)−𝑇)
= det ((𝐹󸀠𝐾)−1M−1𝐾 (𝐹󸀠𝐾)−𝑇)1/2 , ∀𝐾 ∈ Tℎ,

(5)

where 𝐾 is an element of the physical mesh Tℎ, 𝐾𝑐 is an
element of the computational mesh T𝑐 corresponding to 𝐾,
and |𝐾| and |𝐾𝑐|, respectively, show the volume of the cor-
responding element. Meanwhile, |Ω𝑐| = ∑𝐾𝑐∈T𝑐 |𝐾𝑐|, det(⋅)
denotes the determinant of a matrix, and tr(⋅) stands for the
trace of a matrix. 𝜎ℎ = ∑𝐾∈Tℎ |𝐾| det(M𝐾)1/2 represents the
total error of the numerical solution,𝐹󸀠𝐾 is the Jacobianmatrix
of the affine mapping 𝐹𝐾: 𝐾𝐶 → 𝐾, and 𝑀𝐾 is the average
of the metric tensor over the elements 𝐾. In this paper, we
take M = det(𝛼ℎ + |𝐻((𝑢ℎ)𝑛)|)−1/6(𝛼ℎ𝐼 + |𝐻((𝑢ℎ)𝑛)|), where𝐼 is an identity matrix and 𝐻(⋅) stands for a Hessian matrix.
Equations (4) and (5) also satisfy the equidistribution princi-
ple and alignment principle on moving mesh, which means
that, under the metric tensor M, each element has the same
numerical error and is similar to a reference element 𝐾̂; the
reference element 𝐾̂ is uniform. From (4) and (5), we find that
the metric tensor M plays an important role in the adaptive
moving mesh and controls the adaptation.

If we want to get the mesh which satisfies the two
principles, we need to minimize the energy function that
contains the metric tensorM:

𝐼ℎ (Tℎ,T𝑐) = 𝜃∑
𝐾

|𝐾| det (M𝐾)1/2

⋅ (tr ((𝐹󸀠𝐾)−1M−1𝐾 (𝐹󸀠𝐾)−𝑇))𝑑𝑝/2 + (1
− 2𝜃) 𝑑𝑑𝑝/2∑

𝐾

|𝐾| det (M𝐾)1/2 (det (𝐹󸀠𝐾)−1 det (M𝐾)−1/2)𝑝 ,
(6)

where 𝜃 and 𝑝 are dimensionless parameters. When we con-
sider the equation to be just one-dimensional, (6) will have
a relationship with (4) and 𝜃 = 0; when the equation is two-
dimensional, parameters 𝜃, 𝑝 are usually defined as 1/3 and 2,
and 𝑑 stands for the dimension in space.The energy function𝐼ℎ is also a function about the physical mesh coordinate
X𝑗 = (𝑥𝑗, 𝑦𝑗) and the computational mesh coordinate 𝜉𝑗 =(𝜉𝑗, 𝜂𝑗) (𝑗 = 0, . . . , 𝐽), where 𝐽 + 1 stands for the number
of mesh vertices. The coordinate 𝜉 = 𝜉(X, 𝑡) is an inverse
transformation of X = X(𝜉, 𝑡); when 𝑗 = 0 or 𝑗 = 𝐽, the coor-
dinate 𝜉𝑗 is the same asX𝑗. The energy function is too long to
write; we write it in a simple form:

𝐼ℎ = ∑
𝐾

|𝐾| 𝐺 ((𝐹󸀠𝐾)−1 , det (𝐹󸀠𝐾)−1 ,M (XK) ,X𝐾) . (7)

Assume that the current physical mesh Tℎ
𝑛 and (𝑢ℎ)𝑛 are

known; by minimizing the energy function, we can get the
corresponding computational mesh of the next time level,
which can be expressed by

T𝑐
𝑛+1 = argmin

T𝑐

𝐼ℎ (Tℎ𝑛;T𝑐) . (8)

In order to solve the minimum of energy function in (6), we
need to take the derivative of the coordinate with respect to
the energy function; that is,

𝜕𝐼ℎ𝜕X𝑗 =
𝜕𝐼ℎ𝜕𝜉𝑗 , 𝑗 = 0, . . . , 𝐽. (9)

It is not difficult to find that the equations are nonlinear
and difficult to solve directly; in order to solve this problem,
many scholars put forward a large number of methods to
improve it. In this paper, we use the MMPDE [42] method
to get the minimum value of the energy function (6).
For convenience and efficiency, 𝜉-formulation MMPDE is
made use of rather than 𝑥-formulation MMPDE; during the
calculation, 𝜉-formulation only involves the differentiation
of 𝐺 with respect to its first two arguments in the energy
function, and there is no need for the metric tensor M to
update. The minimization process can be replaced as the
derivative of the computationalmesh coordinate with respect
to 𝑡, which is an ordinary differential equation and has the
following form:

𝑑𝜉𝑗𝑑𝑡 = 𝑃𝑗𝜏 [𝜕𝐼ℎ𝜕𝜉𝑗]
𝑇 , (10)

where the derivative 𝜕𝐼ℎ/𝜕𝜉𝑗 is seen as a row vector, 𝜏 > 0 is
a relaxation factor which is used for adjusting the time scale
on moving mesh, and 𝑃 = {𝑃0, . . . , 𝑃𝐽} is a positive function
used to make (10) have some desired properties above; in this
paper, 𝜏 = 10−4, 𝑃𝑗 = − det(M(X𝑗))1/2.

At the current physical mesh Tℎ
𝑛 (𝑛 = 0, . . . , 𝐾) and

computational solution (𝑢ℎ)𝑛, we define a reference compu-
tational mesh T̂𝑐 = {𝜉0, . . . , 𝜉𝐽}, which has uniform elements;
the mesh T̂𝑐 also has the same relationship, grid connection,
and number of mesh vertices as the physical mesh Tℎ and
computationalmeshT𝑐.The three kinds ofmeshes just differ
in the location of the mesh coordinate. During the mesh
generation, by integrating (10) from 𝑡𝑛 to 𝑡𝑛+1, we get the new
computational mesh T𝑛+1𝑐 = {𝜉𝑗𝑛+1}; there is no need for
the metric tensor M to update. The relationship between the
physical mesh and the computational mesh can be expressed
by an affinemapping:Tℎ

𝑛 = Φℎ(T𝑐𝑛+1); the physicalmesh in
the next time level can take the reference computationalmesh
by using a form of linear interpolation to get the approximate
result:Tℎ

𝑛+1 = Φℎ(T̂𝑐).
2.2. Linear Finite Element Discretization of the 1D BBM-
Burgers Equation with a Dissipative Term. In this subsection,
wemainly introduce the linear finite element discretization of
the 1D BBM-Burgers equation with a dissipative term. When(𝑢ℎ)𝑛,𝑥𝑛, and the discretization of the equation are known,we
will get the value (𝑢ℎ)𝑛+1 at the new time level. The 1D BBM-
Burgers equation with a fourth-order dissipative term has the
formulation

𝑢𝑡 + 𝛼𝑢𝑥 + 𝛽𝑢𝑢𝑥 − 𝛾𝑢𝑥𝑥 − 𝜇𝑢𝑥𝑥𝑡 + 𝛿𝑢𝑥𝑥𝑥𝑥 = 𝐹,
𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇] . (11)
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Before solving (11) by the finite element method based on
moving mesh, we have to introduce a new variable 𝑤 = 𝑢𝑥𝑥
rather than solving the equation directly; because a mixed
derivative of the finite element approximation based on the
moving mesh method is unable to be defined, then (11)
becomes a coupled system. Before the discretization of the
2D equation with a fourth-order dissipative term, we need
to introduce two new different variables to replace 𝑢𝑥𝑥 and𝑢𝑦𝑦; the equation then becomes three coupled equations; the
other steps in the 2D case are similar to the 1D case. The new
formulation of (11) is as follows:

𝑢𝑡 − 𝜇𝑤𝑡 + 𝛼𝑢𝑥 + 𝛽𝑢𝑢𝑥 − 𝛾𝑤 + 𝛿𝑤𝑥𝑥 = 𝐹,
𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇] ,
𝑤 = 𝑢𝑥𝑥,
𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢 (𝑥, 𝑡) = 0,
𝑥 ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇] .

(12)

We divide the domain Ω into 𝑁 uniform elements and𝐽 + 1 mesh vertices; the initial physical mesh is Tℎ
0 ={𝑥𝑗0} (𝑗 = 0, 1, . . . , 𝐽). We define the linear basis function of

the finite element method as 𝜑. On a fixed mesh, the basis
function 𝜑 is just related to 𝑥; on a moving mesh, it is also
related to 𝑥 and 𝑡. The basis function spans the space 𝑉ℎ0 ={𝜑1(𝑥, 𝑡), . . . , 𝜑𝐽−1(𝑥, 𝑡)}, ∀𝜑 ∈ 𝑉ℎ0 . We need to find whether𝑢ℎ(𝑥, 𝑡) ∈ 𝑉ℎ0 and 𝑤ℎ(𝑥, 𝑡) ∈ 𝑉ℎ0 with the Dirichlet boundary
condition equal to zero can satisfy the following system:

∫
Ω
(𝑢𝑡 − 𝜇𝑤𝑡 + 𝛼𝑢𝑥 + 𝛽𝑢𝑢𝑥 − 𝛾𝑤 − 𝐹) 𝜑 𝑑𝑥
− ∫
Ω
𝛿𝑤𝑥𝜑𝑥𝑑𝑥 = 0, ∀𝜑 ∈ 𝑉ℎ0 (Ω) , 𝑡 ∈ (0, 𝑇] ,

∫
Ω
(𝑤𝜑 + 𝜇𝑢𝑥𝜑𝑥) 𝑑𝑥 = 0, ∀𝜑 ∈ 𝑉ℎ0 (Ω) , 𝑡 ∈ (0, 𝑇] .

(13)

Take 𝑢ℎ(𝑥, 𝑡) = ∑𝐽−1𝑗=1 𝑢𝑗(𝑡)𝜑𝑗(𝑥, 𝑡), 𝑤ℎ(𝑥, 𝑡) = ∑𝐽−1𝑗=1 𝑤𝑗(𝑡)𝜑𝑗(𝑥,𝑡), where the derivative of the basis function [43] 𝜑𝑗 with
respect to 𝑡 is 𝜕𝜑𝑗/𝜕𝑡 = −(𝜕𝜑𝑗/𝜕𝑥)Ẋ(𝑥, 𝑡), and Ẋ has the
following formulation: Ẋ(𝑥, 𝑡) = ∑𝐽−1𝑗=1 𝑥̇𝑗𝜑𝑗(𝑥, 𝑡) (in the two-

dimensional equation, Ẋ(𝑥, 𝑦, 𝑡) = ∑𝐽−1𝑗=1 [ ̇𝑥𝑗̇𝑦𝑗 ] 𝜑𝑗(𝑥, 𝑦, 𝑡)), so(𝑤ℎ)𝑡 can be expressed as

(𝑤ℎ)
𝑡
= 𝐽−1∑
𝑗=1

𝑑𝑤𝑗𝑑𝑡 𝜑𝑗 −
𝐽−1∑
𝑗=1

𝑤𝑗 𝜕𝜑𝑗𝜕𝑥 Ẋ

= 𝐽−1∑
𝑗=1

𝑑𝑤𝑗𝑑𝑡 𝜑𝑗 − 𝜕𝑤ℎ𝜕𝑥 Ẋ.
(14)

Take the basis function 𝜑 = 𝜑𝑘 (𝑘 = 1, 2, . . . , 𝐽 − 1) and
substitute (14) into (13); we can get
𝐽−1∑
𝑗=1

∫
Ω
((𝑑𝑢𝑗𝑑𝑡 − 𝜇𝑑𝑤𝑗𝑑𝑡 )𝜑𝑗𝜑𝑘 − 𝛿𝑤𝑗

𝜕𝜑𝑗𝜕𝑥 𝜕𝜑𝑘𝜕𝑥 )𝑑𝑥

+ ∫
Ω
(𝛼𝜕𝑢ℎ𝜕𝑥 + 𝛽𝑢ℎ 𝜕𝑢ℎ𝜕𝑥 − 𝛾𝑤ℎ − 𝐹

− (𝜕𝑢ℎ𝜕𝑥
𝐽−1∑
𝑗=1

𝑥̇𝑗𝜑𝑗 − 𝜇𝜕𝑤ℎ𝜕𝑥
𝐽−1∑
𝑗=1

𝑥̇𝑗𝜑𝑗))𝜑𝑘𝑑𝑥 = 0,
𝐽−1∑
𝑗=1

∫
Ω
(𝑤𝑗𝜑𝑗𝜑𝑘 + 𝑢𝑗 𝜕𝜑𝑗𝜕𝑥 𝜕𝜑𝑘𝜕𝑥 )𝑑𝑥 = 0.

(15)

We rewrite (15) into a matrix form:

𝑀 𝑑𝑑𝑡 (𝑢 − 𝜇𝑤) + 𝑓 − 𝛿𝐴𝑤 = 0,
𝑀𝑤 + 𝐴𝑢 = 0,

(16)

where 𝑀 and 𝐴 stand for 𝑀𝑘𝑗 = ∫
Ω
𝜑𝑗𝜑𝑘𝑑𝑥 and 𝐴𝑘𝑗 =∫

Ω
(𝜕𝜑𝑗/𝜕𝑥)(𝜕𝜑𝑘/𝜕𝑥)𝑑𝑥 and the vector 𝑓 can be expressed

as 𝑓𝑘 = ∫
Ω
(𝛼(𝜕𝑢ℎ/𝜕𝑥) + 𝛽𝑢ℎ(𝜕𝑢ℎ/𝜕𝑥) − 𝛾𝑤ℎ − 𝐹 − ((𝜕𝑢ℎ/𝜕𝑥)∑𝐽−1𝑗=1 𝑥̇𝑗𝜑𝑗 − 𝜇(𝜕𝑤ℎ/𝜕𝑥)∑𝐽−1𝑗=1 𝑥̇𝑗𝜑𝑗))𝜑𝑘𝑑𝑥. On a moving

mesh, with the boundary condition, the solution of (11) can be
obtained by solving an ordinary differential equation firstly:

𝑀 𝑑𝑑𝑡 (𝐴−1𝑀𝑤) + 𝜇𝑀𝑑𝑤𝑑𝑡 − 𝑓 (−𝐴−1𝑀𝑤,𝑤, 𝐹)
+ 𝛿𝐴𝑤 = 0. (17)

Only if the ODE (17) is solved can the solution 𝑢 of the BBM-
Burgers equation with a dissipative term be expressed, where𝑢 = −𝐴−1𝑀𝑤.

All the process of discretization is based on the homo-
geneous boundary condition 𝑢0 = 𝑔; when the boundary
condition is nonhomogeneous, we just need to subtract the
integration at the boundary.

2.3. The Implementation of the Method Combined with
Finite Element and Moving Mesh. In this subsection, we
mainly introduce the implementation of the two-dimensional
method. The ways to solve the equation usually can be
divided into two kinds: a simultaneous solution procedure
and an alternate solution procedure. The simultaneous solu-
tion procedure combines the finite element discretization
with the mesh equation (10) into a large system and solves
them together; the alternate solution procedure solves one
by one. In this paper, we introduce a formulation of the
second method which is called MP (the method solves the
moving equation firstly and solves the physical equation
later), which is more flexible and efficient. The method
contains four important parts: initialize the mesh, move the
mesh, discretize the equation, and integrate time from 𝑡0 to𝑡𝐾.
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Table 1: Example 1. The 𝐿2 and 𝐿∞ error and convergence order on moving and fixed meshes for the single solitary wave.

𝑁 Moving mesh Fixed mesh𝐿2 error Order 𝐿∞ error Order 𝐿2 error Order 𝐿∞ error Order
20 3.65𝐸 − 2 1.70𝐸 − 1 8.35𝐸 − 1 3.20𝐸 − 0
40 9.12𝐸 − 2 2.00 3.99𝐸 − 2 2.09 1.54𝐸 − 1 2.44 1.12𝐸 − 0 1.51
80 2.49𝐸 − 3 1.87 1.05𝐸 − 2 1.93 4.09𝐸 − 2 1.91 3.74𝐸 − 1 1.58
160 6.53𝐸 − 4 1.93 2.74𝐸 − 3 1.93 1.04𝐸 − 2 1.98 1.00𝐸 − 1 1.90
320 1.84𝐸 − 4 1.83 7.65𝐸 − 4 1.84 2.60𝐸 − 3 1.99 2.55𝐸 − 2 1.97
640 5.01𝐸 − 4 1.88 2.06𝐸 − 4 1.89 6.51𝐸 − 4 2.00 6.41𝐸 − 3 1.99

Step 1 (initialize the mesh). In the whole computational
domain, we first divide the domain into𝑁 uniform elements;
the corresponding initial physical mesh isTℎ

0, and the initial
coordinate, initial value of the BBM- Burgers equation with a
dissipative term, initial time step, and initial time are known;
they are X𝑗0 = (𝑥𝑗0, 𝑦𝑗0), (𝑢ℎ)0, 𝑑𝑡0, and 𝑡0.
Step 2 (move the mesh). (a) Suppose the current time 𝑡 =𝑡𝑛 (𝑛 = 0, 1, . . . , 𝐾), the numerical solution (𝑢ℎ)𝑛 of the
equation, the coordinate X𝑗𝑛, Tℎ𝑛 of the mesh, and the
time step 𝑑𝑡𝑛 are known; (b) we make use of the energy
function (9) and ODE function (10) to obtain the coordinate
𝜉𝑗
𝑛+1 = (𝜉𝑗𝑛+1, 𝜂𝑗𝑛+1), and then we derive the relationshipΦℎ(⋅) between the new computational meshT𝑐

𝑛+1 = {𝜉𝑗𝑛+1}
and the physical mesh Tℎ

𝑛, where Tℎ
𝑛 can be expressed

by Φℎ(T𝑐𝑛+1). When the reference computational mesh
T̂𝑐 and Φℎ(⋅) are known, we get the new physical mesh
Tℎ
𝑛+1 = Φℎ(T̂𝑐) approximately; the new coordinate is X̃𝑛+1𝑗 ;

(c) when 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], using linear interpolation X𝑗(𝑡) =((𝑡𝑛+1 − 𝑡)/𝑑𝑡𝑛)X𝑗𝑛 + ((𝑡 − 𝑡𝑛)/𝑑𝑡𝑛)X̃𝑛+1𝑗 , the velocity of the
corresponding grid node is Ẋ𝑗(𝑡) = (X̃𝑛+1𝑗 − X𝑗𝑛)/𝑑𝑡𝑛. The
fifth-order Radau IIAmethod is used in time discretization; if
you are interested in more details, please refer to [44]. From
the method, we can determine the time step 𝑑𝑡𝑛; if the real
time step 𝑑𝑡𝑛 < 𝑑𝑡𝑛, the next time level, the mesh coordinate,
and the time step of next time level update: 𝑡𝑛+1 ← 𝑡𝑛 + 𝑑𝑡𝑛,
X𝑗𝑛+1 ← X𝑗𝑛 + 𝑑𝑡𝑛Ẋ𝑗, and 𝑑𝑡𝑛+1 ← 𝑑𝑡𝑛.
Step 3. On the new physical mesh Tℎ

𝑛+1, use the discrete
version (16) based on the linear finite elementmethod to solve
(12) from time 𝑡𝑛 to 𝑡𝑛+1; we get the new numerical solution
at the new time level; the solution is (𝑢ℎ)𝑛+1.
Step 4. When 𝑡𝑛+1 < 𝑇, 𝑛 ← 𝑛 + 1, go to Step 2; else, stop the
computation and save the value of solution.

3. Numerical Examples

Example 1 (a single solitary wave in 1D BBM-Burgers equa-
tion). In the one-dimensional model,

𝑢𝑡 + 𝛼𝑢𝑥 + 𝛽𝑢𝑢𝑥 − 𝛾𝑢𝑥𝑥 − 𝜇𝑢𝑥𝑥𝑡 = 𝐹,
𝑥 ∈ (−20, 30) , 𝑡 ∈ (0, 𝑇] ,

𝑢 (−20, 𝑡) = 𝑢 (30, 𝑡) = 0,
𝑡 ∈ (0, 𝑇] ,

(18)

where the coefficients 𝛼 = 𝛾 = 𝜇 = 1, 𝛽 = −1, the final
time 𝑇 = 10, the exact solution of the equation is 𝑢ex(𝑥, 𝑡) =
sech(𝑥−𝑡), and the source term 𝐹 = 𝐹(𝑥, 𝑡) = (1−6 tanh3(𝑥−𝑡) − 2 tanh2(𝑥 − 𝑡) + (sech(𝑥 − 𝑡) + 5) tanh(𝑥 − 𝑡)) sech(𝑥 − 𝑡).

We solve the numerical solution with the method we
introduced; with the different element numbers, the corre-
sponding error and the order of convergence for bothmoving
mesh and fixed mesh are reported in Table 1. When the
element number is the same, the error based on moving
mesh is always smaller than that on fixed mesh, and the
convergence order of the two kinds of meshes can lead
to the second order in the spatial direction. Comparison
between the exact solution and the numerical solution based
onmovingmesh at the final time 𝑇 = 10 is shown in Figure 1.
From the figure, we can see that the grid points mainly
focus on the domain, where the solution fluctuates greatly,
and match the exact solution well. With time going on, the
moving mesh trajectory is plotted in Figure 1; the feature of
the moving process indicates that most of the points focus on
nearby solitary waves and move with the propagation of the
solitary wave, which also demonstrates the superiority of the
moving mesh method.

Example 2 (the elastic collision of three solitary waves in 1D
BBM-Burgers equation). In this example, we study the elastic
collision of three solitary waves and simulate numerical
solutions based on moving mesh and fixed mesh; the BBM-
Burgers equation has the following form:

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 − 0.01𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑡 = 0,
𝑥 ∈ (−50, 300) , 𝑡 ∈ (0, 50] ,

𝑢 (−50, 𝑡) = 𝑢 (300, 𝑡) = 0,
𝑡 ∈ (0, 50] ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
𝑥 ∈ (−50, 300) ,

(19)
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Figure 1: Example 1. (a) The exact solution and the numerical solution based on adaptive moving mesh with element number 𝑁 = 200 at𝑡 = 10; (b) the corresponding mesh trajectories.

with the initial condition 𝑢0(𝑥) = ∑3𝑗=1 3𝑑𝑗 sech2(𝑘𝑗(𝑥−𝑥𝑗))2,
where 𝑘1 = 0.39, 𝑘2 = 0.3, 𝑘3 = 0.3, 𝑥1 = 10, 𝑥2 = 28, 𝑥3 = 52,𝑑𝑗 = 4𝑘𝑗2/(1 − 4𝑘𝑗2), and the final time 𝑇 = 50.

In this example, the exact solution of the equation is
unknown; we mainly want to show the superiority of the
moving mesh. In Figure 2, the conservation laws (2) are
plotted; we can see that Δ𝐸1(𝑇) is close to zero and Δ𝐸2(𝑇)
is a little bigger than zero. The two conservation laws are not
conserved by finite element approximation on the moving
mesh, because, in this case, Ẋ ≡ 0 and both matrices 𝐴
and 𝑀 are time-dependent (if you want to know more,
read [45]). Since the exact solution is unknown, we take
the element number 𝑁 = 8000 on the fixed mesh as a
reference solution and plot the numerical solutions ofmoving
mesh and fixed mesh with element number 𝑁 = 400 at
final time 𝑇 = 50 in Figure 3. It can be seen that the
numerical solution of fixedmesh is on the left of the reference
solution and the wave peaks are shorter than those in the
reference solution; there are several small waves in the left
of the first wave on the fixed mesh. The result also shows
that the numerical solution of moving mesh can match the
reference better than that based on the fixed mesh. If we
consider the computermemory and computational efficiency,
the moving mesh is better for that it moves its mesh points
quickly to the place where the numerical solution changes
rapidly to get higher distinguishability with fewer elements.
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Figure 2: Example 2.The variation ofmass function (𝐸1) and energy
function (𝐸2) for the elastic collision of three solitary waves in the
BBM-Burgers equation.
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Figure 3: Example 2. The comparison between the numerical solution and the reference solution on moving and fixed meshes for the
interaction of three solitary waves with𝑁 = 400.

−50 0 50 100 150 200 250 300

0

10

20

30

40

50

0
2
4

t

x

u

Figure 4: Example 2. The propagation process for the elastic collision of three solitary waves at different times with𝑁 = 400.

The propagation process of the three solitary waves is plotted
in Figure 4.

Example 3 (different coefficients in 1DBBM-Burgers equation
with a high-order dissipative term). In this case, we mainly
consider the following BBM-Burgers equation with a fourth-
order dissipative term; the equation is
𝑢𝑡 + 𝑢𝑥 + 2𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑡 − 𝛾𝑢𝑥𝑥 + 𝛿𝑢𝑥𝑥𝑥𝑥 = 0,

𝑥 ∈ (−100, 150) , 𝑡 ∈ (0, 20] ,
𝑢 (−100, 𝑡) = 𝑢 (150, 𝑡) = 0, 𝑡 ∈ (0, 20] ,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ (−100, 150) .

(20)

The initial condition 𝑢0(𝑥) = 0.15 sech(𝑘(𝑥−40))2, where 𝑘 =0.5×√1/11; when the coefficients 𝛾, 𝛿 change, the maximum
value 𝑈max of the numerical solution changes as well.

In this example, we mainly want to talk about the
dissipation effect of the dissipative terms 𝑢𝑥𝑥 and 𝑢𝑥𝑥𝑥𝑥 in the
BBM equation. Numerical solutions obtained with different
coefficients and one of the coefficients fixed at 𝑇 = 20
are shown in Figure 5. When two BBM equations with one
dissipative term 𝑢𝑥𝑥 or 𝑢𝑥𝑥𝑥𝑥 have the same dissipation effect
or similar wave peak at the final time, the corresponding
coefficient of dissipative term is plotted in Figure 6. From
these figures, we find that when the coefficient 𝛾 of the
second-order dissipative term increases and the coefficient 𝛿
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Figure 6: Example 3. The corresponding dissipative term coefficient when 𝑈max has the same value at the beginning and final time; (a) 𝑈max
of the equation with just one dissipative 𝑢𝑥𝑥 and the coefficient 𝛾 = 1.92; (b) 𝑈max of the equation with just one dissipative 𝑢𝑥𝑥𝑥𝑥 and the
coefficient 𝛿 = 100.

of the fourth-order dissipative term is fixed, the numerical
solution decreases a lot; however, when the coefficient 𝛿
increases and the coefficient 𝛾 is fixed, the numerical solution
changes a little. The numerical simulation provides three
sets of data to show the result in Figure 5: 𝛿 = 1; when𝛾 = 0.1, 1, 10, the corresponding maximum values of
the numerical solutions are 𝑈max = 0.139, 0.1324, 0.1091,𝛾 = 1; when 𝛿 = 0.1, 1, 10, the corresponding values are

𝑈max = 0.0947, 0.0936, 0.0866. A lot of numerical tests have
been carried out to adjust and confirm the corresponding
coefficient of different dissipative terms to keep the equation
with dissipation effect or similar wave peak at 𝑇 = 20. The
value of the wave peak is 𝑈max = 0.0764 at 𝑇 = 20, and the
corresponding data are shown in Figure 6. When 𝛿 = 0, 𝛾 =1.92, with time going on,𝑈max drops steadily; however, when𝛾 = 0, 𝛿 = 100, the value drops quickly before time 𝑡 = 2,



Discrete Dynamics in Nature and Society 9

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(a) Moving mesh

−2 −1 0 1 −2 0 20

0.5

1

1.5

2

2.5

3

y
x

u

(b) The corresponding numerical solution

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(c) Fixed mesh

−2 −1 0 1 −2 0 2
0

0.5

1

1.5

2

2.5

3

yx

u

(d) The corresponding numerical solution

Figure 7: Example 4. Meshes (a, c) and the corresponding numerical solutions (b, d) with𝑁 = 6400.

and then the value drops slowly and steadily. We simulate a
series of numerical examples with different coefficients; all of
these data show us that the dissipative term 𝑢𝑥𝑥 plays a more
important role in dissipation than the dissipative term 𝑢𝑥𝑥𝑥𝑥.
Example 4 (two solitary waves in 2DBBM-Burgers equation).
This example has two solitary waves and we want to verify
the convergence order for a 2D BBM-Burgers equation; the
equation has the following formulation:

𝑢𝑡 + (𝛼 + 𝛽 cos (𝑢)) (𝑢𝑥 + 𝑢𝑦) − 𝛾 (𝑢𝑥𝑥 + 𝑢𝑦𝑦)
− 𝜇 (𝑢𝑥𝑥𝑡 + 𝑢𝑦𝑦𝑡) = 𝐹, (𝑥, 𝑦) ∈ Ω, 𝑡 ∈ (0, 𝑇] , (21)

where 𝛼, 𝛾, 𝜇 = 1, 𝛽 = −1, and the exact solution of the
equation is𝑢ex(𝑥, 𝑦, 𝑡) = 𝑒𝑡(sech2(𝑥1)+sech2(𝑥2)), where𝑥1 =𝑥+𝑦−1,𝑥2 = 𝑥+𝑦+1,Ω = (−2, 2)×(−2, 2),𝑇 = 1. Tomaintain
the balance of the equation, 𝐹 = 𝐹(𝑥, 𝑦, 𝑡) = 𝑒𝑡((9(sech2(𝑥1) +

sech2(𝑥2)) − 4(sech2(𝑥1) tanh(𝑥1) + sech2(𝑥2) tanh(𝑥2)) −24(sech2(𝑥1) tanh2(𝑥1) + sech2(𝑥2) tanh2(𝑥2)) +4 cos(𝑒𝑡(sech2(𝑥1) + sech2(𝑥2))))(sech2(𝑥1) tanh(𝑥1) +
sech2(𝑥2) tanh(𝑥2))).

Numerical solutions are shown in Table 2 and Figure 7.
From Table 2, we can find that the finite element method
leads to the same second order of convergence for both fixed
and moving meshes, and the convergence result is similar to
Example 1.The error of the numerical solution on themoving
mesh is smaller than that on the fixed mesh with the same
element number. What is more, with fewer mesh elements,
the moving mesh reaches second-order convergence more
quickly than the fixedmesh.The trajectory and the numerical
solution of both the moving mesh and the fixed mesh at final
time can be seen in Figure 7. From the figure, we can see that
most points focus on the place where the numerical solution
changes a lot.
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Table 2: Example 4. The numerical error and convergence order for the 2D BBM-Burgers equation.

𝑁 Moving mesh Fixed mesh𝐿2 error Order 𝐿∞ error Order 𝐿2 error Order 𝐿∞ error Order
100 3.08𝐸 − 2 1.41𝐸 − 1 4.10𝐸 − 2 2.28𝐸 − 1
400 8.04𝐸 − 3 1.94 4.44𝐸 − 2 1.67 1.20𝐸 − 2 1.77 7.52𝐸 − 2 1.60
1600 2.09𝐸 − 3 1.94 1.12𝐸 − 2 1.99 3.11𝐸 − 3 1.95 2.02𝐸 − 2 1.90
6400 5.48𝐸 − 4 1.93 2.87𝐸 − 3 1.96 7.83𝐸 − 4 1.99 5.19𝐸 − 3 1.96
25600 1.42𝐸 − 4 1.95 7.41𝐸 − 4 1.95 1.96𝐸 − 4 2.00 1.30𝐸 − 3 1.99

4. Conclusion

In this paper, we study the numerical model based on
adaptive moving mesh finite element method to simulate 1D
and 2D BBM-Burgers equations with a high-order dissipative
term. The method can be used in equations with mixed
derivatives and high-order derivative terms; on the moving
mesh, new variables need to be introduced to transform
the equation into coupled equations. A series of numerical
examples demonstrate that the finite element method based
on moving mesh keeps a second-order convergence in space
as that based on fixed mesh. With the same element number,
the finite element moving mesh method improves the distin-
guishability and provides a smaller error than the fixedmesh.
Meanwhile, numerical tests indicate that the dissipative term𝑢𝑥𝑥 plays a more important role than 𝑢𝑥𝑥𝑥𝑥 in dissipation.
We compare two BBM equations with different dissipative
terms 𝑢𝑥𝑥 and 𝑢𝑥𝑥𝑥𝑥; to keep the maximum value𝑈max of the
numerical solutions the same at the final time, the coefficient
of 𝑢𝑥𝑥𝑥𝑥 is around 50 times that of 𝑢𝑥𝑥 in the same BBM
equation with different dissipative terms in the dissipation
aspect.
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[33] Ö. Oruç, F. Bulut, and A. Esen, “Numerical solutions of
regularized long wave equation by haar wavelet method,”
Mediterranean Journal of Mathematics, vol. 13, no. 5, pp. 1–19,
2016.

[34] Y. Fang, H. Dong, Y. Hou, and Y. Kong, “Frobenius integrable
decompositions of nonlinear evolution equationswithmodified
term,”AppliedMathematics andComputation, vol. 226, no. 1, pp.
435–440, 2014.

[35] C. Lu,W.Huang, and J.Qiu, “Maximumprinciple in linear finite
element approximations of anisotropic diffusion-convection-
reaction problems,” Numerische Mathematik, vol. 127, no. 3, pp.
515–537, 2014.

[36] C. Ngo and W. Huang, “A study on moving mesh finite
element solution of the porous medium equation,” Journal of
Computational Physics, vol. 331, pp. 357–380, 2017.

[37] W. Huang and R. D. Russell, Adaptive Moving Mesh Methods,
vol. 174 of Applied Mathematical Sciences, Springer Science &
Business Media, New York, NY, USA, 2011.

[38] R. Li, T. Tang, and P. Zhang, “Moving mesh methods in
multiple dimensions based on harmonic maps,” Journal of
Computational Physics, vol. 170, no. 2, pp. 562–588, 2001.

[39] C. J. Budd, W. Huang, and R. D. Russell, “Adaptivity with
moving grids,” Acta Numerica, vol. 18, pp. 111–241, 2009.

[40] T. Tang, “Moving mesh methods for computational fluid
dynamics,” in Recent Advances in Adaptive Computation, vol.
383 of Contemporary Mathematics, pp. 141–174, 2005.

[41] W. Huang and L. Kamenski, “A geometric discretization and
a simple implementation for variational mesh generation and
adaptation,” Journal of Computational Physics, vol. 301, pp. 322–
337, 2015.

[42] W. Huang, Y. Ren, and R. D. Russell, “Moving mesh partial dif-
ferential equations (MMPDES) based on the equidistribution
principle,” SIAM Journal on Numerical Analysis, vol. 31, no. 3,
pp. 709–730, 1994.

[43] P. K. Jimack and A. J. Wathen, “Temporal derivatives in the
finite-elementmethod on continuously deforming grids,” SIAM
Journal on Numerical Analysis, vol. 28, no. 4, pp. 990–1003, 1991.

[44] S. Gonzalez-Pinto, J. Montijano I, and S. Perez-Rodriguez,
“Two-step error estimators for implicit Runge-Kutta methods
applied to stiff systems,” Acm Transactions on Mathematical
Software, vol. 30, pp. 1–18, 2004.

[45] C. Lu, W. Huang, and J. Qiu, “An adaptive moving mesh finite
element solution of the regularized longwave equation,” Journal
of Scientific Computing, pp. 1–23, 2017.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


