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Copyright © 2017 Jin Zhang et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We apply the homotopy perturbation Sumudu transform method (HPSTM) to the time-space fractional coupled systems in the
sense of Riemann-Liouville fractional integral and Caputo derivative. The HPSTM is a combination of Sumudu transform and
homotopy perturbation method, which can be easily handled with nonlinear coupled system. We apply the method to the coupled
Burgers system, the coupled KdV system, the generalized Hirota-Satsuma coupled KdV system, the coupled WBK system, and the
coupled shallowwater system.The simplicity and validity of themethod can be shown by the applications and the numerical results.

1. Introduction

Fractional calculus, compared to integer calculus, was men-
tioned in a letter from L’Hospital to Leibniz in 1695. In the
letter, L’Hospital raised a question, “what is the result of
d𝑛𝑦/d𝑥𝑛 if 𝑛 = 1/2?”The answer of Leibniz was “d1/2𝑥will be
equal to 𝑥√d𝑥 : 𝑥. This is an apparent paradox, from which,
one day useful consequences will be drawn” [1]. Furthermore,
the generalization of this framework indicates that it is more
appropriate to talk about integration and differentiation of
arbitrary order, such as fractional order, real number order,
and even complex number order just as the development
of number system. Thus, there is a basic question: “what
are the definitions of fractional integral and derivative?”
Or “how to define the fractional integral and derivative?”
More and more mathematicians focused on this problem,
like Lagrange, Laplace, Fourier, and so on. Some different
fractional integrals and derivatives have been given according
to different needs, like Riemann-Liouville fractional integral,
Caputo fractional derivative, Weyl fractional derivative, and
so on [2]. But there are no uniform definitions of fractional
integral and derivative, and the frequently used definitions
are Riemann-Liouville integral and Caputo derivative.

Fractional differential equations arise in many engineer-
ing and scientific disciplines as the mathematical modeling
of systems and processes in the fields of physics, chem-
istry, aerodynamics, electrodynamics of complex medium,
polymer rheology, and so on, which involve derivatives of
fractional order. Fractional differential equations also serve as
an excellent tool for the description of hereditary properties
of various materials and processes. In consequence, the
subject of fractional differential equations is gaining much
more attention. For example, in electromagnetism, Sebaa
et al. [3] studied ultrasonic wave propagation in human
cancellous bone by using fractional calculus to describe
the viscous interactions between fluid and solid structure.
In signal processing, Assaleh and Ahmad [4] proposed a
new approach for speech signal modeling through using
fractional calculus.Magin andOvadia [5]molded the cardiac
tissue electrode interface using fractional calculus. In control
theory, Suarez et al. [6] applied fractional controllers to the
path-tracking problem in an autonomous electric vehicle.
In fluid mechanics, Kulish and Lage [7] applied fractional
calculus to the solution of time-dependent, viscous-diffusion
fluid mechanics problems.
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In this paper, we intend to construct the approximate
solutions to the nonlinear time-space fractional coupled
systems. There are many effective methods to solve this
problem, like Adomian decomposition method [8–10], vari-
ation iteration method [11], differential transform method
[12], residual power series method [13, 14], iteration method
[15], homotopy perturbationmethod [16], homotopy analysis
method [17], and so on. Furthermore, for the nonlinear
problem, the multiple exp-function method [18, 19], the
transformed rational functionmethod [20–22], and invariant
subspace method [23, 24] are three systematical approaches
to handle the nonlinear terms. The first one is to propose
the exact solution of nonlinear partial differential equations
by using rational function transformations. Its key point is
to search for rational solutions to variable-coefficient ordi-
nary differential equations transformed from given partial
differential equations.The second one is to consider the form
of solution as rational exponential functions with unknown
coefficients whose advantage is direct applicability to under-
lying equation. The invariant subspace method is refined to
present more unity and more diversity of exact solutions to
evolution equations. The key idea is to take subspaces of
solutions to linear ordinary differential equations as invariant
subspaces that evolution equations admit. Motivated by these
fruitful results, Singh et al. [25] proposed the homotopy
perturbation Sumudu transformmethod based on the homo-
topy perturbation method and Sumudu transform method
and applied it to nonlinear partial differential equations.
The HPSTM was extended to the time-fractional PDEs in
[26, 27]. It is worth mentioning that the HPSTM is applied
without any using of Adomian polynomials, over restrictive
assumption or linearization, and is capable of reducing the
volume of computational work as compared to the classical
numerical methods while still maintaining the high accuracy
of the result.Meanwhile, it is appropriate not only for strongly
nonlinear system but also for weakly nonlinear system.

The rest of the paper is organized as follows. In Section 2,
we introduce some concepts on fractional calculus and the
Sumudu transform. In Section 3, we illustrate the basic idea of
HPSTMwhich is applied to the time-space fractional coupled
systems. In Section 4, we apply HPSTM to obtain fractional
power series solutions of nonlinear time-space fractional
coupled systems with initial values, and some numerical
results are presented as well.

2. Preliminaries

Definition 1 (see [2]). A real function 𝑓(𝑥), 𝑥 > 0 is said to
be in the space 𝐶𝜇, 𝜇 ∈ R, if there exists a real number 𝜌 > 𝜇,
such that 𝑓(𝑥) = 𝑥𝜌𝑓1(𝑥), where 𝑓1(𝑥) ∈ 𝐶[0,∞), and it is
said that 𝑓(𝑥) ∈ 𝐶𝑛𝜇, if 𝑓(𝑛)(𝑥) ∈ 𝐶𝜇, 𝑛 ∈ N.

Definition 2 (see [2]). The fractional integral of 𝑓(𝑡) in the
Riemann-Liouville (left-sided) sense is defined as

𝐼𝛼𝑡 𝑓 (𝑡)

fl
{{{

1Γ (𝛼) ∫𝑡
0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) d𝜏, 𝛼 > 0, 𝑡 > 𝜏 ⩾ 0;

𝑓 (𝑡) , 𝛼 = 0,
(1)

where 𝛼 ⩾ 0, 𝑓 ∈ 𝐶𝜇, 𝜇 ⩾ −1, and Γ is the Gamma func-
tion.

Definition 3 (see [2]). The fractional integral of 𝑓(𝑥) in the
Riemann-Liouville sense is defined as

𝐼𝛼𝑥𝑓 (𝑥)

fl
{{{{{{{

1Γ (𝛼) ∫𝑥
−∞

(𝑥 − 𝜏)𝛼−1 𝑓 (𝜏) d𝜏, 𝛼 > 0, −∞ < 𝑥 < ∞;
𝑓 (𝑥) , 𝛼 = 0,

(2)

where 𝛼 ⩾ 0, 𝑓 ∈ 𝐶𝜇, 𝜇 ⩾ −1, and Γ is the Gamma func-
tion.

Definition 4 (see [2]). The Caputo (left-sided) fractional
derivative operator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶𝑛𝜇 (𝜇 ⩾−1, 𝑛 ∈ N), is defined as

𝐷𝛼𝑡 𝑓 (𝑡)

fl

{{{{{{{{{

1Γ (𝑛 − 𝛼) ∫𝑡
0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑓(𝑛) (𝜏) d𝜏, 𝑛 − 1 < 𝛼 < 𝑛, 𝑡 > 0;

d𝑛𝑓 (𝑡)
d𝑡𝑛 , 𝛼 = 𝑛.

(3)

Definition 5 (see [2]). The Caputo fractional derivative oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶𝑛𝜇 (𝜇 ⩾ −1, 𝑛 ∈ N), is
defined as

𝐷𝛼𝑥𝑓 (𝑥) fl
{{{{{{{{{{{

1Γ (𝑛 − 𝛼) ∫𝑥
−∞

(𝑥 − 𝜏)𝑛−𝛼−1 𝑓(𝑛) (𝜏) d𝜏, 𝑛 − 1 < 𝛼 < 𝑛, −∞ < 𝑥 < ∞;
d𝑛𝑓 (𝑥)
d𝑥𝑛 , 𝛼 = 𝑛.

(4)

Lemma 6 (see [28]). If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶𝑚𝜇 ,𝜇 ≥ −1, one has
𝐷𝛼𝑡 𝐼𝛼𝑡 𝑓 (𝑡) = 𝑓 (𝑡) ,

𝐼𝛼𝑡 𝐷𝛼𝑡 𝑓 (𝑡) = 𝑓 (𝑡) − 𝑚−1∑
𝑘=0

𝑓(𝑘) (0) 𝑡𝑘𝑘! .
(5)
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In 1998, a new integral transform, named Sumudu trans-
form, was introduced by Watugala [29] to study solutions
of ordinary differential equations in control engineering
problems. The Sumudu transform is defined over the set
of functions 𝐴 = {𝑓(𝑡) : ∃𝑀, 𝜏1, 𝜏2 > 0, s.t. |𝑓(𝑡)| <𝑀𝑒|𝑡|/𝜏𝑗 , if 𝑡 ∈ (−1)𝑗 × [0, +∞)} by the following formula:

𝐹 (𝑢) = 𝑆 [𝑓 (𝑡)] = ∫∞
0

𝑓 (𝑢𝑡) 𝑒−𝑡d𝑡, 𝑢 ∈ (−𝜏1, 𝜏2) . (6)

Property 7 (see [30]). (i) The Sumudu transform satisfies lin-
ear property; that is,

𝑆 [𝑎𝑓 (𝑡) + 𝑏ℎ (𝑡)] = 𝑎𝑆 [𝑓 (𝑡)] + 𝑏𝑆 [ℎ (𝑡)] , (7)

where 𝑎, 𝑏 are constants.
(ii)

𝑆 [𝑡𝑛] = 𝑢𝑛Γ (𝑛 + 1) , 𝑛 ∈ N. (8)

Lemma 8 (see [31]). The Sumudu transform of the Caputo
fractional derivative is

𝑆 [𝐷𝛼𝑡 𝑓] (𝑡) = 𝑢−𝛼𝑆 [𝑓 (𝑡)] − 𝑚∑
𝑘=0

𝑢−𝛼+𝑘𝑓(𝑘) (0) ,
𝑚 < 𝛼 ≤ 𝑚 + 1, 𝑚 ∈ N.

(9)

3. Homotopy Perturbation Sumudu
Transform Method

In this section, to illustrate the basic idea of this method,
we consider a general nonhomogeneous fractional partial
differential coupled system

𝐷𝛼𝑡 𝑈1 (𝑥, 𝑡) +R
1 (𝑈1, 𝑈2, 𝑈3) +N

1 (𝑈1, 𝑈2, 𝑈3)
= 𝑔1 (𝑥, 𝑡) ,

𝐷𝛽𝑡 𝑈2 (𝑥, 𝑡) +R
2 (𝑈1, 𝑈2, 𝑈3) +N

2 (𝑈1, 𝑈2, 𝑈3)
= 𝑔2 (𝑥, 𝑡) ,

𝐷𝛾𝑡𝑈3 (𝑥, 𝑡) +R
3 (𝑈1, 𝑈2, 𝑈3) +N

3 (𝑈1, 𝑈2, 𝑈3)
= 𝑔3 (𝑥, 𝑡) ,

(10)

with the initial conditions

𝑈1 (𝑥, 0) = 𝑓1 (𝑥) ,
𝑈2 (𝑥, 0) = 𝑓2 (𝑥) ,
𝑈3 (𝑥, 0) = 𝑓3 (𝑥) ,

(11)

where 𝛼, 𝛽, 𝛾 ∈ (0, 1], R𝑖, N𝑖, 𝑖 = 1, 2, 3, denote linear
differential operators and nonlinear differential operators,

respectively, and 𝑔𝑖(𝑥, 𝑡) are the source terms. Applying the
Sumudu transform on both sides of (10) yields

𝑆 [𝐷𝛼𝑡 𝑈1 (𝑥, 𝑡)] + 𝑆 [R1 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N1 (𝑈1, 𝑈2, 𝑈3)] = 𝑆 [𝑔1 (𝑥, 𝑡)] ,

𝑆 [𝐷𝛽𝑡 𝑈2 (𝑥, 𝑡)] + 𝑆 [R2 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N2 (𝑈1, 𝑈2, 𝑈3)] = 𝑆 [𝑔2 (𝑥, 𝑡)] ,

𝑆 [𝐷𝛾𝑡𝑈3 (𝑥, 𝑡)] + 𝑆 [R3 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N3 (𝑈1, 𝑈2, 𝑈3)] = 𝑆 [𝑔3 (𝑥, 𝑡)] .

(12)

It follows from the property of the Sumudu transform in (9)
that

𝑆 [𝑈1 (𝑥, 𝑡)] = 𝑓1 (𝑥) − 𝑢𝛼 (𝑆 [R1 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N1 (𝑈1, 𝑈2, 𝑈3)]) + 𝑢𝛼𝑆 [𝑔1 (𝑥, 𝑡)] ,

𝑆 [𝑈2 (𝑥, 𝑡)] = 𝑓2 (𝑥) − 𝑢𝛽 (𝑆 [R2 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N2 (𝑈1, 𝑈2, 𝑈3)]) + 𝑢𝛽𝑆 [𝑔2 (𝑥, 𝑡)] ,

𝑆 [𝑈3 (𝑥, 𝑡)] = 𝑓3 (𝑥) − 𝑢𝛾 (𝑆 [R3 (𝑈1, 𝑈2, 𝑈3)]
+ 𝑆 [N3 (𝑈1, 𝑈2, 𝑈3)]) + 𝑢𝛾𝑆 [𝑔3 (𝑥, 𝑡)] .

(13)

Furthermore, applying the inverse Sumudu transform 𝑆−1 on
both sides of (13) yields

𝑈1 (𝑥, 𝑡) = 𝑀1 (𝑥, 𝑡) − 𝑆−1 [𝑢𝛼𝑆 [R1 (𝑈1, 𝑈2, 𝑈3)
+N
1 (𝑈1, 𝑈2, 𝑈3)]] ,

𝑈2 (𝑥, 𝑡) = 𝑀2 (𝑥, 𝑡) − S−1 [𝑢𝛽𝑆 [R2 (𝑈1, 𝑈2, 𝑈3)
+N
2 (𝑈1, 𝑈2, 𝑈3)]] ,

𝑈3 (𝑥, 𝑡) = 𝑀3 (𝑥, 𝑡) − 𝑆−1 [𝑢𝛾𝑆 [R3 (𝑈1, 𝑈2, 𝑈3)
+N
3 (𝑈1, 𝑈2, 𝑈3)]] ,

(14)

where 𝑀𝑖(𝑥, 𝑡), 𝑖 = 1, 2, 3, represent the terms arising from
the source terms and prescribed initial conditions; that is,

𝑀1 (𝑥, 𝑡) = S−1 [𝑓1 (𝑥) + 𝑢𝛼𝑆 [𝑔1 (𝑥, 𝑡)]] ,
𝑀2 (𝑥, 𝑡) = 𝑆−1 [𝑓2 (𝑥) + 𝑢𝛽𝑆 [𝑔2 (𝑥, 𝑡)]] ,
𝑀3 (𝑥, 𝑡) = 𝑆−1 [𝑓3 (𝑥) + 𝑢𝛾𝑆 [𝑔3 (𝑥, 𝑡)]] .

(15)

Let us construct the homotopy perturbation equations

𝑈1 (𝑥, 𝑡) = 𝑀1 (𝑥, 𝑡) − 𝑝 × 𝑆−1 [𝑢𝛼𝑆 [R1 (𝑈1, 𝑈2, 𝑈3)
+N
1 (𝑈1, 𝑈2, 𝑈3)]] ,
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𝑈2 (𝑥, 𝑡) = 𝑀2 (𝑥, 𝑡) − 𝑝 × 𝑆−1 [𝑢𝛽𝑆 [R2 (𝑈1, 𝑈2, 𝑈3)
+N
2 (𝑈1, 𝑈2, 𝑈3)]] ,

𝑈3 (𝑥, 𝑡) = 𝑀3 (𝑥, 𝑡) − 𝑝 × 𝑆−1 [𝑢𝛾𝑆 [R3 (𝑈1, 𝑈2, 𝑈3)
+N
3 (𝑈1, 𝑈2, 𝑈3)]] ,

(16)

where homotopy parameter 𝑝 ∈ [0, 1]. Suppose that 𝑈𝑖(𝑥, 𝑡)
and the nonlinear termsN𝑗𝑈𝑖(𝑥, 𝑡) can be written as

𝑈𝑖 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑝𝑛𝑈𝑖𝑛 (𝑥, 𝑡) , 𝑖 = 1, 2, 3,
N
𝑗 (𝑈1, 𝑈2, 𝑈3) = ∞∑

𝑛=0

𝑝𝑛𝐻𝑗𝑛 (𝑈1, 𝑈2, 𝑈3) ,
𝑗 = 1, 2, 3,

(17)

where the coefficient polynomials 𝑈𝑖𝑛 can be determined
below and 𝐻𝑗𝑛(𝑈1, 𝑈2, 𝑈3) are given by the following formu-
lae:

𝐻𝑗𝑛 (𝑈1, 𝑈2, 𝑈3) = 1𝑛!
⋅ 𝜕𝑛𝜕𝑝𝑛 (N

𝑗(∞∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈3𝑘))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0
= 1𝑛! 𝜕𝑛𝜕𝑝𝑛 (N

𝑗( 𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)

+N
𝑗( ∞∑
𝑘=𝑛+1

𝑝𝑘𝑈1𝑘 ,
∞∑
𝑘=𝑛+1

𝑝𝑘𝑈2𝑘 ,
∞∑
𝑘=𝑛+1

𝑝𝑘𝑈3𝑘))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0
= 1𝑛!

⋅ 𝜕𝑛𝜕𝑝𝑛 (N
𝑗( 𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0 ,
𝑗 = 1, 2, 3.

(18)

Substituting (17) into (16) gives

∞∑
𝑛=0

𝑝𝑛𝑈1𝑛 (𝑥, 𝑡) = 𝑀1 (𝑥, 𝑡) − 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [R1(∞∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈3𝑘)

+ ∞∑
𝑛=0

𝑝𝑛𝐻1𝑛 (
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] ,
∞∑
𝑛=0

𝑝𝑛𝑈2𝑛 (𝑥, 𝑡) = 𝑀2 (𝑥, 𝑡) − 𝑝

× 𝑆−1 [𝑢𝛽𝑆 [R2(∞∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈3𝑘)

+ ∞∑
𝑛=0

𝑝𝑛𝐻2𝑛 (
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] ,
∞∑
𝑛=0

𝑝𝑛𝑈3𝑛 (𝑥, 𝑡) = 𝑀3 (𝑥, 𝑡) − 𝑝

× 𝑆−1 [𝑢𝛾𝑆 [R3(∞∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
∞∑
𝑘=0

𝑝𝑘𝑈3𝑘)

+ ∞∑
𝑛=0

𝑝𝑛𝐻3𝑛 (
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] .

(19)

Comparing the coefficients of 𝑝, we obtain the following
recurrence equations:

𝑝0: 𝑈10 (𝑥, 𝑡) = 𝑀1 (𝑥, 𝑡) ,
𝑈20 (𝑥, 𝑡) = 𝑀2 (𝑥, 𝑡) ,
𝑈30 (𝑥, 𝑡) = 𝑀3 (𝑥, 𝑡) ,

...
𝑝𝑛: 𝑈1𝑛 (𝑥, 𝑡) = −𝑆−1 [𝑢𝛼𝑆 [R1(𝑛−1∑

𝑟=0

𝑛−1−𝑟∑
𝑠=0

𝑈1𝑟𝑈2𝑠𝑈3𝑛−1−𝑟−𝑠) + 𝐻1𝑛−1(
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] ,
𝑈2𝑛 (𝑥, 𝑡) = −𝑆−1 [𝑢𝛽𝑆 [R2(𝑛−1∑

𝑟=0

𝑛−1−𝑟∑
𝑠=0

𝑈1𝑟𝑈2𝑠𝑈3𝑛−1−𝑟−𝑠) + 𝐻2𝑛−1(
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] ,
𝑈3𝑛 (𝑥, 𝑡) = −𝑆−1 [𝑢𝛾𝑆 [R3(𝑛−1∑

𝑟=0

𝑛−1−𝑟∑
𝑠=0

𝑈1𝑟𝑈2𝑠𝑈3𝑛−1−𝑟−𝑠) + 𝐻3𝑛−1(
𝑛∑
𝑘=0

𝑝𝑘𝑈1𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈2𝑘 ,
𝑛∑
𝑘=0

𝑝𝑘𝑈3𝑘)]] ,

(20)

where 𝑛 = 1, 2, . . ..
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According to the homotopy perturbation method, we
assume that the solution of (10)-(11) can be written as

𝑉𝑖 (𝑥, 𝑡) = lim
𝑛→∞

(𝑈𝑖0 + 𝑈𝑖1𝑝 + 𝑈𝑖2𝑝2 + ⋅ ⋅ ⋅ + 𝑈𝑖𝑛𝑝𝑛) ,
𝑖 = 1, 2, 3. (21)

Setting 𝑝 → 1, the approximate solution to (10)-(11) is

𝑈𝑖 (𝑥, 𝑡) = lim
𝑝→1

𝑉𝑖 (𝑥1, . . . , 𝑥𝑚, 𝑡)
= lim
𝑛→∞

(𝑈𝑖0 + 𝑈𝑖1 + 𝑈𝑖2 + ⋅ ⋅ ⋅ + 𝑈𝑖𝑛) ,
𝑖 = 1, 2, 3.

(22)

The convergence of series (21) depends on the nonlinear
differential operatorN. Generally, the derivative with respect
to𝑈 of the nonlinear part in the splitting must be sufficiently
small, since the parameter 𝑝may be relatively large; in fact we
take 𝑝 → 1. The series is convergent for most cases [32].

Remark 9. HPSTM is applied to construct homotophy series
solutions for fractional coupled systems, which has not too
many overstrict assumptions compared to some classical
methods.

4. Application of HPSTM to Time-Space
Fractional Coupled Systems

In this section, we apply HPSTM to nonlinear time-space
fractional coupled systems with initial conditions.

4.1. The Time-Space Fractional Coupled Burgers System. The
Burgers equation is one of the most important partial dif-
ferential equations from fluid mechanics, which not only
describes many phenomena, for example, modeling the
motion of turbulence [33], but also has many applications
in science and engineering [34]. Here we apply HPSTM to
solve the following nonlinear time-space fractional coupled
Burgers system:

𝐷𝛼𝑡 𝑈 − 𝐷2𝑥𝑈 − 2𝑈𝐷𝛽𝑥𝑈 + 𝐷𝑥 (𝑈𝑉) = 0,
𝐷𝛾𝑡𝑉 − 𝐷2𝑥𝑉 − 2𝑉𝐷𝛿𝑥𝑉 + 𝐷𝑥 (𝑈𝑉) = 0, (23)

with the initial conditions
𝑈 (𝑥, 0) = sin𝑥,
𝑉 (𝑥, 0) = sin𝑥, (24)

where 0 < 𝛼, 𝛽, 𝛿, 𝛾 ≤ 1, (𝑥, 𝑡) ∈ R × [0,∞).
Applying the Sumudu transform on both sides of (23)

with the initial conditions, we can obtain

𝑆 [𝑈 (𝑥, 𝑡)] = sin𝑥 + 𝑢𝛼 (𝑆 [𝐷2𝑥𝑈 (𝑥, 𝑡)
+ 2𝑈 (𝑥, 𝑡) 𝐷𝛽𝑥𝑈 (𝑥, 𝑡) − 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))]) ,

𝑆 [𝑉 (𝑥, 𝑡)] = sin𝑥 + V𝛾 (𝑆 [𝐷2𝑥𝑉 (𝑥, 𝑡)
+ 2𝑉 (𝑥, 𝑡) 𝐷𝛿𝑥𝑉 (𝑥, 𝑡) − 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))]) .

(25)

The inverse Sumudu transform of (25) implies that

𝑈 (𝑥, 𝑡) = sin 𝑥 + 𝑆−1 [𝑢𝛼 (𝑆 [𝐷2𝑥𝑈 (𝑥, 𝑡)
+ 2𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡) − 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))])] ,

𝑉 (𝑥, 𝑡) = sin 𝑥 + 𝑆−1 [V𝛾 (𝑆 [𝐷2𝑥𝑉 (𝑥, 𝑡)
+ 2𝑉 (𝑥, 𝑡)𝐷𝛿𝑥𝑉 (𝑥, 𝑡) − 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))])] .

(26)

Now applying the homotopy perturbation method gives
∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡) = sin 𝑥 + 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [𝐷2𝑥 (
∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡)]] ,
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡) = sin𝑥 + 𝑝

× 𝑆−1 [V𝛾𝑆 [𝐷2𝑥 (
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡)]] ,

(27)

where 𝐻𝑈𝑛 (𝑥, 𝑡) and 𝐻𝑉𝑛 (𝑥, 𝑡) are polynomials which denote
the homotopy coefficients of the nonlinear term and are given
by

∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡) = 2𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡)
− 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡)) ,

∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡) = 2𝑉 (𝑥, 𝑡) 𝐷𝛿𝑥𝑉 (𝑥, 𝑡)
− 𝐷𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡)) .

(28)

Set

𝑈𝑛 (𝑥, 𝑡) fl 𝑈̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑉𝑛 (𝑥, 𝑡) fl 𝑉̃𝑛 (𝑥) 𝑡𝑛𝛾Γ (𝑛𝛾 + 1) ,

(29)

and then

𝐻𝑈𝑛 (𝑥, 𝑡) = 2 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑛−𝑖 (𝑥)
⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1)
− 𝑛∑
𝑖=0

𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑛−𝑖 (𝑥))
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⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) ,

𝐻𝑉𝑛 (𝑥, 𝑡) = 2 𝑛∑
𝑖=0

𝑉̃𝑖 (𝑥)𝐷𝛿𝑥𝑉̃𝑛−𝑖 (𝑥)

⋅ 𝑡𝑛𝛾Γ (𝑖𝛾 + 1) Γ ((𝑛 − 𝑖) 𝛾 + 1)

− 𝑛∑
𝑖=0

𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑛−𝑖 (𝑥))
⋅ 𝑡𝑛𝛾Γ (𝑖𝛾 + 1) Γ ((𝑛 − 𝑖) 𝛾 + 1) .

(30)

Comparing the coefficients of 𝑝, this gives
𝑝0: 𝑈0 (𝑥, 𝑡) = 𝑈̃0 (𝑥) = sin𝑥,

𝑉0 (𝑥, 𝑡) = 𝑉̃0 (𝑥) = sin𝑥,
𝑝1: 𝑈1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝐷2𝑥𝑈0 (𝑥, 𝑡) + 𝐻𝑢0 (𝑥, 𝑡)]] = 𝑆−1 [𝑢𝛼𝑆 [𝐷2𝑥𝑈̃0 (𝑥) + 2𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥) − 𝐷𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))]]

= 𝑡𝛼Γ (𝛼 + 1) {𝐷2𝑥𝑈̃0 (𝑥) + 2𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥) − 𝐷𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))} = 𝑡𝛼Γ (𝛼 + 1) 𝑈̃1 (𝑥) ,
𝑉1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛾𝑆 [𝐷2𝑥𝑉0 (𝑥, 𝑡) + 𝐻V

0 (𝑥, 𝑡)]] = 𝑆−1 [𝑢𝛾𝑆 [𝐷2𝑥𝑉̃0 (𝑥) + 2𝑉̃0 (𝑥)𝐷𝛿𝑥𝑉̃0 (𝑥) − 𝐷𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))]]
= 𝑡𝛾Γ (𝛾 + 1) {𝐷2𝑥𝑉̃0 (𝑥) + 2𝑉̃0 (𝑥)𝐷𝛿𝑥𝑈̃0 (𝑥) − 𝐷𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))} = 𝑡𝛾Γ (𝛾 + 1)𝑉̃1 (𝑥) .

(31)

Generally, we have

𝑝𝑘: 𝑈𝑘 (𝑥, 𝑡)
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {𝐷2𝑥𝑈̃𝑘−1 (𝑥) +

𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (2𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥) − 𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑘−1−𝑖 (𝑥)))}

= t𝑘𝛼Γ (𝑘𝛼 + 1) 𝑈̃𝑘 (𝑥) ,
𝑉𝑘 (𝑥, 𝑡)
= 𝑡𝑘𝛾Γ (𝑘𝛾 + 1) {𝐷2𝑥𝑉̃𝑘−1 (𝑥) +

𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛾 + 1)
Γ (𝑖𝛾 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛾 + 1) (2𝑉̃𝑖 (𝑥)𝐷𝛿𝑥𝑉̃𝑘−1−𝑖 (𝑥) − 𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑘−1−𝑖 (𝑥)))}

= 𝑡𝑘𝛾Γ (𝑘𝛾 + 1)𝑉̃𝑘 (𝑥) ,

(32)

where

𝑈̃𝑘 (𝑥) = 𝐷2𝑥𝑈̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (2𝑈̃𝑖 (𝑥)
⋅ 𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥) − 𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑘−1−𝑖 (𝑥))) ,

𝑉̃𝑘 (𝑥) = 𝐷2𝑥𝑉̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛾 + 1)
Γ (𝑖𝛾 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛾 + 1) (2𝑉̃𝑖 (𝑥)

⋅ 𝐷𝛿𝑥𝑉̃𝑘−1−𝑖 (𝑥) − 𝐷𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑘−1−𝑖 (𝑥))) .

(33)

Hence, the series solution of (23) is

𝑈 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑉 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉̃𝑘 (𝑥) 𝑡𝑘𝛾Γ (𝑘𝛾 + 1) .
(34)

Particularly, when 𝛼 = 𝛾 = 𝛽 = 𝛿 = 1, the exact solution of
(23) is

𝑈 (𝑥, 𝑡) = 𝑒−𝑡 sin𝑥,
𝑉 (𝑥, 𝑡) = 𝑒−𝑡 sin𝑥. (35)
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(a) The third-order approximate solution of𝑈(𝑥, 𝑡)
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(b) The exact solution of𝑈(𝑥, 𝑡)
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(c) The error |𝑈app − 𝑈ex| of𝑈(𝑥, 𝑡) at 𝑡 = 0.01
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(d) The error |𝑈app − 𝑈ex| of𝑈(𝑥, 𝑡) at 𝑡 = 0.1

Figure 1

Using HPSTM, when 𝛼 = 𝛾 = 𝛽 = 𝛿 = 1, the third
approximate solution of (23) is

𝑈app (𝑥, 𝑡) = sin 𝑥 + 𝑡2! (− sin𝑥) + 𝑡23! (sin 𝑥)
+ 𝑡34! (− sin𝑥)

= sin 𝑥{1 + −𝑡2! + (−𝑡)23! + −𝑡34! } ,
𝑉app (𝑥, 𝑡) = sin 𝑥 + 𝑡2! (− sin𝑥) + 𝑡23! (sin 𝑥)

+ 𝑡34! (− sin𝑥)
= sin 𝑥{1 + −𝑡2! + (−𝑡)23! + −𝑡34! } .

(36)

In general, the limit of the approximate solution is

𝑈 (𝑥, 𝑡) = sin𝑥 + 𝑡2! (− sin𝑥) + 𝑡23! (sin𝑥)
+ 𝑡34! (− sin𝑥) + ⋅ ⋅ ⋅

= sin𝑥{1 + −𝑡2! + (−𝑡)23! + −𝑡34! + ⋅ ⋅ ⋅}
= 𝑒−𝑡 sin𝑥,

𝑉 (𝑥, 𝑡) = sin𝑥 + 𝑡2! (− sin𝑥) + 𝑡23! (sin 𝑥)
+ 𝑡34! (− sin𝑥) + ⋅ ⋅ ⋅

= sin𝑥{1 + −𝑡2! + (−𝑡)23! + −𝑡34! + ⋅ ⋅ ⋅}
= 𝑒−𝑡 sin𝑥,

(37)
which is as same as the exact solution. However, if the initial
values are too complex to find the limit of the approximated
solution, then we replace the exact solution by the approxi-
mated solution within a certain scale, which is useful in the
application of engineering.

Thus we plot the images of the approximate solution (see
Figure 1(a)), the exact solution (see Figure 1(b)), and the error
function (see Figures 1(c) and 1(d)). It is clear that the error
function |𝑈app −𝑈ex| depends on time 𝑡. When time 𝑡 is small
(e.g., 𝑡 = 0.01), the error function is in the scale of 10−3 (see
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Figure 1(c)), which indicates that this is a good approximation
in the neighbour of time 0 for system (23) with some explicit
parameters.However, when time becomes large (e.g., 𝑡 = 0.1),
the error function tends to be large as well (see Figure 1(d));
that is to say, this method is only suitable for constructing the
approximated solution around the initial data.

4.2.The Time-Space Fractional Coupled KdV System of Gener-
alized Hirota-Satsuma Type. In this subsection, consider the
time-space fractional generalization of the Hirota-Satsuma
coupled KdV system

𝐷𝛼𝑡 𝑈 − 12𝐷3𝛽𝑥 𝑈 + 3𝑈𝐷𝛾𝑥𝑈 − 3𝐷𝛿𝑥 (𝑉𝑊) = 0,
𝐷𝛼𝑡 𝑉 + 𝐷3𝜆𝑥 𝑉 − 3𝑈𝐷𝜏𝑥𝑉 = 0,

𝐷𝛼𝑡𝑊 + 𝐷3𝜃𝑥 𝑊 − 3𝑈𝐷𝜎𝑥𝑊 = 0,
(38)

with respect to the initial conditions

𝑈 (𝑥, 0) = 𝑎0 (𝑥) ,
𝑉 (𝑥, 0) = 𝑏0 (𝑥) ,
𝑊 (𝑥, 0) = 𝑐0 (𝑥) ,

(39)

where 0 < 𝛼, 𝛾, 𝛿, 𝜆, 𝜏 ≤ 1, 2/3 < 𝛽, 𝜎, 𝜃 ≤ 1, 𝑈 = 𝑈(𝑥, 𝑡),𝑉 = 𝑉(𝑥, 𝑡), 𝑊 = 𝑊(𝑥, 𝑡), (𝑥, 𝑡) ∈ R × [0,∞). The Hirota-
Satsuma coupled KdV equation describes the unidirectional
propagation of shallow water waves, which was initiated by
Wu et al. [35]. Further (38) becomes a generalized fractional
KdV equation for𝑈 = 0 and a fractional MKdV equation for𝑉 = 0.

Applying the Sumudu transform on both sides of (38)
with the initial conditions, we obtain

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑎0 (𝑥) + 𝑢𝛼 (𝑆 [12𝐷3𝛽𝑥 𝑈 (𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡) 𝐷𝛾𝑥𝑈 (𝑥, 𝑡) + 3𝐷𝛿𝑥 (𝑉 (𝑥, 𝑡)𝑊 (𝑥, 𝑡))]) ,

𝑆 [𝑉 (𝑥, 𝑡)] = 𝑏0 (𝑥) − V𝛼 (𝑆 [𝐷3𝜆𝑥 𝑉 (𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡) 𝐷𝜏𝑥𝑉 (𝑥, 𝑡)]) ,

𝑆 [𝑊 (𝑥, 𝑡)] = 𝑐0 (𝑥) − 𝑤𝛼 (𝑆 [𝐷3𝜃𝑥 𝑊(𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡) 𝐷𝜎𝑥𝑊(𝑥, 𝑡)]) .

(40)

The inverse Sumudu transform of (40) implies that

𝑈 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑆−1 [𝑢𝛼 (𝑆 [12𝐷3𝛽𝑥 𝑈 (𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡) 𝐷𝛾𝑥𝑈 (𝑥, 𝑡)
+ 3𝐷𝛿𝑥 (𝑉 (𝑥, 𝑡)𝑊 (𝑥, 𝑡))])] ,

𝑉 (𝑥, 𝑡) = 𝑏0 (𝑥) − 𝑆−1 [V𝛼 (𝑆 [𝐷3𝜆𝑥 𝑉 (𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡) 𝐷𝜏𝑥𝑉 (𝑥, 𝑡)])] ,

𝑊 (𝑥, 𝑡) = 𝑐0 (𝑥) − 𝑆−1 [𝑤𝛼 (𝑆 [𝐷3𝜃𝑥 𝑊(𝑥, 𝑡)
− 3𝑈 (𝑥, 𝑡)𝐷𝜎𝑥𝑊(𝑥, 𝑡)])] .

(41)

Via the homotopy perturbation method, it gives
∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [12𝐷3𝛽𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡)]] ,
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑝

× 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 (∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡)]] ,
∞∑
𝑛=0

𝑝𝑛𝑊𝑛 (𝑥, 𝑡) = 𝑐0 (𝑥) + 𝑝

× 𝑆−1 [𝑤𝛼𝑆 [−𝐷3𝜃𝑥 (∞∑
𝑛=0

𝑊𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑊𝑛 (𝑥, 𝑡)]] ,

(42)

where 𝐻𝑈𝑛 (𝑥, 𝑡), 𝐻𝑉𝑛 (𝑥, 𝑡), and 𝐻𝑊𝑛 (𝑥, 𝑡) are polynomials
which denote the nonlinear term, and they are given by

∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡) = 3𝐷𝛿𝑥 (𝑉 (𝑥, 𝑡)𝑊 (𝑥, 𝑡))
− 3𝑈 (𝑥, 𝑡)𝐷𝛾𝑥𝑈 (𝑥, 𝑡) ,

∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡) = 3𝑈 (𝑥, 𝑡) 𝐷𝜏𝑥𝑉 (𝑥, 𝑡) ,
∞∑
𝑛=0

𝑝𝑛𝐻𝑊𝑛 (𝑥, 𝑡) = 3𝑈 (𝑥, 𝑡) 𝐷𝜎𝑥𝑊(𝑥, 𝑡) .

(43)

Set

𝑈𝑛 (𝑥, 𝑡) fl 𝑈̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑉𝑛 (𝑥, 𝑡) fl 𝑉̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑊𝑛 (𝑥, 𝑡) fl 𝑊̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,

(44)
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and then

𝐻𝑈𝑛 = 3𝐷𝛿𝑥(
𝑛∑
𝑖=0

𝑉̃𝑖 (𝑥) 𝑊̃𝑛−𝑖 (𝑥)
⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1)) − 3 𝑛∑

𝑖=0

𝑈̃𝑖 (𝑥)
⋅ 𝐷𝛾𝑥𝑈̃𝑛−𝑖 (𝑥) 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) ,

𝐻𝑉𝑛 = 3 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝜏𝑥𝑉̃𝑛−𝑖 (𝑥)

⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) ,

𝐻𝑊𝑛 = 3 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝜎𝑥𝑊̃𝑛−𝑖 (𝑥)

⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) .
(45)

Comparing the coefficients of 𝑝 shows

𝑝0: 𝑈0 (𝑥, 𝑡) = 𝑈̃0 (𝑥) = 𝑎0 (𝑥) ,
𝑉0 (𝑥, 𝑡) = 𝑉̃0 (𝑥) = 𝑏0 (𝑥) ,
𝑊0 (𝑥, 𝑡) = 𝑊̃0 (𝑥) = 𝑐0 (𝑥) ,

𝑝1: 𝑈1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [12𝐷3𝛽𝑥 𝑈0 (𝑥, 𝑡) + 𝐻𝑈0 (𝑥, 𝑡)]]
= 𝑆−1 [𝑢𝛼𝑆 [12𝐷3𝛽𝑥 𝑈̃0 (𝑥) + 3𝐷𝛿𝑥 (𝑉̃0 (𝑥) 𝑊̃0 (𝑥)) − 3𝑈̃0 (𝑥)𝐷𝛾𝑥𝑈̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (12𝐷3𝛽𝑥 𝑈̃0 (𝑥) + 3𝐷𝛿𝑥 (𝑉̃0 (𝑥) 𝑊̃0 (𝑥)) − 3𝑈̃0 (𝑥)𝐷𝛾𝑥𝑈̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑈̃1 (𝑥) ,
𝑉1 (𝑥, 𝑡) = 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 𝑉0 (𝑥, 𝑡) + 𝐻𝑉0 (𝑥, 𝑡)]] = 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 𝑉̃0 (𝑥) + 3𝑈̃0 (𝑥)𝐷𝜏𝑥𝑉̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝐷3𝜆𝑥 𝑉̃0 (𝑥) + 3𝑈̃0 (𝑥)𝐷𝛾𝑥𝑈̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑉̃1 (𝑥) ,
𝑊1 (𝑥, 𝑡) = 𝑆−1 [𝑤𝛼𝑆 [−𝐷3𝜃𝑥 𝑊0 (𝑥, 𝑡) + 𝐻𝑊0 (𝑥, 𝑡)]] = 𝑆−1 [𝑤𝛼𝑆 [−𝐷3𝜃𝑥 𝑊̃0 (𝑥) + 3𝑈̃0 (𝑥)𝐷𝜎𝑥𝑊̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝐷3𝜃𝑥 𝑊̃0 (𝑥) + 3𝑈̃0 (𝑥)𝐷𝜎𝑥𝑊̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1)𝑊̃1 (𝑥) .

(46)

Generally, one has

𝑝𝑘: 𝑈𝑘 (𝑥, 𝑡)
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {12𝐷3𝛽𝑥 𝑈̃𝑘−1 (𝑥) + 𝑘−1∑

𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (3𝐷𝛿𝑥 (𝑉𝑘−1−𝑖 (𝑥) 𝑊̃𝑖 (𝑥)) − 3𝑈̃𝑖 (𝑥)𝐷𝛾𝑥𝑈̃𝑘−1−𝑖 (𝑥))}

= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑈̃𝑘 (𝑥) ,

𝑉𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {−𝐷3𝜆𝑥 𝑉̃𝑘−1 (𝑥) +
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)𝐷𝜏𝑥𝑉𝑘−1−𝑖 (𝑥)} = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1)𝑉𝑘 (𝑥) ,

𝑊𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {−𝐷3𝜃𝑥 𝑊̃𝑘−1 (𝑥) +
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)𝐷𝜎𝑥𝑊̃𝑘−1−𝑖 (𝑥)}

= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1)𝑊̃𝑘 (𝑥) ,

(47)
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where

𝑈̃𝑘 (𝑥) = 12𝐷3𝛽𝑥 𝑈̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)
⋅ (3𝐷𝛿𝑥 (𝑉̃𝑘−1−𝑖 (𝑥) 𝑊̃𝑖 (𝑥))
− 3𝑈̃𝑖 (𝑥)𝐷𝛾𝑥𝑈̃𝑘−1−𝑖 (𝑥)) ,

𝑉̃𝑘 (𝑥) = −𝐷3𝜆𝑥 𝑉̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)
⋅ 𝐷𝜏𝑥𝑉̃𝑘−1−𝑖 (𝑥) ,

𝑊̃𝑘 (𝑥) = −𝐷3𝜃𝑥 𝑊̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)
⋅ 𝐷𝜎𝑥𝑊̃𝑘−1−𝑖 (𝑥) .

(48)

Therefore, the approximate series solution of (38) is

𝑈 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑉 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑊 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑊𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑊̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) .

(49)

Particularly, when 𝛼 = 𝛾 = 𝛿 = 𝜆 = 1, 𝜏 = 𝛽 = 𝜎 = 𝜃 = 2/3,
and the special initial value of (38) is

𝑈 (𝑥, 0) = −2 + 4 tanh2𝑥,
𝑉 (𝑥, 0) = −4 + 4 tanh2𝑥,
𝑊 (𝑥, 0) = 1 + tanh2𝑥,

(50)

then the exact solutions are
𝑈 (𝑥, 𝑡) = −2 + 4 tanh2 (𝑥 + 2𝑡) ,
𝑉 (𝑥, 𝑡) = −4 + 4 tanh2 (𝑥 + 2𝑡) ,
𝑊 (𝑥, 𝑡) = 1 + tanh2 (𝑥 + 2𝑡) .

(51)

Under these special conditions, via HPSTM, the first approx-
imate solution of (38) is

𝑈app (𝑥, 𝑡) = −2 + 4 tanh2𝑥 + 16 (tanh𝑥 − tanh3𝑥) 𝑡,
𝑉app (𝑥, 𝑡) = −4 + 4 tanh2𝑥 + 16 (tanh𝑥 − tanh3𝑥) 𝑡,
𝑊app (𝑥, 𝑡) = 1 + tanh2𝑥 + 4 (tanh𝑥 − tanh3𝑥) 𝑡.

(52)

Similarly, we obtain the following numerical results: see
Figures 2(a), 2(b), 2(c), 2(d), 3(a), 3(b), 3(c), 3(d), 4(a), 4(b),
4(c), and 4(d).

4.3.TheTime-Space Fractional Coupled ShallowWater System.
Shallow water systems are widely used in many areas of fluid
dynamics, such asmultiphase flows [36], turbulence [37], and
viscoelasticity [38]. It is well known that the shallow water
systems can accurately predict both the hydraulic parameters
under conditions of slow erosion and low sediment concen-
tration. Let us consider the time-space fractional coupled
shallow water system

𝐷𝛼𝑡 𝑈 + 𝑈𝐷𝛽𝑥𝑈 + 𝐷𝛾𝑥𝑉 + 𝑎𝐷2𝛿𝑥 𝑈 = 0,
𝐷𝛼𝑡 𝑉 + 𝑉𝐷𝜆𝑥𝑈 + 𝑈𝐷𝜏𝑥𝑉 − 𝑎𝐷2𝜃𝑥 𝑉 + 𝑏𝐷3𝜎𝑥 𝑈 = 0 (53)

with initial values

𝑈 (𝑥, 0) = 𝑎0 (𝑥) ,
𝑉 (𝑥, 0) = 𝑏0 (𝑥) , (54)

where 0 < 𝛼, 𝛽, 𝛾, 𝜆, 𝜏 ≤ 1, 1/2 < 𝛿, 𝜃 ≤ 1, 2/3 < 𝜎 ≤ 1,𝑈 = 𝑈(𝑥, 𝑡), 𝑉 = 𝑉(𝑥, 𝑡), (𝑥, 𝑡) ∈ R × [0, 1/3].
Applying the Sumudu transform on both sides of (53)

with the initial conditions, we obtain

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑎0 (𝑥) + 𝑢𝛼 (𝑆 [−𝑈 (𝑥, 𝑡) 𝐷𝛽𝑥𝑈 (𝑥, 𝑡)
− 𝐷𝛾𝑥𝑉 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈 (𝑥, 𝑡)]) ,

𝑆 [𝑉 (𝑥, 𝑡)] = 𝑏0 (𝑥) + V𝛼 (𝑆 [−𝑉 (𝑥, 𝑡)𝐷𝜆𝑥𝑈 (𝑥, 𝑡)
− 𝑈 (𝑥, 𝑡) 𝐷𝜏𝑥𝑉 (𝑥, 𝑡) + 𝑎𝐷2𝜃𝑥 𝑉 (𝑥, 𝑡)
− 𝑏𝐷3𝜎𝑥 𝑈 (𝑥, 𝑡)]) .

(55)

The inverse Sumudu transform of (55) implies that

𝑈 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑆−1 [𝑢𝛼 (𝑆 [−𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡)
− 𝐷𝛾𝑥𝑉 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈 (𝑥, 𝑡)])] ,

𝑉 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑆−1 [V𝛼 (𝑆 [−𝑉 (𝑥, 𝑡) 𝐷𝜆𝑥𝑈 (𝑥, 𝑡)
− 𝑈 (𝑥, 𝑡)𝐷𝜏𝑥𝑉 (𝑥, 𝑡) + 𝑎𝐷2𝜃𝑥 𝑉 (𝑥, 𝑡)
− 𝑏𝐷3𝜎𝑥 𝑈 (𝑥, 𝑡)])] .

(56)

According to homotopy perturbation method, we have

∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥 (
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))
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(d) The error |𝑈app − 𝑈ex| of𝑈(𝑥, 𝑡) at 𝑡 = 0.1

Figure 2

− 𝑎𝐷2𝛿𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡)) − ∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡)]] ,
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑝

× 𝑆−1 [V𝛼𝑆 [𝑎𝐷2𝜃𝑥 (∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

− 𝑏𝐷3𝜎𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡)) − ∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡)]] ,
(57)

where𝐻𝑈𝑛 (𝑥, 𝑡) and𝐻𝑉𝑛 (𝑥, 𝑡) are polynomials of the nonlinear
term and are given by

∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡) ,
∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡) = 𝑉 (𝑥, 𝑡)𝐷𝜆𝑥𝑈 (𝑥, 𝑡)
+ 𝑈 (𝑥, 𝑡)𝐷𝜏𝑥𝑉 (𝑥, 𝑡) .

(58)

Setting

𝑈𝑛 (𝑥, 𝑡) fl 𝑈̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑉𝑛 (𝑥, 𝑡) fl 𝑉̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,

(59)

then we arrive at

𝐻𝑈𝑛 (𝑥, 𝑡)
= 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑛−𝑖 (𝑥) 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) ,
𝐻𝑉𝑛 (𝑥, 𝑡)

= ( 𝑛∑
𝑖=0

𝑉̃𝑖 (𝑥)𝐷𝜆𝑥𝑈̃𝑛−𝑖 (𝑥) +
𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝜏𝑥𝑉̃𝑛−𝑖 (𝑥))
⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) .

(60)

Comparing the coefficients of 𝑝 yields
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(b) The exact solution of 𝑉(𝑥, 𝑡)
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(d) The error |𝑉app − 𝑉ex| of 𝑉(𝑥, 𝑡) at 𝑡 = 0.1

Figure 3

𝑝0: 𝑈0 (𝑥, 𝑡) = 𝑈̃0 (𝑥) = 𝑎0 (𝑥) ,
𝑉0 (𝑥, 𝑡) = 𝑉̃0 (𝑥) = 𝑏0 (𝑥) ,

𝑝1: 𝑈1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥𝑉0 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈0 (𝑥, 𝑡) − 𝐻𝑈0 (𝑥)]]
= 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥𝑈̃0 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝐷𝛾𝑥𝑈̃0 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑈̃1 (𝑥) ,
𝑉1 (𝑥, 𝑡) = 𝑆−1 [V𝛼𝑆 [−𝑏𝐷3𝜎𝑥 𝑉0 (𝑥, 𝑡) + 𝑎𝐷2𝜃𝑥 𝑉0 (𝑥, 𝑡) − 𝐻𝑉0 (𝑥)]]
= 𝑆−1 [V𝛼𝑆 [−𝑏𝐷3𝜎𝑥 𝑉̃0 (𝑥) + 𝑎𝐷2𝜃𝑥 𝑉̃0 (𝑥) − 𝑉̃0 (𝑥)𝐷𝜆𝑥𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝜏𝑥𝑉̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝑏𝐷3𝜎𝑥 𝑉̃0 (𝑥) + 𝑎𝐷2𝜃𝑥 𝑉̃0 (𝑥) − 𝑉̃0 (𝑥)𝐷𝜆𝑥𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝜏𝑥𝑉̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑉̃1 (𝑥) .

(61)

Generally, we have

𝑝𝑘: 𝑈𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {−𝐷𝛾𝑥𝑉̃𝑘−1 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃𝑘−1 (𝑥) −
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) 𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥)}
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑈̃𝑘 (𝑥) ,
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(d) The error |𝑊app −𝑊ex| of𝑊(𝑥, 𝑡) at 𝑡 = 0.1

Figure 4

𝑉𝑘 (𝑥, 𝑡)
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {−𝑏𝐷3𝜎𝑥 𝑉̃𝑘−1 (𝑥) + 𝑎𝐷2𝜃𝑥 𝑉̃𝑘−1 (𝑥) −

𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (𝑈̃𝑖 (𝑥)𝐷𝜆𝑥𝑉̃𝑘−1−𝑖 (𝑥) + 𝑉̃𝑖 (𝑥)𝐷𝜏𝑥𝑈̃𝑘−1−𝑖 (𝑥))}
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑉̃𝑘 (𝑥) ,

(62)

where

𝑈̃𝑘 (𝑥) = −𝐷𝛾𝑥𝑉̃𝑘−1 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃𝑘−1 (𝑥)
− 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) 𝑈̃𝑖 (𝑥)
⋅ 𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥) ,

𝑉̃𝑘 (𝑥) = −𝑏𝐷3𝜎𝑥 𝑉̃𝑘−1 (𝑥) + 𝑎𝐷2𝜃𝑥 𝑉̃𝑘−1 (𝑥)
− 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (𝑈̃𝑖 (𝑥)
⋅ 𝐷𝜆𝑥𝑉̃𝑘−1−𝑖 (𝑥) + 𝑉̃𝑖 (𝑥)𝐷𝜏𝑥𝑈̃𝑘−1−𝑖 (𝑥)) .

(63)

Hence, the series solution is

𝑈 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑉 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) .
(64)

4.4. The Time-Space Fractional Coupled KdV System. KdV
equation plays an important role in nonlinear equations for
wide applications in physics and engineering. Hirota and
Satsuma [39] firstly found coupled KdV system to describe
the iterations of water waves; meanwhile, they claimed that
the system exists with a soliton solution. In [40], Fan and
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Zhang settled several kinds of solutions by an improved
homogeneous method. The time-space fractional coupled
KdV equation is a generalization of the classical coupled KdV
equation. In this subsection, we consider the following time-
space fractional coupled KdV system:

𝐷𝛼𝑡 𝑈 − 𝑎𝐷3𝛽𝑥 𝑈 − 6𝑎𝑈𝐷𝛾𝑥𝑈 − 2𝑏𝑉𝐷𝛿𝑥𝑉 = 0,
𝐷𝛼𝑡 𝑉 + 𝐷3𝜆𝑥 𝑉 + 3𝑈𝐷𝜏𝑥𝑉 = 0, (65)

with respect to initial values

𝑈 (𝑥, 0) = 𝑎0 (𝑥) ,
𝑉 (𝑥, 0) = 𝑏0 (𝑥) , (66)

where 0 < 𝛼, 𝛾, 𝛿, 𝜏 ≤ 1, 2/3 < 𝛽, 𝜆 ≤ 1, (𝑥, 𝑡) ∈ R × [0,∞),
and the coefficients 𝑎, 𝑏 are constants.

Applying the Sumudu transform on both sides of (65)
with the initial conditions, we obtain

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑎0 (𝑥) + 𝑢𝛼 (𝑆 [𝑎𝐷3𝛽𝑥 𝑈 (𝑥, 𝑡)
+ 6𝑎𝑈 (𝑥, 𝑡)𝐷𝛾𝑥𝑈 (𝑥, 𝑡) + 2𝑏𝑉 (𝑥, 𝑡) 𝐷𝛿𝑥𝑉 (𝑥, 𝑡)]) ,

𝑆 [𝑉 (𝑥, 𝑡)] = 𝑏0 (𝑥) − V𝛼 (𝑆 [𝐷3𝜆𝑥 𝑉 (𝑥, 𝑡)
+ 3𝑈 (𝑥, 𝑡)𝐷𝜏𝑥𝑉 (𝑥, 𝑡)]) .

(67)

The inverse Sumudu transform of (67) implies that

𝑈 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑆−1 [𝑢𝛼 (𝑆 [𝑎𝐷3𝛽𝑥 𝑈 (𝑥, 𝑡)
+ 6𝑎𝑈 (𝑥, 𝑡)𝐷𝛾𝑥𝑈 (𝑥, 𝑡) + 2𝑏𝑉 (𝑥, 𝑡) 𝐷𝛿𝑥𝑉 (𝑥, 𝑡)])] ,

𝑉 (𝑥, 𝑡) = 𝑏0 (𝑥) − 𝑆−1 [V𝛼 (𝑆 [𝐷3𝜆𝑥 𝑉 (𝑥, 𝑡)
+ 3𝑈 (𝑥, 𝑡)𝐷𝜏𝑥𝑉 (𝑥, 𝑡)])] .

(68)

Analogously, using homotopy perturbation method gives

∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [𝑎𝐷3𝛽𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡)]] ,

∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑝

× 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 (∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

+ ∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡)]] ,
(69)

where 𝐻𝑈𝑛 (𝑥, 𝑡) and 𝐻𝑉𝑛 (𝑥, 𝑡) are homotopy polynomials
coefficients of the nonlinear term, which are given by

∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡) = 6𝑎𝑈 (𝑥, 𝑡) 𝐷𝛾𝑥𝑈 (𝑥, 𝑡)
+ 2𝑏𝑉 (𝑥, 𝑡) 𝐷𝛿𝑥𝑉 (𝑥, 𝑡) ,

∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡) = −3𝑈 (𝑥, 𝑡)𝐷𝜏𝑥𝑉 (𝑥, 𝑡) .
(70)

Setting

𝑈𝑛 (𝑥, 𝑡) fl 𝑈̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑉𝑛 (𝑥, 𝑡) fl 𝑉̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,

(71)

then

𝐻𝑈𝑛 (𝑥, 𝑡) = 6𝑎 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝛾𝑥𝑈̃𝑛−𝑖 (𝑥)
⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1)
+ 2𝑏 𝑛∑
𝑖=0

𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) 𝑉̃𝑖 (𝑥)
⋅ 𝐷𝛿𝑥𝑉̃𝑛−𝑖 (𝑥) ,

𝐻𝑉𝑛 (𝑥, 𝑡) = −3 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝜏𝑥𝑉̃𝑛−𝑖 (𝑥)
⋅ 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) .

(72)

Comparing the coefficients of 𝑝,

𝑝0: 𝑈0 (𝑥, 𝑡) = 𝑈̃0 (𝑥) = 𝑎0 (𝑥) ,
𝑉0 (𝑥, 𝑡) = 𝑉̃0 (𝑥) = 𝑏0 (𝑥) ,

𝑝1: 𝑈1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝑎𝐷3𝛽𝑥 𝑈0 (𝑥, 𝑡) + 𝐻𝑈0 (𝑥, 𝑡)]]
= 𝑆−1 [𝑢𝛼𝑆 [𝑎𝐷3𝛽𝑥 𝑈̃0 (𝑥) + 6𝑎𝑈̃0 (𝑥)𝐷𝛾𝑥𝑈̃0 (𝑥) + 2𝑏𝑉̃0 (𝑥)𝐷𝛿𝑥𝑉̃0 (𝑥)]]
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= 𝑡𝛼Γ (𝛼 + 1) (𝑎𝐷3𝛽𝑥 𝑈̃0 (𝑥) + 6𝑎𝑈̃0 (𝑥)𝐷𝛾𝑥𝑈̃0 (𝑥) + 2𝑏𝑉̃0 (𝑥)𝐷𝛿𝑥𝑉̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑈̃1 (𝑥) ,
𝑉1 (𝑥, 𝑡) = 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 𝑉0 (𝑥, 𝑡) + 𝐻𝑉0 (𝑥, 𝑡)]] = 𝑆−1 [V𝛼𝑆 [−𝐷3𝜆𝑥 𝑉̃0 (𝑥) − 3𝑈̃0𝐷𝜏𝑥𝑉̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝐷3𝜆𝑥 𝑉̃0 (𝑥) − 3𝑈̃0𝐷𝜏𝑥𝑉̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑉̃1 (𝑥) .

(73)

Generally, we get

𝑝𝑘: 𝑈𝑘 (𝑥, 𝑡)
= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {𝑎𝐷3𝛽𝑥 𝑈̃𝑘−1 (𝑥) + 𝑘−1∑

𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) (6𝑎𝑈̃𝑖 (𝑥)𝐷𝛾𝑥𝑈̃𝑘−1−𝑖 (𝑥) + 2𝑏𝑉̃𝑖 (𝑥)𝐷𝛿𝑥𝑉̃𝑘−1−𝑖 (𝑥))}

= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑈̃𝑘 (𝑥) ,

𝑉𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) (−𝐷3𝜆𝑥 𝑉̃𝑘−1 (𝑥) −
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)𝐷𝜏𝑥𝑉̃𝑘−1−𝑖 (𝑥)) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑉̃𝑘 (𝑥) ,

(74)

where

𝑈̃𝑘 (𝑥) = 𝑎𝐷3𝛽𝑥 𝑈̃𝑘−1 (𝑥)
+ 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)6𝑎𝑈̃𝑖 (𝑥)
⋅ 𝐷𝛾𝑥𝑈̃𝑘−1−𝑖 (𝑥) + 2𝑏𝑉̃𝑖 (𝑥)𝐷𝛿𝑥𝑉̃𝑘−1−𝑖 (𝑥) ,

𝑉̃𝑘 (𝑥) = −𝐷3𝜆𝑥 𝑉̃𝑘−1 (𝑥)
− 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)3𝑈̃𝑖 (𝑥)
⋅ 𝐷𝜏𝑥𝑉̃𝑘−1−𝑖 (𝑥) .

(75)

Thus, the series solution of (65) is

𝑈 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑉 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) .
(76)

4.5. The Time-Space Fractional Coupled Whitham-Broer-
Kaup (WBK) System. Under the Boussinesq approximation,
Whitham [41], Broer [42], and Kaup [43] obtained the
following nonlinear WBK system. In this subsection, we
construct the approximate solution by the HPST method to
the time-space fractional coupled WBK system.

Consider the time-space fractional coupled WBK system

𝐷𝛼𝑡 𝑈 + 𝑈𝐷𝛽𝑥𝑈 + 𝐷𝛾𝑥𝑉 + 𝑎𝐷2𝛿𝑥 𝑈 = 0,
𝐷𝛼𝑡 𝑉 + 𝐷𝜆𝑥 (𝑈𝑉) − 𝑎𝐷2𝜏𝑥 𝑉 + 𝑏𝐷3𝜃𝑥 𝑈 = 0 (77)

with respect to the initial conditions

𝑈 (𝑥, 0) = 𝑎0 (𝑥) ,
𝑉 (𝑥, 0) = 𝑏0 (𝑥) , (78)

where 0 < 𝛼, 𝛽, 𝛾, 𝜆 ≤ 1, 1/2 < 𝛿, 𝜏 ≤ 1, 2/3 < 𝜃 ≤ 1,(𝑥, 𝑡) ∈ R×[0,∞), 𝑎, 𝑏 ∈ R denote different dispersive power,𝑈 = 𝑈(𝑥, 𝑡) is the field of horizontal velocity, and𝑉 = 𝑉(𝑥, 𝑡)
is the height deviating equilibrium position of liquid.

Applying the Sumudu transform on both sides of (77)
with the initial conditions, we obtain

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑎0 (𝑥) + 𝑢𝛼 (𝑆 [−𝑈 (𝑥, 𝑡) 𝐷𝛽𝑥𝑈 (𝑥, 𝑡)
− 𝐷𝛾𝑥𝑉 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈 (𝑥, 𝑡)]) ,

𝑆 [𝑉 (𝑥, 𝑡)] = 𝑏0 (𝑥) + V𝛼 (𝑆 [−𝐷𝜆𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))
+ 𝑎𝐷2𝜏𝑥 𝑉 (𝑥, 𝑡) − 𝑏𝐷3𝜃𝑥 𝑈 (𝑥, 𝑡)]) .

(79)

The inverse Sumudu transform of (79) implies that

𝑈 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑆−1 [𝑢𝛼 (𝑆 [−𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡)
− 𝐷𝛾𝑥𝑉 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈 (𝑥, 𝑡)])] ,
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𝑉 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑆−1 [V𝛼 (𝑆 [−𝐷𝜆𝑥 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))
+ 𝑎𝐷2𝜏𝑥 𝑉 (𝑥, 𝑡) − 𝑏𝐷3𝜃𝑥 𝑈 (𝑥, 𝑡)])] .

(80)

Using homotopy perturbation method, it leads to

∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡) = 𝑎0 (𝑥) + 𝑝

× 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥 (
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

− 𝑎𝐷2𝛿𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡)) − ∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡)]] ,
∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡) = 𝑏0 (𝑥) + 𝑝

× 𝑆−1 [V𝛼𝑆 [𝑎𝐷2𝜏𝑥 (∞∑
𝑛=0

𝑝𝑛𝑉𝑛 (𝑥, 𝑡))

− 𝑏𝐷3𝜃𝑥 (∞∑
𝑛=0

𝑝𝑛𝑈𝑛 (𝑥, 𝑡)) − ∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡)]] ,

(81)

where𝐻𝑈𝑛 (𝑥, 𝑡) and𝐻𝑉𝑛 (𝑥, 𝑡) are polynomials of the nonlinear
term and are given by

∞∑
𝑛=0

𝑝𝑛𝐻𝑈𝑛 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡)𝐷𝛽𝑥𝑈 (𝑥, 𝑡) ,
∞∑
𝑛=0

𝑝𝑛𝐻𝑉𝑛 (𝑥, 𝑡) = 𝐷𝜆𝑥 (𝑉 (𝑥, 𝑡) 𝑈 (𝑥, 𝑡)) .
(82)

Setting

𝑈𝑛 (𝑥, 𝑡) fl 𝑈̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,
𝑉𝑛 (𝑥, 𝑡) fl 𝑉̃𝑛 (𝑥) 𝑡𝑛𝛼Γ (𝑛𝛼 + 1) ,

(83)

then

𝐻𝑈𝑛 (𝑥, 𝑡)
= 𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑛−𝑖 (𝑥) 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) ,
𝐻𝑉𝑛 (𝑥, 𝑡)

= 𝐷𝜆𝑥
𝑛∑
𝑖=0

𝑈̃𝑖 (𝑥) 𝑉̃𝑛−𝑖 (𝑥) 𝑡𝑛𝛼Γ (𝑖𝛼 + 1) Γ ((𝑛 − 𝑖) 𝛼 + 1) .

(84)

Comparing the coefficients of 𝑝, this gives
𝑝0: 𝑈0 (𝑥, 𝑡) = 𝑈̃0 (𝑥) = 𝑎0 (𝑥) ,

𝑉0 (𝑥, 𝑡) = 𝑉̃0 (𝑥) = 𝑏0 (𝑥) ,
𝑝1: 𝑈1 (𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥𝑉0 (𝑥, 𝑡) − 𝑎𝐷2𝛿𝑥 𝑈0 (𝑥, 𝑡) − 𝐻𝑈0 (𝑥, 𝑡)]]

= 𝑆−1 [𝑢𝛼𝑆 [−𝐷𝛾𝑥𝑉̃0 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥)]]
= 𝑡𝛼Γ (𝛼 + 1) (−𝐷𝛾𝑥𝑉̃0 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃0 (𝑥) − 𝑈̃0 (𝑥)𝐷𝛽𝑥𝑈̃0 (𝑥)) = 𝑡𝛼Γ (𝛼 + 1) 𝑈̃1 (𝑥) ,
𝑉1 (𝑥, 𝑡) = 𝑆−1 [V𝛼𝑆 [𝑎𝐷2𝜏𝑥 𝑉0 (𝑥, 𝑡) − 𝑏𝐷3𝜃𝑥 𝑈0 (𝑥, 𝑡) − 𝐻𝑉0 (𝑥, 𝑡)]]
= 𝑆−1 [V𝛼𝑆 [𝑎𝐷2𝜏𝑥 𝑉̃0 (𝑥) − 𝑏𝐷3𝜃𝑥 𝑈̃0 (𝑥) − 𝐷𝜆𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))]]
= 𝑡𝛼Γ (𝛼 + 1) (𝑎𝐷2𝜏𝑥 𝑉̃0 (𝑥) − 𝑏𝐷3𝜃𝑥 𝑈̃0 (𝑥) − 𝐷𝜆𝑥 (𝑈̃0 (𝑥) 𝑉̃0 (𝑥))) = 𝑡𝛼Γ (𝛼 + 1) 𝑉̃1 (𝑥) .

(85)

Generally, we have

𝑝𝑘: 𝑈𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {−𝐷𝛾𝑥𝑉̃𝑘−1 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃𝑘−1 (𝑥) −
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) 𝑈̃𝑖 (𝑥)𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥)}

= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑈̃𝑘 (𝑥) ,
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𝑉𝑘 (𝑥, 𝑡) = 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) {𝑎𝐷2𝜏𝑥 𝑉̃𝑘−1 (𝑥) − 𝑏𝐷3𝜃𝑥 𝑈̃𝑘−1 (𝑥) −
𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)𝐷𝜆𝑥 (𝑈̃𝑖 (𝑥) 𝑉̃𝑘−1−𝑖 (𝑥))}

= 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) 𝑉̃𝑘 (𝑥) ,
(86)

where

𝑈̃𝑘 (𝑥) = −𝐷𝛾𝑥𝑉𝑘−1 (𝑥) − 𝑎𝐷2𝛿𝑥 𝑈̃𝑘−1 (𝑥)
− 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1) 𝑈̃𝑖 (𝑥)
⋅ 𝐷𝛽𝑥𝑈̃𝑘−1−𝑖 (𝑥) ,

𝑉̃𝑘 (𝑥) = 𝑎𝐷2𝜏𝑥 𝑉̃𝑘−1 (𝑥) − 𝑏𝐷3𝜃𝑥 𝑈̃𝑘−1 (𝑥)
− 𝑘−1∑
𝑖=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑖𝛼 + 1) Γ ((𝑘 − 𝑖 − 1) 𝛼 + 1)𝐷𝜆𝑥 (𝑈̃𝑖 (𝑥)
⋅ 𝑉̃𝑘−1−𝑖 (𝑥)) .

(87)

Hence, the series solution of (77) is

𝑈 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) ,

𝑉 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉𝑘 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑉̃𝑘 (𝑥) 𝑡𝑘𝛼Γ (𝑘𝛼 + 1) .
(88)

Remark 10. When alpha = 𝜏 = 𝛿 = 𝜆 = 𝜃 = 1, 𝛽 ̸= 0,
and 𝛾 = 0, (77) reduces to the classical long-wave system that
describes the shallow water wave with diffusion.

Remark 11. When 𝛼 = 𝜏 = 𝛿 = 𝜆 = 𝜃 = 1, 𝛽 = 0, and 𝛾 = 1,
(77) reduces to the variant Boussinesq system.

5. Concluding Remarks

In this paper, we apply the HPSTM to the nonlinear time-
space fractional coupled equations. Applying theHPSTM, we
can obtain analytic and approximate solutions to different
coupled systems, for example, the coupled Burgers system,
the coupled KdV system, the generalized Hirota-Satsuma
coupled KdV system, the coupledWBK system, and the cou-
pled shallowwater system.The advantage of theHPSTM is its
capability of combining two powerful methods for obtaining
exact and approximate analytical solutions for nonlinear
system. It provides the solutions in terms of convergent series
with easily computable components in a direct way without
using linearization, perturbation, or restrictive assumptions.
The numerical results indicate that this method is effective
and simple in constructing analytic or approximate solutions
to fractional coupled systems.
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