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This paper formulates an “ad hoc” robust version under parametrical disturbances of the discrete version of the Kalman-
Yakubovich-Popov Lemma for a class of positive hybrid dynamic linear systems which consist of a continuous-time system coupled
with a discrete-time or a digital one. An extended discrete system, whose state vector contains both the digital one and the
discretization of the continuous-time one at sampling instants, is a key analysis element in the formulation. The hyperstability and
asymptotic hyperstability properties of the studied class of positive hybrid systems under feedback from anymember of a nonlinear
(and, eventually, time-varying) class of controllers, which satisfies a Popov’s-type inequality, are also investigated as linked to the
positive realness of the associated transfer matrices.

1. Introduction

Continuous-time and discrete-time positive systems have
been studied in detail in recent years [1–10]. In particular, if
both the state and output possess such a property, the posi-
tivity is said to be internal or, simply, the system is positive.
If the output possesses such a property, the system is said to
be externally positive. Therefore, positive systems are intrin-
sically interesting to describe some problems like Markov
chains, queuing problems, certain distillation columns, and
biological and other physical compartmental problemswhere
populations or concentrations cannot be negative [2, 3]. A
related property is that time-invariant dynamic linear systems
which are externally positive, while they have positive real or
strictly positive real transfer matrices, are, in addition, hyper-
stable or asymptotically hyperstable, that is, globally Lya-
punov stable for any nonlinear and/or time-varying feedback
device satisfying a Popov’s-type inequality for all time [11, 12].
Such a property of asymptotic hyperstability generalizes that
of absolute stability [13–15], which generalizes the most basic
concept of stability of dynamic systems. See, for instance, [13,
14, 16–29] and references therein.The hyperstability property,
which has a frequency-based physical interpretation in terms
of positive realness of the transfer function of a feed-forward

linear block, is also related to external positivity of the input-
output relation rather than to (internal) positivity of the
state-trajectory solution what is equivalent to positivity of
the instantaneous input-output power and the input-output
energy [2, 3, 13, 15, 30]. It is well known that closed-loop
hyperstability is, by nature, a powerful version of closed-
loop stability since it refers to the stability of an hyperstable
linear feed-forward plant (in the sense of positive realness of
the associate transfer matrix) under a wide class of feedback
controllers applied. The above important properties make
very attractive potential research issues for kind of more
complex dynamic systems with applied projection including
those lying in the class of continuous/digital hybrid systems.
On the other hand, the class of hybrid systems consisting
of continuous-time and discrete-time (or digital) systems
are of an increasing interest since many existing industrial
installations combine both kinds of systems. An elementary
well-known case is when a discrete-time controller is used
for a continuous-time plant. Another case is related to
teleoperation systems where certain variables evolve in a
discrete-time or digital fashion. A background literature and
related relevant results are given in [1, 7, 11, 16, 17, 26, 31, 32]
and some of the references therein.The objective of this paper
is to address appropriate versions of the Kalman-Yakubovich-
Popov Lemma (KYP-Lemma) for a class of hybrid systems
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consisting of coupled linear continuous-time and digital
dynamic subsystems, firstly proposed in [31], provided that
they are, furthermore, positive [7], in the sense that, for
any initial condition and any admissible controls both with
nonnegative components, all the components of the state and
output trajectory solutions are nonnegative for all time [33].
General related results on positivity of wide usefulness are
available in [34, 35].

The paper is organized as follows. Firstly, a notation
and terminology subsection is allocated below in this intro-
ductory section. Section 2 characterizes the class of hybrid
systems dealt with and formulates with explicit results its
positivity and some of its stability and asymptotic stability
properties. A relevant auxiliary system for those studies is
the so-called extended discrete hybrid system for which only
the signals at sampling points are relevant and whose state is
composed of both the digital substate and the discretized ver-
sion of the continuous-time subsystem at sampling instants.
Some of the obtained results display how the stability is kept
under small coupling between the continuous-time and the
discrete-time digital substates provided that the continuous-
time anddigital dynamics are stable.The section contains also
controllability results provided that a nominal system version
keeps that property. Section 3 is devoted to the continuous
and discrete versions of the KYP-Lemma for a simplified
version related to the relevant pairs of the system and control
matrices and for the general version related to the whole
state-space realization.The relationships between the positive
realness of the transfer matrix to the state-space realization
are characterized for both the positive extended discrete
hybrid system and the whole hybrid system through the
KYP-Lemma and Youla’s factorization lemma. The obtained
results are formulated in terms of robustness in the sense
that the positive realness and the system’s positivity of a
nominal version of the hybrid system are kept under certain
explicit conditions for the parametrical disturbances which
deviate the hybrid system from its nominal parameterization.
Section 4 relates the former results of positive realness and
the hyperstability and asymptotic hyperstability properties of
the auxiliary extended discrete hybrid system and to those
of the whole hybrid system for the case when the plant
input is got via feedback from a nonlinear and eventually
time-varying device which satisfies a Popov’s type inequality.
Some further study is also provided in Section 5 related
to the design of a stabilizing linear control scheme which
either simply stabilizes the dynamics or improves its relative
stability degree of the hybrid system in an internal control
loop prior to the operation via any member of the given class
of nonlinear and time-varying control controllers so as to
ensure the hyperstability of the whole closed-loop system.
Finally, conclusions end the paper.

1.1. Notation andTerminology. (a)R+ is the set of nonnegative
real numbers; R𝑝

+ (𝑝 being a positive integer) is the Cartesian
product 𝑝 times of R+. The vector function V(𝑡) ∈ R𝑝

+ for
some 𝑡 ≥ 0 if all its components are nonnegative at 𝑡. The
matrix 𝑄 ∈ R𝑚×𝑛

+ if it is of order 𝑚 × 𝑛, with all its entries
being nonnegative. R− = R/R+ is the set of nonpositive real
numbers. Note that R = R+ ∪ R− and 0 ∈ (R+ ∩ R−). Vectors

and matrices are nonpositive (being, respectively, in R𝑝
− and𝑄 ∈ R𝑚×𝑛

− ) if they have nonpositive entries. Z, Z+, and Z− are
the set of integer numbers and its subsets of nonnegative and
nonpositive real parts, respectively.

(b) A matrix 𝑄 ∈ R𝑚×𝑛
+ is said to be positive (denoted by𝑄 > 0) if it has at least a positive entry. A nonnegative matrix𝑄 ≥ 0 satisfies either 𝑄 > 0 or 𝑄 = 0. A matrix 𝑄 ∈ R𝑚×𝑛

− ,
which has at least a negative entry, is said to be negative and
denoted by 𝑄 < 0 and, if all its entries are negative, then it is
denoted by 𝑄 ≪ 0.

(c) A matrix 𝑄 ∈ R𝑚×𝑛
+ is said to be strictly positive

(denoted by 𝑄 ≫ 0) if all its entries are positive. Similarly,
a vector V ∈ R𝑝

+ is said to be positive (denoted by V > 0) if
it has at least a positive component. It is said to be strictly
positive (denoted by V ≫ 0) if all its components are positive.
Also, the notations 𝐴 ≫ 𝐵, V ≫ 𝑤 for matrices and vectors
mean, respectively, 𝐴 − 𝐵 ≫ 0 and V− 𝑤 ≫ 0. Interpretations
of expressions like 𝐴 > 𝐵, V > 𝑤, V ≥ 𝑤 follow directly from
the above ones.

(d) We denote 𝑄 ≻ 0 (𝑄 ⪰ 0) if 𝑄 ∈ R𝑛×𝑛 is positive
definite (positive semidefinite) and𝑄 ≺ 0 (𝑄 ⪯ 0) if𝑄 ∈ R𝑛×𝑛

is negative definite (negative semidefinite).
(e) 𝐼𝑛 is the 𝑛th identity matrix.
(f) A matrix 𝑄 ∈ R𝑛×𝑛

+ is said to be stable, or a
stability matrix, if its characteristic polynomial is Hurwitz
or, equivalently, if all its eigenvalues have negative real parts.
The matrix measure of the matrix 𝑄 (with respect to any
norm) is 𝜇(𝑄) = lim𝜀→0+((‖𝐼 + 𝜀𝑄‖ − ‖𝐼‖)/𝜀). The spectrum
of 𝑄 is the set of its eigenvalues (or spectrum) denoted by
Sp𝑄 and its characteristic polynomial denoted by 𝑝𝑄(𝑠) =
Det(𝑠𝐼 − 𝑄), where 𝑠 is a complex indeterminate and Det(⋅)
stands for the determinant of the matrix (⋅). A subscript in
the matrix measure 𝜇(⋅)(𝑄) denotes the measure with respect
to a particular (⋅)-norm. A matrix 𝑄 ∈ R𝑛×𝑛

+ is said to be
convergent (or Schur), if all its eigenvalues lie in the strict
unity circle. An 𝐻∞ complex function is Schur if its 𝐻∞-
norm is bounded by unity while it is said to be strictly
bounded real (SBR), if in addition its coefficients are real and
its 𝐻∞-norm is strictly bounded by unity.

(g) 𝐾𝑝(𝑄) = ‖𝑃𝑝‖‖𝑃−1
𝑝 ‖ ∈ [1, ∞] is the condition number

of the matrix 𝑄 ∈ R𝑛×𝑛 with respect to the 𝑝-norm. It is
infinity if and only if the matrix 𝑃𝑇𝑃 is singular. In particular,𝐾2(𝑄) = ‖𝑄2‖‖𝑄−1‖2 is the condition number of 𝑄 with
respect to its ℓ2 (or spectral) norm which is the quotient of
its maximum and minimum eigenvalues in the case when it
is square.

(h) A matrix 𝑄 = (𝑄𝑖𝑗) ∈ R𝑛×𝑛 is said to be a 𝑛-Metzler
matrix, denoted by𝑄 ∈ 𝑀𝑛×𝑛

𝐸 , if and only if all its off-diagonal
entries satisfy 𝑄𝑖𝑗 ≥ 0 for all 𝑖, 𝑗( ̸= 𝑖) ∈ 𝑛 fl {1, 2, . . . , 𝑛}. A
matrix 𝑄 = (𝑄𝑖𝑗) ∈ R𝑛×𝑛 is said to be a 𝑀-matrix of order 𝑛,
denoted by 𝑄 ∈ 𝑀𝑛×𝑛

𝑀 , if and only if it is a 𝑍-matrix; that is,
all its entries satisfy 𝑄𝑖𝑖 ≥ 0 and 𝑄𝑖𝑗 ≤ 0 for all 𝑖, 𝑗( ̸= 𝑖) ∈ 𝑛 ={1, 2, . . . , 𝑛} and, furthermore, all its eigenvalues are strictly
unstable.

(i) 𝑄𝑖 and 𝑄𝑇
𝑖 denote, respectively, the 𝑖th column or row

of the real 𝑄-matrix, the superscripts “𝑇” and “∗” denoting
transpose and conjugate transpose, respectively. 𝑄𝑖, 𝑖 being
an integer number, denotes the 𝑖th power of the𝑄-matrix and
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provided that 𝑄 = (𝑄𝑖𝑗), 𝑄(𝐺) = (𝑄(𝐺)
𝑖𝑗 ) is an associate matrix

to 𝑄 defined as 𝑄(𝐺)
𝑖𝑗 = 1 if 𝑄𝑖𝑗 ̸= 0 and 𝑄(𝐺)

𝑖𝑗 = 0, otherwise.
Note that 𝑄 ≥ 0 ⇔ 𝑄(𝐺) ≥ 0. V𝑖 denotes the 𝑖th component
of the real vector V and V ≥ 0 ⇔ V(𝐺) ≥ 0. Thus, any positive
system 𝑆 has always an associate positive system 𝑆(𝐺) which
defines the pairwise relations input components/state-output
components and state components/output components from
its associate influence graph 𝐺 [2, 3, 5], by defining all its
parameterizing matrices according to the above criterion.

(j) 𝑈(𝑡) = 1(𝑡) is the unity step (Heaviside) function.
(k) 𝑒(𝑛)𝑗 is the unity vector of R𝑛 whose unique nonzero

component is the 𝑗th one which is unity.
(l) The notation 𝑥[𝑘] stands for a discrete/digital variable

or vector 𝑥 which is only defined as sampling instants 𝑡𝑘 =𝑘𝑇, 𝑘 ∈ Z+, with 𝑇 being the sampling period. If 𝑥 is a digital
variable then it is only defined at sampling instants. If 𝑥 is a
discrete variable (i.e., that arising from the discretization of
a continuous variable), then 𝑥[𝑘] = 𝑥(𝑘𝑇) and any of both
equivalent notations are used indistinctly in such a case.

(m)The superscript 𝑇 stands for the transpose of a vector
or matrix while Ker(𝑂) stands for the null-space of the
operator 𝑂.

2. Hybrid System and Positivity and
Controllability Properties

Consider the subsequent hybrid linear system 𝐻:𝑥̇𝑐 (𝑡) = 𝐴𝑐𝑥𝑐 (𝑡) + 𝐴𝑐𝑠𝑥𝑐 [𝑘] + 𝐴𝑐𝑑𝑥𝑑 [𝑘]+ 𝐵𝑐𝑢 (𝑡) + 𝐵𝑐𝑠𝑢 [𝑘] , (1a)

𝑥𝑑 [𝑘 + 1] = 𝐴𝑑𝑥𝑑 [𝑘] + 𝐴𝑑𝑠𝑥𝑐 [𝑘] + 𝐵𝑑𝑢 [𝑘] , (1b)𝑦 (𝑡) = 𝐶𝑐𝑥𝑐 (𝑡) + 𝐶𝑐𝑠𝑥𝑐 [𝑘] + 𝐶𝑑𝑥𝑑 [𝑘] + 𝐷𝑐𝑢 (𝑡)+ 𝐷𝑑𝑢 [𝑘] (1c)

for all 𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇) for any integer 𝑘 ≥ 0 with𝑇 > 0 being the sampling period, where 𝑥𝑐 and 𝑥𝑑 are,
respectively, the continuous and digital substates of respective
dimensions 𝑛𝑐 and 𝑛𝑑, and 𝑢 ∈ R𝑚 and 𝑦 ∈ R𝑝 are the
input and output vectors. The continuous-time argument is
denoted by (𝑡) while the discrete-time argument is denoted
by [𝑘] and the associated continuous and digital variables
are denoted correspondingly. That is, a continuous variable
at sampling instants is denoted in the same way as a purely
digital variable such that continuous and discrete (or digital)
time arguments are, respectively, denoted with parenthesis(⋅), such as 𝑥𝑐(𝑡), 𝑦(𝑡), and 𝑢(𝑡), and brackets [⋅], such as𝑥𝑐[𝑘] = 𝑥𝑐(𝑘𝑇), 𝑥𝑑[𝑘], 𝑢[𝑘] = 𝑢(𝑘𝑇). On the other hand,
the parameterization of (1a), (1b), and (1c) is as follows:

(i) 𝐴𝑐 and 𝐴𝑑 are the matrix of continuous-time and
of digital dynamics, respectively, and 𝐴𝑐𝑑 and 𝐴𝑑𝑠 are,
respectively, the matrices of dynamics of couplings between
the digital and continuous-time substates and continuous-
time discretized and digital substates. The matrix 𝐴𝑐𝑠 is
the matrix of dynamics of coupling between the sampled
continuous-time substate to its time evolution over the next
sampling interval.

(ii) 𝐵𝑐 and 𝐵𝑑 are continuous-time and digital control
matrices and 𝐵𝑐𝑠 is a coupling control matrix from the
sampled continuous-time control to the next intersample
period continuous-time substate.

(iii) The matrices 𝐶𝑐, 𝐶𝑐𝑠, 𝐶𝑑 and 𝐷𝑐 and 𝐷𝑑 in (1c)
are the various output and input-output interconnection
matrices generating the output of the hybrid system from its
continuous-time substate, its discretized value at sampling
instants, the digital substate, and the continuous-time input
and its sampled value.

The orders of all the real constant system parameterizing
matrices displayed in (1a), (1b), and (1c) agree with the corre-
sponding dimensions of the continuous, discrete, and digital
substates 𝑥𝑐(𝑡), 𝑥𝑐[𝑘], and𝑥𝑑[𝑘] and inputs and outputs. Note
that the hybrid system is driven by the control 𝑢(𝑡) and by its
samples 𝑢(𝑘𝑇) of period 𝑇 acting as two independent control
actions. At sampling instants, it follows by direct calculus
from (1a), (1b), and (1c) that the hybrid system 𝐻 is described
by the following 𝑛 = 𝑛𝑐 + 𝑛𝑑th order extended discrete-time
system of sampling period 𝑇 driven by a fictitious extended
input sequence {V[𝑘]} ⊂ R𝑚+𝑛 whose element V[𝑘] depends
on 𝑢 : [𝑘𝑇, (𝑘 + 1)𝑇] → R𝑚 and since only finite input jumps
happen at sampling instants, since impulsive jumps are not
considered, V[𝑘] depends on 𝑢 : [𝑘𝑇, (𝑘 + 1)𝑇) → R𝑚 since
the updated value 𝑢[𝑘 + 1] at 𝑡 = (𝑘 + 1)𝑇 does not contribute
to V[𝑘] 𝐷𝐻:𝑥 [𝑘 + 1] = 𝐴𝑥 [𝑘] + 𝐵0𝑢 [𝑘] + 𝜉 [𝑘] , (2a)= 𝐴𝑥 [𝑘] + 𝐵VV [𝑘] , (2b)𝑦 [𝑘] = 𝐶𝑥 [𝑘] + 𝐷𝑢 [𝑘] (2c)

of state 𝑥[𝑘] = [𝑥𝑇𝑐 [𝑘], 𝑥𝑇𝑑 [𝑘]]𝑇 for any integer 𝑘 ≥ 0, where
𝐴 = [ 𝐴󸀠

𝑐 𝐴󸀠
𝑑𝐴𝑑𝑠 𝐴𝑑

] ;
𝐵0 = [[𝑒𝐴𝑐𝑇 (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐵𝑐𝑠𝐵𝑑

]] , (3)

𝐴󸀠
𝑐 = 𝑒𝐴𝑐𝑇 [𝐼𝑛𝑐 + (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐴𝑐𝑠] ;

𝐴󸀠
𝑑 = 𝑒𝐴𝑐𝑇 (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐴𝑐𝑑, (4)

𝐶 = [𝐶𝑐 + 𝐶𝑐𝑠

... 𝐶𝑑] ;
𝐷 = 𝐷𝑐 + 𝐷𝑑, (5)

𝐵V = [𝐵0

... 𝐼𝑛𝑐0𝑛𝑑×𝑛𝑑 ] (6)

𝜉 [𝑘] = [𝜉𝑇𝑐 [𝑘] , 0𝑇]𝑇 ;
𝜉𝑐 [𝑘] = 𝑒𝐴𝑐𝑇 (∫𝑇

0
𝑒−𝐴𝑐𝜏𝐵𝑐𝑢 (𝑘𝑇 + 𝜏) 𝑑𝜏) , (7)
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V [𝑘] = [𝑢𝑇 [𝑘] , 𝜉𝑇𝑐 [𝑘]]𝑇 , (8)

where V[𝑘] ∈ R𝑚+𝑛. The derivation of the extended discrete𝐷𝐻, (2a), (2b), and (2c), subject to (3)–(8), from the hybrid
system𝐻, (1a), (1b), and (1c), is direct from a time-integration
of (1a), (1b), and (1c) on a sampling time interval [𝑘𝑇, (𝑘 +1)𝑇)with initial conditions at 𝑡 = 𝑘𝑇.The following positivity
result holds as a direct extension from the SISO (single-input
single-output case) hybrid parameterization of [7, 11, 31].

Theorem1. Thesystem𝐻 is positive if and only if𝐴𝑐 ∈ 𝑀𝑛𝑐×𝑛𝑐
𝐸 ,𝐴𝑐𝑠 ∈ R𝑛𝑐×𝑛𝑐

+ , 𝐴𝑐𝑑 ∈ R𝑛𝑐×𝑛𝑑
+ , 𝐴𝑑 ∈ R𝑛𝑑×𝑛𝑑

+ , 𝐴𝑑𝑠 ∈ R𝑛𝑑×𝑛𝑐
+ , 𝐵𝑐 ∈

R𝑛𝑐×𝑚
+ , 𝐵𝑐𝑠 ∈ R𝑛𝑐×𝑚

+ , 𝐵𝑑 ∈ R𝑛𝑑×𝑚
+ , 𝐶𝑐 ∈ R𝑝×𝑛𝑐

+ , 𝐶𝑐𝑠 ∈ R𝑝×𝑛𝑐
+ ,𝐶𝑑 ∈ R𝑝×𝑛𝑑

+ , 𝐷𝑐 ∈ R𝑝×𝑚
+ , 𝐷𝑑 ∈ R𝑝×𝑚

+ .
Under the above given conditions, 𝑒𝐴𝑐𝑇 ∈ R𝑛𝑐×𝑛𝑐

+ , 𝐴󸀠
𝑐 ∈

R𝑛𝑐×𝑛𝑐
+ , 𝐴󸀠

𝑑 ∈ R𝑛𝑐×𝑛𝑑
+ , 𝐵0 ∈ R𝑛×2𝑚

+ , 𝐶 ∈ R𝑝×𝑛
+ , 𝐷 ∈ R𝑝×𝑚

+ ,𝜉[𝑘] ∈ R𝑛
+, and V[𝑘] ∈ R𝑚+𝑛

+ for 𝑘 ≥ 0, if 𝑢 : [0, ∞] → R𝑚,
and then the extended discrete system 𝐷𝐻 is also positive.

Theorem 2. The following properties hold:
(i) Assume that
(a) 𝐴𝑐 ∈ 𝑀𝑛𝑐×𝑛𝑐

𝐸 , 𝐴𝑐𝑠 ∈ R𝑛𝑐×𝑛𝑐
+ , 𝐴𝑐𝑑 ∈ R𝑛𝑐×𝑛𝑑

+ , 𝐴𝑑 ∈ R𝑛𝑑×𝑛𝑑
+ ,𝐴𝑑𝑠 ∈ R𝑛𝑑×𝑛𝑐

+ , 𝐵𝑐 ∈ R𝑛𝑐×𝑚
+ , 𝐵𝑐𝑠 ∈ R𝑛𝑐×𝑚

+ , 𝐵𝑑 ∈ R𝑛𝑑×𝑚
+ ,

(b) 𝐴󸀠
𝑐, 𝐴𝑑, 𝐴󸀠

𝑐 + 𝐴󸀠
𝑑(𝐼𝑛𝑑 − 𝐴𝑑)−1𝐴𝑑𝑠 and 𝐴𝑑 + 𝐴𝑑𝑠(𝐼𝑛𝑐 −𝐴󸀠

𝑐)−1𝐴󸀠
𝑑 are convergent.

Then, 𝐴 is convergent and the unforced 𝐷𝐻 is globally
asymptotically stable.

(ii) Under the hypotheses of Property (i), assume also that𝐴 is convergent, 𝐴 > 0, and that 1/‖(𝐼𝑛 − 𝐴)−1‖2 > ‖(𝐴 −𝐴𝑎𝑑)‖2, where 𝐴𝑎𝑑 = Block Diag(𝐴󸀠
𝑐, 𝐴𝑑). Then, 𝐴󸀠

𝑐 and 𝐴𝑑

are convergent.
(iii) 𝐴 is convergent, and then the unforced 𝐷𝐻 and

the unforced 𝐻 are both globally asymptotically stable, if the
following conditions hold:

(1) 𝐴𝑐 is Hurwitz and 𝐴𝑑 is convergent such that 𝜌−1𝑑 ≤‖𝐴𝑑‖2 ≤ 𝜌𝑑1 and 𝑒−𝜌𝑐𝑡 ≤ ‖𝑒𝐴𝑐𝑡‖2 ≤ 𝑒−𝜌𝑐1𝑡 for some real
constants 𝜌𝑐, 𝜌𝑐1, 𝜌𝑑1, and 𝜌𝑑, with 𝜌𝑐 ≥ 𝜌𝑐1 > 0 and 𝜌−1𝑑 ≤𝜌𝑑1 < 1.

(2) ‖𝐴𝑐𝑠‖2 ≤ 𝜀, ‖𝐴𝑑𝑠‖2 ≤ 𝜀, and ‖𝐴𝑐𝑑‖2 ≤ 𝜀 for some𝜀 ∈ [0, 𝜀∗), where 𝜀∗ = 𝜌𝑐/2√3[(1 − 𝑒𝜌𝑐𝑇)2 + 𝜌2𝑑𝜌2𝑐 ]1/2.
(iv) 𝐴 is convergent if 𝐴󸀠

𝑐 and 𝐴𝑑 are convergent and‖𝐴𝑐𝑑‖2 < 1/‖𝐴󸀠
𝑐

−1(∫𝑇
0

𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏)‖2(1 + ‖𝐴−1
𝑑 𝐴𝑑𝑠‖2).

Proof. First note that 𝐴 > 0 and is convergent if and only if(𝐼−𝐴) is nonsingular and (𝐼−𝐴)−1 > 0 [9]. Direct calculations
with (3) and the inverse of a 2 × 2 block partitioned matrix
[36] yield in this case

𝐼 − 𝐴 = [𝐼𝑛 − 𝐴󸀠
𝑐 −𝐴󸀠

𝑑−𝐴𝑑𝑠 𝐼𝑛 − 𝐴𝑑

] ,
(𝐼 − 𝐴)−1 = [Γ11 Γ12Γ21 Γ22] , (9)

where Γ11 = [𝐼𝑛𝑐 − 𝐴󸀠
𝑐 − 𝐴󸀠

𝑑 (𝐼𝑛𝑑 − 𝐴𝑑)−1 𝐴𝑑𝑠]−1 ,

Γ12 = (𝐼𝑛𝑐 − 𝐴󸀠
𝑐)−1

⋅ 𝐴󸀠
𝑑 [𝐼𝑛𝑑 − 𝐴𝑑 − 𝐴𝑑𝑠 (𝐼𝑛𝑐 − 𝐴󸀠

𝑐)−1 𝐴󸀠
𝑑]−1

= [𝐼𝑛𝑐 − 𝐴󸀠
𝑐 − 𝐴󸀠

𝑑 (𝐼𝑛𝑑 − 𝐴𝑑)−1 𝐴𝑑𝑠]−1
⋅ 𝐴󸀠

𝑑 (𝐼𝑛𝑑 − 𝐴𝑑)−1 ,
Γ21 = (𝐼𝑛𝑑 − 𝐴𝑑)−1

⋅ 𝐴𝑑𝑠 [𝐼𝑛𝑐 − 𝐴󸀠
𝑐 − 𝐴󸀠

𝑑 (𝐼𝑛𝑑 − 𝐴𝑑)−1 𝐴𝑑𝑠]−1
= [𝐼𝑛𝑑 − 𝐴𝑑 − 𝐴𝑑𝑠 (𝐼𝑛𝑐 − 𝐴󸀠

𝑐)−1 𝐴󸀠
𝑑]−1

⋅ 𝐴𝑑𝑠 (𝐼𝑛𝑐 − 𝐴󸀠
𝑐)−1 ,

Γ22 = [𝐼𝑛𝑑 − 𝐴𝑑 − 𝐴𝑑𝑠 (𝐼𝑛𝑑 − 𝐴󸀠
𝑐)−1 𝐴󸀠

𝑑]−1 .
(10)

Note that the above matrices exist with Γ𝑖𝑗 > 0, 𝑖, 𝑗 = 1, 2,
since all the needed intermediate matrix inverses exist since

(a) 𝐴𝑑 and 𝐴󸀠
𝑐 are convergent, 𝐴𝑑 > 0, and 𝐴󸀠

𝑐 > 0 (since𝐴𝑐 ∈ 𝑀𝑛𝑐×𝑛𝑐
𝐸 , and then 𝑒𝐴𝑐𝑡 > 0 for any real 𝑡 ≥ 0) and 𝐴𝑐𝑠 ∈

R𝑛𝑐×𝑛𝑐
+ , so that (𝐼𝑛𝑑 − 𝐴𝑑) and (𝐼𝑛𝑐 − 𝐴󸀠

𝑐) are nonsingular with(𝐼𝑛𝑑 − 𝐴𝑑)−1 > 0 and (𝐼𝑛𝑐 − 𝐴󸀠
𝑐) > 0,

(b)𝐴󸀠
𝑐+𝐴󸀠

𝑑(𝐼𝑛𝑑−𝐴𝑑)−1𝐴𝑑𝑠 and𝐴𝑑+𝐴𝑑𝑠(𝐼𝑛𝑐−𝐴󸀠
𝑐)−1𝐴󸀠

𝑑 are
convergentwith nonnegative entries so that Γ11 exists, Γ11 > 0,
and [𝐼𝑛𝑑 −𝐴𝑑−𝐴𝑑𝑠(𝐼𝑛𝑐 −𝐴󸀠

𝑐)−1𝐴󸀠
𝑑]−1 with [𝐼𝑛𝑑 −𝐴𝑑−𝐴𝑑𝑠(𝐼𝑛𝑐 −𝐴󸀠

𝑐)−1𝐴󸀠
𝑑]−1 > 0.

As a result, there exists (𝐼 − 𝐴)−1 with 𝐴 > 0 and (𝐼 −𝐴)−1 ≥ 0 which holds if and only if 𝐴 is convergent so that
the unforced 𝐷𝐻 is globally asymptotically stable. Property
(i) has been proved. To prove Property (ii), note that 𝐴 > 0
and is convergent, so that (𝐼𝑛 − 𝐴) is a nonsingular 𝑀-matrix
and (𝐼𝑛 − 𝐴)−1 > 0 exists. Since (𝐼𝑛 − 𝐴) is a nonsingular 𝑀-
matrix, all its leadingminors are positive.Thus, (𝐼𝑛−𝐴𝑎𝑑) ≻ 0,
then (𝐼𝑛𝑐 − 𝐴󸀠

𝑐) ≻ 0 and (𝐼𝑛𝑑 − 𝐴𝑑) ≻ 0 and, equivalently,(𝐼𝑛𝑐 − 𝐴󸀠
𝑐)−1 ≻ 0 and (𝐼𝑛𝑑 − 𝐴𝑑)−1 ≻ 0. On the other hand, one

has (𝐼𝑛 − 𝐴𝑎𝑑)−1
= [𝐼𝑛 − (𝐼𝑛 − 𝐴)−1 (𝐴 − 𝐴𝑎𝑑)]−1 (𝐼𝑛 − 𝐴)−1 . (11)

Since 𝐴 ≥ 𝐴𝑎𝑑 from the hypotheses, (𝐼𝑛 − 𝐴)−1(𝐴 − 𝐴𝑎𝑑) ≥ 0
and if (𝐼𝑛 − 𝐴)−1(𝐴 − 𝐴𝑎𝑑) is convergent, that is, if 1 > ‖(𝐼𝑛 −𝐴)−1(𝐴−𝐴𝑎𝑑)‖2 guaranteed if 1/‖(𝐼𝑛−𝐴)−1‖2 > ‖(𝐴−𝐴𝑎𝑑)‖2,
then [𝐼𝑛−(𝐼𝑛−𝐴)−1(𝐴−𝐴𝑎𝑑)]−1 > 0. As a result, (𝐼𝑛−𝐴𝑎𝑑)−1 >0, (𝐼𝑛𝑐−𝐴󸀠

𝑐) > 0, and (𝐼𝑛𝑑−𝐴𝑑) > 0 and they have real positive
eigenvalues since (𝐼𝑛𝑐 − 𝐴󸀠

𝑐) ≻ 0 and (𝐼𝑛𝑑 − 𝐴𝑑) ≻ 0. Thus, for
any given nonzero vectors 𝑧𝑐 and 𝑧𝑑 of respective dimensions𝑛𝑐 and 𝑛𝑑, one concludes that 𝑧𝑇𝑐 𝑧𝑐 > 𝑧𝑇𝑐 𝐴󸀠

𝑐𝑧𝑐 and 𝑧𝑇𝑑𝑧𝑑 >𝑧𝑇𝑐 𝐴𝑑𝑧𝑑. This implies that the spectral radii of 𝐴󸀠
𝑐 and 𝐴𝑑 are

less than unity so that𝐴󸀠
𝑐 and𝐴𝑑 are positive and convergent.
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To prove Property (iii), note that since 𝐴𝑐 is Hurwitz and𝐴𝑑 is convergent, 𝐴 = 𝐴0 + 𝐴 = 𝐴0(𝐼2𝑛 + 𝐴−1
0 𝐴), where

𝐴0 = Block Diag(𝑒𝐴𝑐𝑇 ... 𝐴𝑑) (12)

𝐴 = [[(∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑠 (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑑𝐴𝑑𝑠 0𝑛𝑑×𝑛𝑑 ]]

= [[(∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 0𝑛𝑐×(𝑛𝑑−𝑛𝑐) (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 0𝑛𝑐×(𝑛𝑑−𝑛𝑐) 0𝑛𝑐×𝑛𝑑 0𝑛𝑐×𝑛𝑑𝐼𝑛𝑑 0𝑛𝑑×𝑛𝑑 𝐼𝑛𝑑 0𝑛𝑑×𝑛𝑑 ]]

[[[[[[[
𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 𝐴𝑐𝑑𝐴𝑑𝑠 − 𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 0𝑛𝑑×𝑛𝑐

]]]]]]]
(13)

with

𝐴𝑐𝑠 = [ 𝐴𝑐𝑠0|𝑛𝑑−𝑛𝑐|×𝑛𝑐] ∈ R𝑛𝑑×𝑛𝑐 ;
𝐴𝑐𝑑 = [ 𝐴𝑐𝑑0|𝑛𝑑−𝑛𝑐|×𝑛𝑐] ∈ R𝑛𝑑×𝑛𝑐 , (14)

𝐴−1
0 𝐴 = (𝑒−𝐴𝑐𝑇 0𝑛𝑐×𝑛𝑑0𝑛𝑑×𝑛𝑐 𝐴−1

𝑑

) [𝐿, 𝐿, 0] [[[[[[[
𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 𝐴𝑐𝑑𝐴𝑑𝑠 − 𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 0𝑛𝑑×𝑛𝑐

]]]]]]]
= (𝑒−𝐴𝑐𝑇 0𝑛𝑐×𝑛𝑑0𝑛𝑑×𝑛𝑐 𝐴−1

𝑑

) [[(∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 0𝑛𝑐×(𝑛𝑑−𝑛𝑐) (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 0𝑛𝑐×(𝑛𝑑−𝑛𝑐) 0𝑛𝑐×𝑛𝑑 0𝑛𝑐×𝑛𝑑𝐼𝑛𝑑 0𝑛𝑑×𝑛𝑑 𝐼𝑛𝑑 0𝑛𝑑×𝑛𝑑 ]]

[[[[[[[
𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 𝐴𝑐𝑑𝐴𝑑𝑠 − 𝐴𝑐𝑠 0𝑛𝑑×𝑛𝑐0𝑛𝑑×𝑛𝑑 0𝑛𝑑×𝑛𝑐

]]]]]]]
.

(15)

Since 𝐴𝑐 is Hurwitz and 𝐴𝑑 and 𝐴0 are convergent, there
exists a real constant 𝐾 ≥ 1, which is norm-dependent such
that 𝐾𝑒−𝜌𝑐𝑡𝐼𝑛 ≤ 𝑒𝐴𝑐𝑡 ≤ 𝐾𝑒−𝜌𝑐1𝑡𝐼𝑛 for all 𝑡 ≥ 0. Note that1 ≤ ‖𝐴−1

𝑑 ‖2 ≤ 𝜌𝑑 and 𝑒𝜌𝑐1𝑡 ≤ ‖𝑒−𝐴𝑐𝑡‖2 ≤ 𝑒𝜌𝑐𝑡 for all 𝑡 ≥ 0 with−𝜌𝑐1 < 0 being not less than the stability abscissa of 𝐴𝑐 and𝜌𝑑1 being not less than the convergence abscissa of 𝐴𝑑. Since
max(‖𝐴𝑐𝑠‖2, ‖𝐴𝑑𝑠‖2, ‖𝐴𝑐𝑑‖2) ≤ 𝜀, one gets from (15) that󵄩󵄩󵄩󵄩󵄩𝐴−1

0 𝐴󵄩󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩󵄩(𝐴−1
0 𝐴)𝑇 (𝐴−1

0 𝐴)󵄩󵄩󵄩󵄩󵄩󵄩1/22≤ (2 󵄩󵄩󵄩󵄩󵄩𝐿𝑇𝐿󵄩󵄩󵄩󵄩󵄩1/22
) (√3𝜀2)

≤ 2√3 ((1 − 𝑒𝜌𝑐𝑇)2𝜌2𝑐 + 𝜌2𝑑)1/2 𝜀.
(16)

If 𝜀 ∈ [0, 𝜀∗), then 𝐴 = 𝐴0(𝐼2𝑛 + 𝐴−1
0 𝐴) is nonsingular

from Banach Perturbation Lemma [37] and then convergent
since 𝐴0 is convergent from the continuity of the eigenvalues
of matrix with respect to its entries. Then the unforced 𝐷𝐻
is globally asymptotically stable and the unforced 𝐻 is also
globally asymptotically stable since𝐴𝑐 isHurwitz and𝑥[𝑘] →0 as 𝑘 → ∞ for any given initial condition. Property (iii)
has been proved. Property (iv) follows by redefining 𝐴 =𝐴01 + 𝐴1 = 𝐴01(𝐼2𝑛 + 𝐴−1

01𝐴1)
𝐴01 = [ 𝐴󸀠

𝑐 0𝑛𝑐×𝑛𝑑𝐴𝑑𝑠 𝐴𝑑

] ;
𝐴−1
01 = [ 𝐴󸀠

𝑐

−1 0𝑛𝑐×𝑛𝑑−𝐴−1
𝑑 𝐴𝑑𝑠𝐴󸀠−1

𝑐 𝐴−1
𝑑

] ;
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𝐴1 = [[0𝑛𝑑×𝑛𝑐 (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑑0𝑛𝑑×𝑛𝑐 0𝑛𝑑×𝑛𝑑 ]]

(17)

and then𝐴−1
01𝐴1

= [ 𝐴󸀠
𝑐

−1 0𝑛𝑐×𝑛𝑑−𝐴−1
𝑑 𝐴𝑑𝑠𝐴󸀠−1

𝑐 𝐴−1
𝑑

] [[0𝑛𝑑×𝑛𝑐 (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑑0𝑛𝑑×𝑛𝑐 0𝑛𝑑×𝑛𝑑 ]]

= [[[[
0𝑛𝑐×𝑛𝑐 𝐴󸀠

𝑐

−1 (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑑0𝑛𝑑×𝑛𝑐 −𝐴−1

𝑑 𝐴𝑑𝑠𝐴󸀠−1
𝑐 (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐴𝑐𝑑

]]]]
(18)

so that 𝐴 is nonsingular if ‖𝐴𝑐𝑑‖2 < 1/‖𝐴󸀠
𝑐

−1(∫𝑇
0 𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏)‖2(1 +‖𝐴−1

𝑑 𝐴𝑑𝑠‖2).
Related toTheorem 2, note that𝐴󸀠

𝑐 is convergent by construc-
tion if 𝐴𝑐 is Hurwitz and a guaranteed upper-bound of ‖𝐴𝑐𝑠‖
is sufficiently small which increases as the sampling period𝑇 and the stability abscissa of 𝐴𝑐 increase. The next result
generalizesTheorem 1 if𝐴𝑑 is not necessarily convergent and𝐴𝑐 is not necessarily Hurwitz.

Example 3. Consider a positive hybrid system with scalar
continuous-time and digital subsystems and 𝐴𝑐 = −𝑎𝑐 such
that 𝐴󸀠

𝑐 = 𝑎󸀠𝑐 = 𝑒−𝑎𝑐𝑇 + (1 − 𝑒−𝑎𝑐𝑇)𝑎𝑐𝑠/𝑎𝑐 and 𝐴󸀠
𝑑 = 𝑎󸀠𝑑 =𝑒−𝑎𝑐𝑇 + (1 − 𝑒−𝑎𝑐𝑇)𝑎𝑐𝑠/𝑎𝑐, 𝐴𝑑𝑠 = 𝑎𝑑𝑠 ≥ 0, 𝐴𝑐𝑠 = 𝑎𝑐𝑠 ≥ 0,

and 𝐴𝑑 = 𝑎𝑑 ∈ [0, 1), that is, nonnegative and convergent.
FromTheorem 2(i) if 𝐴󸀠

𝑐 is convergent then 𝐴𝑐 is convergent
implying that 𝑎𝑐 > 0. Furthermore, for some 𝜀 ∈ (0, 1), 𝐴󸀠

𝑐 is
nonnegative and convergent if 0 ≤ 𝑒−𝑎𝑐𝑇 + (1 − 𝑒−𝑎𝑐𝑇)𝑎𝑐𝑠/𝑎𝑐 ≤1 − 𝜀 which implies that 𝑎𝑐𝑠 ≤ (1 − 𝜀 − 𝑒−𝑎𝑐𝑇)𝑎𝑐/(1 − 𝑒−𝑎𝑐𝑇).
Note that 𝑎𝑐𝑠 < 𝑎𝑐.

On the other hand, hypothesis 𝑎󸀠𝑐 +𝑎󸀠𝑑(𝐼𝑛𝑑 −𝑎𝑑)−1𝑎𝑑𝑠 being
nonnegative and convergent holds if

0 ≤ 𝑎󸀠𝑐 + 𝑎󸀠𝑑 (𝐼𝑛𝑑 − 𝑎𝑑)−1 𝑎𝑑𝑠 ≤ 1 − 𝜀1≤ 1 − 𝜀 + 𝑎󸀠𝑑 (𝐼𝑛𝑑 − 𝑎𝑑)−1 𝑎𝑑𝑠 (19)

for some 𝜀1 ∈ (max(𝜀 − 𝑎󸀠𝑑(𝐼𝑛𝑑 − 𝑎𝑑)−1𝑎𝑑𝑠, 0), 1 − 𝑎󸀠𝑐); that is,
the left-hand side is nonnegative convergent, since

0 ≤ 𝑎𝑑𝑠 ≤ 𝑎𝑐 (1 − 𝑎𝑑) (1 − 𝑎󸀠𝑐 − 𝜀1)𝑎𝑐𝑑 (1 − 𝑒−𝑎𝑐𝑇) (20)

while 𝑎𝑑 + 𝑎𝑑𝑠(𝐼𝑛𝑐 − 𝑎󸀠𝑐)−1𝑎󸀠𝑑 being convergent holds if
0 ≤ 𝑎𝑑 ≤ 1 − 𝜀2 − 𝑎𝑐𝑎𝑑𝑠𝑎𝑐𝑑(1 − 𝑎󸀠𝑐) 𝑎𝑐= 1 − 𝜀2 − 𝑎𝑑𝑠𝑎𝑐𝑑(1 − 𝑒−𝑎𝑐𝑇) (1 − 𝑎𝑐𝑠/𝑎𝑐) − 𝜀2

(21)

for some 𝜀2 ∈ (0, (1 − 𝑒−𝑎𝑐𝑇)(1 − 𝑎𝑐𝑠/𝑎𝑐)). Particular numerical
values which satisfy all the given joint constraints are, for
instance, 𝑎𝑐 = 0.1, so that the stable continuous dynamics has
a small relative stability, 𝑇 = 0.1, 𝑎𝑑 = 0, so that the digital
dynamics has a maximum stability degree, and the forced
system behavior is independent of the digital self-dynamics,𝑎󸀠𝑑 = 0.995, 𝑎𝑑𝑠 = 0.009.

It can be verified that 𝐴 is convergent with eigenvalues0.9919 and −0.0089. The unforced 𝐷𝐻 is globally asymptoti-
cally stable [Theorem 2(i)]. Since, in this case with 𝑛𝑐 = 1 and𝑎𝑐𝑠 ≥ 0, 𝑎󸀠𝑐 being convergent implies that 𝑎𝑐 > 0 (i.e.,𝐴𝑐 = −𝑎𝑐
is Hurwitz), the unforced 𝐻 is also globally asymptotically
stable [Theorem 2(iii)].

Corollary 4. The following properties hold:
(i) 𝐴 is convergent, and then the unforced 𝐷𝐻 is globally

asymptotically stable, if
(1) 𝐴0, (12), is nonsingular and there exists 𝜆(∈ R) ∈(−1, −1/2) ∪ [0, ∞) such that (1 + 𝜆)𝐴0 is convergent,
(2) there exists R ∋ 𝜆1 ∈ (|𝜆|, (1 + 𝜆)/𝐾2(𝐴0)) such that𝐾2(𝐴0) < (1 + 𝜆)/𝜆1 and ‖𝐴‖2 < (𝜆1 − |𝜆|)‖𝐴0‖2.
If, in addition, 𝐴𝑐 is Hurwitz, then the unforced 𝐷𝐻 is

globally asymptotically stable.
(ii) A sufficient condition for Property (i) to hold is󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝐴𝑐𝑠 𝐴𝑐𝑑𝐴𝑑𝑠 0𝑛𝑑×𝑛𝑑]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2< (1 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜌𝑐1 − 𝑒𝜌𝑐𝑇 󵄨󵄨󵄨󵄨󵄨󵄨󵄨) (𝜆1 − |𝜆|) 󵄩󵄩󵄩󵄩𝐴0
󵄩󵄩󵄩󵄩2 , (22)

where 𝜌𝑐 ∈ R is the stability abscissa of 𝐴𝑐.

Proof. Note that, since 𝐴0 is nonsingular,𝐴 = (1 + 𝜆) 𝐴0 + (𝐴 − 𝜆𝐴0)
= (1 + 𝜆) 𝐴0 (𝐼2𝑛 + 11 + 𝜆𝐴−1

0 (𝐴 − 𝜆𝐴0)) (23)

and 𝐴 is nonsingular from Banach’s Perturbation Lemma,
under the condition ‖𝐴‖2 < (𝜆1 − |𝜆|)‖𝐴0‖2, if |𝜆| < 𝜆1 and

1 > 𝜆11 + 𝜆𝐾2 (𝐴0) = 𝜆11 + 𝜆 󵄩󵄩󵄩󵄩𝐴0
󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝐴−1

0

󵄩󵄩󵄩󵄩󵄩2
> 11 + 𝜆 󵄩󵄩󵄩󵄩󵄩𝐴−1

0

󵄩󵄩󵄩󵄩󵄩2 (󵄩󵄩󵄩󵄩󵄩𝐴󵄩󵄩󵄩󵄩󵄩2 + |𝜆| 󵄩󵄩󵄩󵄩𝐴0
󵄩󵄩󵄩󵄩2)

> 11 + 𝜆 󵄩󵄩󵄩󵄩󵄩𝐴−1
0

󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝜆𝐴0

󵄩󵄩󵄩󵄩󵄩2 .
(24)

Since |𝜆| < 𝜆1 and 1 ≤ 𝐾2(𝐴0) < (1 + 𝜆)/𝜆1, then |𝜆| < 𝜆1 <1 + 𝜆 and, if 𝜆 < 0, then |𝜆| < 1/2 and |𝜆| < 𝜆1 < 1 − |𝜆|.
Property (i) follows directly from (24). Property (ii) follows
from the fact that (22) is a sufficient condition for ‖𝐴‖2 <(𝜆1 − |𝜆|)‖𝐴0‖2 in view of the first identity of (13).

The following theorem refers to “controllability” as the
property of controllability to the origin and to “reachability”
as that of controllability from the origin. Note from (2a), (3),
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and (6)–(8) the structure of matrix 𝐵 that 𝐵0𝑢[𝑘] + 𝜉[𝑘] =𝐵VV[𝑘] = 𝐵𝑔[𝑘] leading to the state system 𝐷𝐻 description
driven by a real vector sequence:

𝑥 [𝑘 + 1] = 𝐴𝑥 [𝑘] + 𝐵VV [𝑘]= 𝐴𝑔𝑥 [𝑘] + 𝐵𝑔V [𝑘] + 𝛿V [𝑘]
= 𝐴𝑔𝑥 [𝑘] + 𝐵𝑔𝑔 [𝑘] + 𝛿 [𝑘]

𝑦 [𝑘] = 𝐶𝑥 [𝑘] + 𝐷𝑔 [𝑘]= 𝐶𝑔𝑥 [𝑘] + 𝐷𝑔𝑔 [𝑘] + 𝛿𝑦 [𝑘]
(25a)

for any integer 𝑘 ≥ 0, where 𝐵V is reparameterized to some
appropriate matrix 𝐵 so as to drive the auxiliary control{𝑔[𝑘]}𝑘∈Z0+ ⊂ R𝑚+𝑛 of the form 𝑔[𝑘] = (𝑢𝑇[𝑘], 𝑔𝑇𝑐 [𝑘])𝑇, where{𝑔𝑐[𝑘]}𝑘∈Z0+ ⊂ R𝑛, as follows:

𝑢 (𝑘𝑇 + 𝜏) = 𝑉𝐵𝑇
𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑔𝑐 [𝑘] ,∀𝜏 ∈ (0, 𝑇) ; 𝑢 (𝑘𝑇) = 𝑢 [𝑘] (25b)

for some given prefixed 𝑚 × 𝑚-matrix 𝑉 = 𝑉𝑇 ≥ 0, and
𝛿V [𝑘] = (𝐴 − 𝐴𝑔) 𝑥 [𝑘] + (𝐵 − 𝐵𝑔) V [𝑘] ;
𝛿 [𝑘] = (𝐴 − 𝐴𝑔) 𝑥 [𝑘] + (𝐵 − 𝐵𝑔) 𝑔 [𝑘] ,
𝛿𝑦 [𝑘] = (𝐶 − 𝐶𝑔) 𝑥 [𝑘] + (𝐷 − 𝐷𝑔) 𝑔 [𝑘] ,

(25c)

𝐵𝑔

= [[[
(∫𝑇

0
𝑒𝐴𝑔𝑐(𝑇−𝜏)𝑑𝜏) 𝐵𝑔𝑐𝑠 ∫𝑇

0
𝑒𝐴𝑔𝑐(𝑇−𝜏)𝐵𝑔𝑐𝑉𝐵𝑇

𝑔𝑐𝑒𝐴𝑇𝑔𝑐(𝑇−𝜏)𝑑𝜏𝐵𝑔𝑑 0 ]]] ,
𝐵 = [[(∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) 𝐵𝑐𝑠 ∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝑉𝐵𝑇

𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑑𝜏𝐵𝑑 0 ]] ,
𝐷𝑔 = 𝐷𝑔𝑐 + 𝐷𝑔𝑑;
𝐷 = 𝐷𝑐 + 𝐷𝑑.

(25d)

Theorem 5. Define 𝐴𝑔 = 𝐴 − 𝐴𝑔 and 𝐵𝑔 = 𝐵 − 𝐵𝑔 such
that (𝐴𝑔, 𝐵𝑔) is a nominal controllable pair and 𝐵𝑔 = {𝑋 ∈
R𝑛×(𝑛𝑐+𝑚)
+ : ‖𝐵𝑔‖2 ≤ 𝑌, ∀𝑌 ∈ R𝑛×(𝑛𝑐+𝑚)}, where the control

matrices of the nominal 𝐷𝐻𝑔, parameterized by 𝐴𝑔 and 𝐵𝑔,
and the current 𝐷𝐻 systems are those of the parameterization
(25c) of (25a). Then, the following properties hold:

(i) The system 𝐷𝐻 is controllable if and only if 𝐶(𝐴, 𝐵) is
full rank. If 𝐶(𝐴, 𝐵) is not full rank then there exists a control
sequence such that the system 𝐻 is approximately controllable
with state targeting error 0[max(‖𝐴 − 𝐴𝑔‖2, ‖𝐵 − 𝐵𝑔‖2)].

(ii) The system 𝐻 is controllable if and only if
rank𝐶(𝐴, 𝐵) = 2𝑛 and rank𝐶(𝐴𝑐, 𝐵𝑐) = 𝑛.

(iii) The system 𝐷𝐻 is controllable if rank𝐶(𝐴𝑔, 𝐵𝑔) = 2𝑛
and󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴𝑔

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝐵 − 𝐴𝑔

󵄩󵄩󵄩󵄩󵄩2
< √ sup

𝑧∈Sp𝐴𝑔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑧𝐼2𝑛 − 𝐴𝑔

... 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩22 + 1
sup𝑧∈Sp𝐴𝑔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑧𝐼2𝑛 − 𝐴𝑔

... 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
− sup

𝑧∈Sp𝐴𝑔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑧𝐼2𝑛 − 𝐴𝑔

... 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 .
(26)

The system 𝐻 is controllable if, furthermore, rank𝐶(𝐴𝑐, 𝐵𝑐) =𝑛.
(iv) The system 𝐷𝐻 is reachable if it is controllable and,

furthermore, 𝐴 is nonsingular (in particular, if Property (iii)
holds and, furthermore, 𝐴𝑔 is nonsingular and ‖𝐴 − 𝐴𝑔‖2 <1/‖𝐴−1

𝑔 ‖2 = 𝜆1/2min(𝐴𝑔𝐴𝑇
𝑔)). The system 𝐻 is reachable if 𝐷𝐻 is

reachable and 𝐴𝑐 is nonsingular.

Proof. One gets by direct recursive calculation from (25a)𝑥 [𝑘 + 𝑖]
= 𝐴𝑖

𝑔𝑥 [𝑘] + 𝑖−1∑
𝑗=0

𝐴𝑖−𝑗−1
𝑔 (𝐵𝑔𝑔 [𝑘 + 𝑗] + 𝛿 [𝑘 + 𝑗]) , (27)

𝑥 [𝑘 + 2𝑛]
= 𝑥 [𝑘 + 2𝑛] − 𝐴2𝑛

𝑔 𝑥 [𝑘]
− 2𝑛−1∑

𝑗=0

𝐴2𝑛−𝑗−1
𝑔 (𝐴 − 𝐴𝑔) 𝑥 [𝑘 + 𝑗]

− 2𝑛−1∑
𝑗=0

𝐴2𝑛−𝑗−1
𝑔 (𝐵 − 𝐵𝑔) 𝑔 [𝑘 + 𝑗]

= [𝐵𝑔

... 𝐴𝑔𝐵𝑔

... ⋅ ⋅ ⋅ ... 𝐴2𝑛−1
𝑔 𝐵𝑔] [[[[[[[

𝑔 [𝑘 + 2𝑛 − 1]𝑔 [𝑘 + 2𝑛 − 2]...𝑔 [𝑘]
]]]]]]]= 𝐶 (𝐴𝑔, 𝐵𝑔) 𝐶𝑇 (𝐴𝑔, 𝐵𝑔) 𝑔0 [𝑘]

(28)

provided that the input is generated from(𝑔𝑇 [𝑘 + 2𝑛 − 1] , 𝑔𝑇 [𝑘 + 2𝑛 − 2] , . . . , 𝑔𝑇 [𝑘])𝑇
= ([𝑔𝑇𝑐 [𝑘 + 2𝑛 − 1] , 𝑢𝑇 [𝑘 + 2𝑛 − 1]] , . . . ,
[𝑔𝑇𝑐 [𝑘] , 𝑢𝑇 [𝑘]])𝑇 = 𝐶𝑇 (𝐴𝑔, 𝐵𝑔) 𝑔0 [𝑘] = 𝐶𝑇 (𝐴𝑔,
𝐵𝑔) [𝐶 (𝐴𝑔, 𝐵𝑔) 𝐶𝑇 (𝐴𝑔, 𝐵𝑔)]−1 𝑥 [𝑘 + 2𝑛] ,

(29a)

𝑢 ((𝑘 + 𝑖) 𝑇 + 𝜏) = 𝑈𝐵𝑇
𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑔𝑐 [𝑘 + 𝑖]

for 𝜏 ∈ (0, 𝑇) ; 𝑖 = 0, 1, . . . , 2𝑛 − 1 (29b)
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for 𝑔0[𝑘] ∈ R, where 𝐶(𝐴, 𝐵) = [𝐵 ... 𝐴𝐵 ... ⋅ ⋅ ⋅ ... 𝐴2𝑛−1𝐵]
is the controllability matrix of the pair (𝐴, 𝐵). Note that
since (𝐴𝑔, 𝐵𝑔) is controllable, then 𝐶(𝐴𝑔, 𝐵𝑔)𝐶𝑇(𝐴𝑔, 𝐵𝑔) is
nonsingular. If (𝐴, 𝐵) is controllable, then 𝐶(𝐴, 𝐵) is full rank
and fix𝐵𝑔 = 𝐵 so that𝐶(𝐴𝑔, 𝐵−𝐵𝑔) = 𝐶(𝐴𝑔, 𝐴−𝐴𝑔) = 0 and
the sufficiency part of the result follows by choosing a control
law (29a) and (29b) subject to

𝑔0 [𝑘] = [𝐶 (𝐴𝑔, 𝐵𝑏) 𝐶𝑇 (𝐴𝑔, 𝐵𝑔)]−1 (𝑥 [𝑘 + 2𝑛]
− 𝐴2𝑛

𝑔 𝑥 [𝑘] − 2𝑛−1∑
𝑗=0

𝐴2𝑛−𝑗−1
𝑔 (𝐴 − 𝐴𝑔) 𝑥 [𝑘 + 𝑗]) (30)

and the system 𝐻 is then controllable. This proves the
sufficiency part. The necessity part follows from (28) written
in the equivalent form:

𝑥 [𝑘 + 2𝑛] − 𝐴2𝑛
𝑔 𝑥 [𝑘] = 𝐶 (𝐴, 𝐵) [[[[[[[

𝑔 [𝑘 + 2𝑛 − 1]𝑔 [𝑘 + 2𝑛 − 2]...𝑔 [𝑘]
]]]]]]]

. (31)

If rank𝐶(𝐴, 𝐵) < 2𝑛, then, given 𝑥[𝑘], there exists 𝑥∗ such
that rank[𝐶(𝐴, 𝐵), 𝑥∗] > rank𝐶(𝐴, 𝐵) with 𝑥[𝑘 + 2𝑛] = 𝑥∗
and 𝑥[𝑘 + 2𝑛] − 𝐴2𝑛

𝑔 𝑥[𝑘] = 𝑥∗for some 𝑥∗ ∈ R2𝑛. Thus, the
following linear algebraic system of equations

𝑥∗ = 𝐶 (𝐴, 𝐵) [[[[[[[

𝑔 [𝑘 + 2𝑛 − 1]𝑔 [𝑘 + 2𝑛 − 2]...𝑔 [𝑘]
]]]]]]]

(32)

resulting from (31) is an incompatible one from Rouché-
Froebenius theorem of Linear Algebra. This leads to the
proof of the necessity part of the first part of Property
(i). Then, system 𝐷𝐻 is controllable if and only if 𝐶(𝐴, 𝐵)
is full rank. On the other hand, if the pair (𝐴, 𝐵) is not
controllable while the pair (𝐴𝑔, 𝐵𝑔) is controllable, the system𝐷𝐻 is approximately controllable with state targeting error−𝐶(𝐴𝑔, 𝐵 − 𝐵𝑔)𝐶𝑇(𝐴𝑔, 𝐵𝑔)𝑔0[𝑘] = 0(‖𝐴 − 𝐴𝑔‖2, ‖𝐵 − 𝐵𝑔‖2).
Property (i) has been proved. On the other hand, note from
(1a) that

𝑥𝑐 (𝑘𝑇 + 𝜏) − (∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝑑𝜎) 𝜗 [𝑘] − 𝑒𝐴𝑐𝑇𝑥𝑐 [𝑘]

= ∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝐵𝑐𝑢 (𝑘𝑇 + 𝜎) 𝑑𝜎, (33a)

𝜗 [𝑘] = 𝐴𝑐𝑠𝑥𝑐 [𝑘] + 𝐴𝑐𝑑𝑥𝑑 [𝑘] + 𝐵𝑐𝑠𝑢 [𝑘] , (33b)∀𝜏 ∈ [0, 𝑇), ∀𝑘 ∈ Z+. If 𝐷𝐻 is controllable, then
rank𝐶(𝐴𝑔, 𝐵) = 2𝑛 and 𝑥𝑐[𝑘] and 𝑥𝑑[𝑘] are arbitrarily
prefixed to 𝑥∗𝑐 [𝑘] and 𝑥∗𝑑[𝑘] under some control sequence

𝑢[𝑘] so that 𝜗[𝑘] is prefixed as well to 𝜗∗[𝑘] = 𝜗∗[𝑥∗[𝑘]].
Thus, from (33a) and (33b), 𝑥𝑐(𝑘𝑇 + 𝜏) is prefixed to any𝑥∗𝑐 (𝑘𝑇 + 𝜏), ∀𝜏 ∈ (0, 𝑇) and any given 𝑘 ∈ Z+ by a control
law:

𝑢 (𝑘𝑇 + 𝜎) = ∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝐵𝑐𝑢 (𝑘𝑇 + 𝜎) 𝑔𝑢 [𝑘] ,

𝑔𝑢 [𝑘] = [∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝐵𝑐 ∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝐵𝑐𝑢 (𝑘𝑇 + 𝜎)]−1

⋅ [𝑥∗𝑐 (𝑘𝑇 + 𝜏) − (∫𝜏

0
𝑒𝐴𝑐(𝜏−𝜎)𝑑𝜎) 𝜗∗ [𝑘]

− 𝑒𝐴𝑐𝑇𝑥∗𝑐 [𝑘]]
(34)

provided that rank𝐶(𝐴𝑐, 𝐵𝑐) = 𝑛 and the system 𝐻 is
controllable. The sufficiency part of Property (ii) has been
proved. The necessity follows by contradiction. Assume that
rank𝐶(𝐴, 𝐵) < 2𝑛. Then, from Property (i), 𝐷𝐻 is not
controllable so that 𝐻 is not controllable at sampling points.
Therefore, the system 𝐻 is controllable only if rank𝐶(𝐴, 𝐵) =2𝑛. From (33a) and (33b), 𝐻 is controllable if 𝐷𝐻 is control-
lable, so that 𝑥[𝑘] and 𝜗[𝑘] can be prefixed in (33a) and (33b)
from the controllability of 𝐻, only if rank𝐶(𝐴𝑐, 𝐵𝑐) = 𝑛.

To prove Property (iii), note that 𝐷𝐻 is reachable if

and only if rank[𝑧𝐼2𝑛 − 𝐴 ... 𝐵] = 2𝑛, ∀𝑧 ∈ Sp𝐴 from
the Sz ̈ego-Kalman-Popov (or discrete Yakubovich-Kalman-
Popov) controllability test. Equivalently, 𝐷𝐻 is reachable if
and only if

[𝑧𝐼2𝑛 − 𝐴 ... 𝐵] [𝑧∗𝐼2𝑛 − 𝐴𝑇𝐵𝑇
]

= [(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇
𝑔) + 𝐵𝑔𝐵𝑇

𝑔] (𝐼2𝑛
+ [(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇

𝑔) + 𝐵𝑔𝐵𝑇
𝑔]−1 𝐺 (𝑧))

(35)

is nonsingular, ∀𝑧 ∈ Sp𝐴, where [(𝑧𝐼2𝑛 − 𝐴𝑔)(𝑧∗𝐼2𝑛 −𝐴𝑇
𝑔) + 𝐵𝑔𝐵𝑇

𝑔] is nonsingular, ∀𝑧 ∈ Sp𝐴𝑔, since (𝐴𝑔, 𝐵𝑔) is
controllable, and𝐺 (𝑧) = (𝐴𝑔 − 𝐴) (𝐴𝑇

𝑔 − 𝐴𝑇) + (𝐵 − 𝐵𝑔) (𝐵𝑇 − 𝐵𝑇
𝑔)

+ (𝑧𝐼2𝑛 − 𝐴𝑔) (𝐴𝑇
𝑔 − 𝐴𝑇)

+ (𝐴𝑔 − 𝐴) (𝑧∗𝐼2𝑛 − 𝐴𝑇
𝑔) + 𝐵𝑔 (𝐵𝑇 − 𝐵𝑇

𝑔)
+ (𝐵 − 𝐵𝑔) 𝐵𝑇

𝑔

(36)

so that 󵄩󵄩󵄩󵄩󵄩𝐺 (𝑧)󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝐴𝑔 − 𝐴 ... 𝐵 − 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
⋅ (󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝐴𝑔 − 𝐴 ... 𝐵 − 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
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+ 2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑧𝐼2𝑛 − 𝐴𝑔

... 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2) ; ∀𝑧 ∈ C

(37)

and sup𝑧∈Sp𝐴𝑔‖𝐺(𝑧)‖2 ≤ 𝑎2 + 2𝑎𝑏, where
𝑎 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝐴𝑔 − 𝐴 ... 𝐵 − 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ;
𝑏 = sup

𝑧∈Sp𝐴𝑔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑧𝐼2𝑛 − 𝐴𝑔

... 𝐵𝑔]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
(38)

so that𝐷𝐻 is controllable from (36), since [(𝑧𝐼2𝑛−𝐴𝑔)(𝑧∗𝐼2𝑛−𝐴𝑇
𝑔+) + 𝐵𝑔𝐵𝑇

𝑔] is nonsingular ∀𝑧 ∈ Sp𝐴𝑔, if1 > sup
𝑧∈Sp𝐴𝑔

[(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇
𝑔+) + 𝐵𝑔𝐵𝑇

𝑔]−1
⋅ 𝐺 (𝑧) (39)

which is guaranteed if𝑎 (2𝑏 + 𝑎) < 1𝑏
= 1󵄩󵄩󵄩󵄩󵄩[(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇

𝑔) + 𝐵𝑔𝐵𝑇
𝑔]󵄩󵄩󵄩󵄩󵄩2 ;

∀𝑧 ∈ Sp𝐴𝑔

(40)

since󵄩󵄩󵄩󵄩󵄩󵄩[(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇
𝑔) + 𝐵𝑔𝐵𝑇

𝑔]−1󵄩󵄩󵄩󵄩󵄩󵄩2
≥ 1󵄩󵄩󵄩󵄩󵄩[(𝑧𝐼2𝑛 − 𝐴𝑔) (𝑧∗𝐼2𝑛 − 𝐴𝑇

𝑔+) + 𝐵𝑔𝐵𝑇
𝑔]󵄩󵄩󵄩󵄩󵄩2 ;

∀𝑧 ∈ C.
(41)

Condition (40) holds if 𝑎 ∈ [0, √𝑏2 + 𝑏−1−𝑏).This guarantees
that rank𝐶(𝐴, 𝐵) = 2𝑛 and 𝐷𝐻 is controllable. Since
rank𝐶(𝐴𝑐, 𝐵𝑐) = 𝑛, the system 𝐻 is controllable from
Property (ii). Property (iii) has been proved.

To prove Property (iv) note that reachability of the
discrete 𝐷𝐻 is guaranteed from controllability to the origin
and the nonsingularity of its matrix of dynamics 𝐴. Those
conditions are guaranteed from the conditions of Property
(iii) if 𝐴𝑔 is nonsingular and ‖𝐴 − 𝐴𝑔‖2 < 1/‖𝐴−1

𝑔 ‖2 which
guarantees that 𝐴 = 𝐴𝑔 + (𝐴 − 𝐴𝑔) = 𝐴𝑔(𝐼2𝑛 + 𝐴−1

𝑔 (𝐴 − 𝐴𝑔))
is nonsingular. On the other hand, if 𝐷𝐻 is reachable, then𝐻 is reachable if 𝐴𝑐 is nonsingular, since the pair (𝐴𝑐, 𝐵𝑐) is
controllable.

Note that if (26) is tested for 𝑧 ∈ (Sp𝐴𝑔) ∩ {𝑧 ∈ C :|𝑧| ≥ 1} (i.e., for the unstable and critically stable modes of𝐴𝑔), then it becomes a stabilizability test of the current 𝐷𝐻
provided that the nominal𝐷𝐻𝑔 is stabilizable. In otherwords,
stabilizability is the property implying that any uncontrollable
mode is asymptotically stable while any unstable or critically
stable mode is controllable.

3. The Kalman-Yakubovich-Popov Lemma

The following technical result will be then used for deriving
a simplified but useful version of the KYP-Lemma (see [8,
37] and references therein) for the given 𝐷𝐻 system in the
event that the output matrix is identity and the input-output
interconnection matrix is zero.

Lemma 6. The following properties hold:
(i) Assume that [ (𝑒𝑖𝜔𝐼2𝑛−𝐴)

−1𝐵
𝐼2𝑚

]∗ 𝑀 [ (𝑒𝑖𝜔𝐼2𝑛−𝐴)
−1𝐵

𝐼2𝑚
] ⪯ 0 for

some 𝑀 = 𝑀𝑇 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚) and all 𝜔 ∈ [0, ∞], where𝐴 = 𝐴𝑔 + 𝐴𝑔 and 𝐵 = 𝐵𝑔 + 𝐵𝑔.
Assume also that the discrete transfer matrix 𝐺𝑔(𝑧) =(𝑧𝐼2𝑛 − 𝐴𝑔)−1𝐴𝑔 is strictly bounded real (SBR), that rank 𝐵𝑔 =

rank(𝐵𝑔

... 𝐵𝑔), and that 𝐼2𝑚 + 𝐾𝐵 is nonsingular, where 𝐾𝐵 is a
real (𝑚+𝑛)×(𝑚+𝑛) matrix such that 𝐵𝑔 = 𝐾𝐵𝐵𝑔. Then, there
exists 𝑀𝑔 = 𝑀𝑇

𝑔 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚) such that

[(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼2𝑚 ]∗ 𝑀𝑔 [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼2𝑚 ]
⪯ 0. (42)

(ii) Assume that [ (𝑒𝑖𝜔𝐼2𝑛−𝐴𝑔)
−1𝐵𝑔

𝐼2𝑚
]∗ 𝑀󸀠 [ (𝑒𝑖𝜔𝐼2𝑛−𝐴𝑔)

−1𝐵𝑔
𝐼2𝑚

] ⪯ 0
for some 𝑀󸀠 = 𝑀󸀠𝑇 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚) and all 𝜔 ∈ [0, ∞],
where 𝐴𝑔 = 𝐴 − 𝐴𝑔 and 𝐵𝑔 = 𝐵 − 𝐵𝑔 with 𝐴 ̸= 𝐴𝑔 or 𝐵 ̸= 𝐵𝑔.

Assume also that the discrete transfermatrix𝐺(𝑧) = (𝑧𝐼2𝑛−𝐴)−1𝐴𝑔 is SBR, that rank 𝐵𝑔 = rank(𝐵 ... 𝐵𝑔), and that 𝐼2𝑚+𝐾𝐵𝑔

is nonsingular, where 𝐾𝐵𝑔 is a real (𝑚 + 𝑛) × (𝑚 + 𝑛) matrix
such that 𝐵𝑔 = (𝐼2𝑛 + 𝐾𝐵𝑔

)−1𝐵𝑔 = −𝐾𝐵𝑔𝐵. Then, there exists𝑀𝐺 = 𝑀𝑇
𝐺 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚) such that

[(𝑒𝑖𝜔𝐼2𝑛 − 𝐴)−1 𝐵𝐼2(𝑛+𝑚) ]∗ 𝑀𝐺 [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴)−1 𝐵𝐼2(𝑛+𝑚) ] ⪯ 0. (43)

Proof. Note that there exists a real (𝑚 + 𝑛) × (𝑚 + 𝑛) matrix𝐾𝐵 such that𝐵𝑔 = 𝐾𝐵𝐵𝑔, fromRouché-Froebenious theorem,

since rank 𝐵𝑔 = rank(𝐵𝑔

... 𝐵𝑔) and that 𝐵𝑔 = (𝐼𝑚+𝑛 + 𝐾𝐵)−1𝐵
since 𝐼𝑚+𝑛 + 𝐾𝐵 is nonsingular. Also, since ‖𝐺𝑔(𝑧)‖∞ =
sup𝜔∈R+‖𝐺𝑔(𝑒𝑖𝜔)‖ < 1,

(𝑒𝑖𝜔𝐼2𝑛 − 𝐴)−1 𝐵
= [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔) (𝐼2𝑛 − (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)]−1
⋅ (𝐼𝑚+𝑛 + 𝐾𝐵) 𝐵𝑔

= [𝐿̂−1 (𝑖𝜔) (𝐼2𝑛 − (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)]−1
⋅ (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔,

(44)



10 Discrete Dynamics in Nature and Society

where𝐿̂ (𝑖𝜔) = (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 (𝐼𝑚+𝑛 + 𝐾𝐵) (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔) ;∀𝜔 ∈ [0, ∞] (45)

so that

[(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ]∗ (−𝑀𝑔) [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ]
⪰ [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ]∗ (−𝑀̂𝑔 (𝑖𝜔))
⋅ [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ] = [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴)−1 𝐵𝐼𝑚+𝑛 ]∗

⋅ (−𝑀) [(𝑒𝑖𝜔𝐼2𝑛 − 𝐴)−1 𝐵𝐼𝑚+𝑛 ] ⪰ 0,

(46)

where 𝑀𝑔 = 𝑀𝑇
𝑔 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚) has bounded entries and it

is defined by

𝑀𝑔 = Block Diag [[𝐿̂−1 (𝑖𝜔)
⋅ (𝐼2𝑛 − (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)]−1 ... 𝐼3𝑛+𝑚]∗
× 𝑀Block Diag [[𝐿̂−1 (𝑖𝜔)
⋅ (𝐼2𝑛 − (𝑒𝑖𝜔𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)]−1 ... 𝐼3𝑛+𝑚]

(47)

for 𝜔 ∈ 𝑊, with 𝑊 ⊂ R+ being nonempty, and such
that the first matrix inequality of (46) holds. Property (i)
has been proved. Property (ii) follows directly from duality
considerations.

Remarks 7. (1) Note that Lemma 6(i) does not require for
A to be a convergent matrix (i.e., a stability matrix on the
discrete framework) while 𝐴𝑔 has to be a convergent matrix.
Conversely, Lemma 6(ii) does not require for 𝐴𝑔 to be a
convergent matrix while 𝐴 is a convergent matrix.(2) If𝐺𝑔(𝑧) = (𝑧𝐼2𝑛−𝐴𝑔)−1𝐴𝑔 and𝐺(𝑧) = (𝑧𝐼2𝑛−𝐴)−1𝐴𝑔

are SBR, then 𝐴 and 𝐴𝑔 are convergent matrices and the
identities(𝑧𝐼2𝑛 − 𝐴𝑔) = (𝑧𝐼2𝑛 − 𝐴) (𝐼2𝑛 + (𝑧𝐼2𝑛 − 𝐴)−1 𝐴𝑔)

= (𝑧𝐼2𝑛 − 𝐴𝑔) (𝐼2𝑛 − (𝑧𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)
⋅ (𝐼2𝑛 + (𝑧𝐼2𝑛 − 𝐴)−1 𝐴𝑔)

(48)

lead to (𝐼2𝑛 − (𝑧𝐼2𝑛 − 𝐴𝑔)−1 𝐴𝑔)
= (𝐼2𝑛 + (𝑧𝐼2𝑛 − 𝐴)−1 𝐴𝑔)−1 . (49)

(3) The identities

𝐺 (𝑧) = (𝑧𝐼2𝑛 − 𝐴𝑔 − 𝐴𝑔)−1 𝐴𝑔

= (𝐼2𝑛 − 𝐺𝑔 (𝑧))−1 𝐺𝑔 (𝑧) ,
𝐺𝑔 (𝑧) = (𝑧𝐼2𝑛 − 𝐴 + 𝐴𝑔)−1 𝐴𝑔

= (𝐼2𝑛 + 𝐺 (𝑧))−1 𝐺 (𝑧)
(50)

imply that ‖𝐺(𝑧)‖∞ ≤ 𝜀 and ‖𝐺𝑔(𝑧)‖∞ ≤ 𝜀𝑔 are both SBR if𝜀𝑔 ∈ [0, 1/2) and 𝜀 ∈ [𝜀𝑔/(1 − 𝜀𝑔), 1), or if 𝜀 ∈ [0, 1/2) and𝜀𝑔 ∈ [𝜀/(1 − 𝜀), 1), and either 𝐴𝑔 is convergent, resulting in𝐴 to be convergent, or 𝐴 is convergent resulting in 𝐴𝑔 to be
convergent.(4) Since 𝐴𝑔 is convergent, then the condition 𝐺𝑔(𝑧) =(𝑧𝐼2𝑛 − 𝐴𝑔)−1𝐴𝑔 being SBR of Lemma 6(i) is equivalent to‖(𝐼2𝑛 − 𝐴𝑔)−1𝐴𝑔‖2 < 1 in the case when 𝐴𝑔 and 𝐴𝑔 are
positive and guaranteed if ‖𝐴𝑔‖2 < 1/‖(𝐼2𝑛 − 𝐴𝑔)−1‖2. See
Theorem 3 of [9] for general linear discrete positive systems
and the discrete KYP-Lemma. A similar conclusion arises for𝐺(𝑧) = (𝑧𝐼2𝑛−𝐴)−1𝐴𝑔 being SBR of Lemma 6(ii) if𝐴 and𝐴𝑔

are positive. Then, such a condition is equivalent to ‖(𝐼2𝑛 −𝐴)−1𝐴𝑔‖2 < 1 and guaranteed if ‖𝐴𝑔‖2 < 1/‖(𝐼2𝑛 − 𝐴)−1‖2.
Theorem 3 of [9] would also conclude that (𝑧𝐼2𝑛 − 𝐴𝑔)−1𝐴𝑔

and (𝑧𝐼2𝑛 − 𝐴)−1𝐴𝑔 are SBR if and only if there is a diagonal𝑋(∈ R𝑛×𝑛
+ ) ≻ 0 such that, respectively,

(𝑋 00 𝐼𝑛) − (𝐴𝑔 𝐴𝑔𝐼𝑛 0 )∗ (𝑋 00 𝐼𝑛) (𝐴𝑔 𝐴𝑔𝐼𝑛 0 ) ≻ 0,
(𝑋 00 𝐼𝑛) − (𝐴 𝐴𝑔𝐼𝑛 0 )∗ (𝑋 00 𝐼𝑛) (𝐴 𝐴𝑔𝐼𝑛 0 ) ≻ 0. (51)

Theorem 8. Assume the following:
(1) 𝐵𝑔 ∈ R𝑛×2𝑚

+ , 𝐴𝑔 ∈ R𝑛×𝑛
+ is convergent, and 𝐴𝑔 > −𝐴𝑔

with the pair (𝐴𝑔, 𝐵𝑔) being controllable.
(2) 𝐺(𝑧) = (𝑧𝐼2𝑛 − 𝐴𝑔 − 𝐴𝑔)−1𝐴𝑔 is SBR, and 𝐼2𝑚 + 𝐾𝐵𝑔

is nonsingular, where 𝐾𝐵𝑔 is a real (𝑚 + 𝑛) × (𝑚 + 𝑛) matrix
such that 𝐵𝑔 = (𝐼2𝑛 + 𝐾𝐵𝑔)−1𝐵𝑔 > −𝐵𝑔 subject to rank 𝐵𝑔 =
rank(𝐵𝑔 + 𝐵𝑔

... 𝐵𝑔).
(3) Constraint (26) holds and there exists a matrix 𝑀𝑔 =𝑀𝑇

𝑔 ∈ R(3𝑛+𝑚)×(3𝑛+𝑚), which is nonnegative in all entries except
for the last 2𝑚 diagonal elements, such that (42) holds for all𝜔 ∈ [0 , ∞].

Then, the following properties hold:
(i) The pair (𝐴, 𝐵) is controllable, where 𝐴(∈ R2𝑛×2𝑛

+ ) =𝐴𝑔 + 𝐴𝑔 is convergent. Also, there exists 𝑀𝐺 = 𝑀𝑇
𝐺 ∈

R(3𝑛+𝑚)×(3𝑛+𝑚), which is nonnegative in all entries except for the
last (𝑚 + 𝑛) diagonal elements, such that (43) holds.
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(ii) The following matrix inequalities hold which are,
respectively, equivalent to (42) and (43):

[(𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ]𝑇 𝑀𝑔 [(𝐼2𝑛 − 𝐴𝑔)−1 𝐵𝑔𝐼𝑚+𝑛 ] ⪯ 0, (52)

[(𝐼2𝑛 − 𝐴)−1 𝐵𝐼𝑚+𝑛 ]𝑇 𝑀𝐺 [(𝐼2𝑛 − 𝐴)−1 𝐵𝐼𝑚+𝑛 ] ⪯ 0. (53)

(iii) There exist diagonal matrices 𝑃𝑔 ⪰ 0 and 𝑃𝐺 ⪰ 0 such
that𝑀𝑔 + 𝑀𝑔0 ⪯ 0;

𝑀𝑔0 = [𝐴𝑇
𝑔𝑃𝑔𝐴𝑔 − 𝑃𝑔 𝐴𝑇

𝑔𝑃𝑔𝐵𝑔𝐵𝑇
𝑔𝑃𝑔𝐴𝑔 𝐵𝑇

𝑔𝑃𝑔𝐵𝑔

] , (54)

𝑀𝐺 + 𝑀𝐺0 ⪯ 0; 𝑀𝐺0 = [𝐴𝑇𝑃𝐺𝐴 − 𝑃𝐺 𝐴𝑇𝑃𝐺𝐵𝐵𝑇𝑃𝐺𝐴 𝐵𝑇𝑃𝐺𝐵] . (55)

(iv) There exist 𝑥𝑔, 𝑝𝑔 ≥ 0, 𝑢𝑔 > 0 and 𝑥, 𝑝 ≥ 0, 𝑢 > 0
which satisfy (𝐴𝑔 − 𝐼2𝑛) 𝑥𝑔 + 𝐵𝑔𝑢𝑔 ≤ 0,

[𝑥𝑇𝑔 , 𝑢𝑇𝑔 ... 𝑝𝑇
𝑔] [[

𝑀𝑔𝐴𝑔 − 𝐼2𝑛 ... 𝐵𝑔

]] ≤ 0, (56)

(𝐴 − 𝐼2𝑛) 𝑥 + 𝐵𝑢 ≤ 0,
[𝑥𝑇, 𝑢𝑇 ... 𝑝𝑇] [[

𝑀𝐺𝐴 − 𝐼2𝑛 ... 𝐵]] ≤ 0. (57)

(v) Constraints (42) (for all 𝜔 ∈ [0, ∞]), (52), (54),
and (56) are mutually equivalent and, also, (43) (for all𝜔 ∈ [0, ∞]), (53), (55), and (57) are mutually equivalent.
Furthermore, (42) implies (53), (55), and (57).

(vi) Assume that ‖𝐺(𝑧)‖∞ ≤ 𝜀 and ‖𝐺𝑔(𝑧)‖∞ ≤ 𝜀𝑔 are both
SBR if 𝜀𝑔 ∈ [0, 1/2) and 𝜀 ∈ [𝜀𝑔/(1 − 𝜀𝑔), 1), or if 𝜀 ∈ [0, 1/2)
and 𝜀𝑔 ∈ [𝜀/(1 − 𝜀), 1).
Proof. The first part of Property (i) follows from the con-
trollability of the pair (𝐴𝑔, 𝐵𝑔) and the constraint (26)
[Theorem 5(iii)], which guarantees the controllability of the
pair (𝐴, 𝐵) with 𝐴(∈ R2𝑛×2𝑛

+ ) being convergent and 𝐵(∈
R2𝑛×(𝑚+𝑛)
+ ) from the two first assumptions since𝐺(𝑧) = (𝑧𝐼2𝑛−𝐴)−1𝐴𝑔 is SBR, and 𝐵(∈ R2𝑛×(𝑚+𝑛)

+ ) = 𝐵𝑔 + 𝐵𝑔 since 𝐵𝑔 ∈
R𝑛×(𝑚+𝑛)
+ . The second part follows from Lemma 6(ii) which

concludes that (42) implies (43).
To prove Property (ii), note that constraint (52) holds

since the equivalent constraint (42) (see [8]) holds from the
given assumptions, Lemma 6(ii), and Property (i), and (53)
holds since the equivalent constraint (43) holds. In the same
way, Properties [(iii)–(v)] follow as well since constraints
(42), (52), (54), and (56) (respectively, constraints (43), (53),

(55), and (57)) are mutually equivalent [8], under the given
assumptions, Lemma 6(ii), and Property (i).

Property (vi) follows since constraints (42), (52), (54),
and (56) are equivalent to each other and constraints (43),
(53), (55), and (57) are also equivalent to each other while
(42) and (43) imply to each other since ‖𝐺(𝑧)‖∞ ≤ 𝜀 and‖𝐺𝑔(𝑧)‖∞ ≤ 𝜀𝑔 are both SBR (see Remarks 7(3)) since 𝐴𝑔

and 𝐴 are convergent.

Remark 9. If the semidefiniteness matrix inequalities in
Theorem 8 are replaced by definiteness counterparts then the
equivalences hold without the controllability assumption of
the pair (𝐴𝑔, 𝐵𝑔).

The following result is concerned with the positive real-
ness of a discrete nominal transfer matrix of the extended
discrete nominal 𝐷𝐻𝑔 which guarantees that of the transfer
matrix of a parametrical disturbed 𝐷𝐻𝑔 under a set of struc-
tured parametrical perturbations of the dynamics, output,
control, and interconnection matrices. The result is based on
the equivalence between the positive realness of a transfer
matrix and the associated state-space realization, namely,
the Positive Real Lemma, so-called alternatively Kalman-
Szëgo-Popov Lemma or KSP Lemma, being a discrete version
of the KYP-Lemma and of those ones with the Discrete
Positive Factorization Lemma (so-called alternatively Youla’s
Factorization Lemma)

Theorem 10. Assume that 𝑝 = 𝑚 + 𝑛, 𝐵𝑔, 𝐶𝑔, and 𝐷𝑔 are
positive, 𝐴𝑔 is positive, and the transfer matrix 𝐺1𝑔(𝑧) =𝐺𝑔(𝑧) − (𝛾/2)𝐼𝑝 is positive real for some real constant 𝛾 ∈ R+,
where 𝐺𝑔(𝑧) = 𝐶𝑔(𝑧𝐼2𝑛 −𝐴𝑔)−1𝐵𝑔 +𝐷𝑔 is strictly positive real,
and that the triple (𝐴𝑔, 𝐵𝑔, 𝐶𝑔) is controllable and observable.
Assume that the parameterizing matrices of the 𝐷𝐻 (25a),
(25b), (25c), and (25d) are subject to parametrical disturbances
so that 𝐴 = 𝐴𝑔 + 𝐴;𝐵 = 𝐵𝑔 + 𝐵,𝐶 = 𝐶𝑔 + 𝐶;𝐷 = 𝐷𝑔 + 𝐷

(58)

with the disturbance matrices being subject to 𝐴 ≥ −𝐴𝑔, 𝐵 ≥−𝐵𝑔, 𝐶 ≥ −𝐶𝑔, and 𝐷 ≥ −𝐷𝑔. Assume, furthermore, that𝐶(𝐴𝑔, 𝐵𝑔)𝐶𝑇(𝐴𝑔, 𝐵𝑔) and 𝐶(𝐴, 𝐵)𝐶𝑇(𝐴, 𝐵) are monomial.
Then, both 𝐷𝐻𝑔 and 𝐷𝐻 are positive while the following
properties hold:

(i) The transfer matrix 𝐺(𝑧) = 𝐶(𝑧𝐼2𝑛 − 𝐴)−1𝐵 + 𝐷 is
strictly positive real (then 𝐴 is convergent), 𝐴, 𝐵, 𝐶, 𝐷 > 0 and𝐺1(𝑧) = 𝐺(𝑧) − 𝛾𝜌/2 is positive real if there exist matrices𝐾̃ ∈ R𝑞×𝑝, 𝐿̃ ∈ R2𝑛×𝑞, where 𝑞 is some arbitrary positive integer,𝑃̃(≻ −𝑃𝑔) ∈ R2𝑛×2𝑛 (being diagonal), 𝑄(≻ −𝑄𝑔) ∈ R2𝑛×2𝑛

satisfying the following set of matrix relations:𝑄 = 𝑃̃ + 𝐿𝑔𝐿̃𝑇 + 𝐿̃𝐿𝑇𝑔 + 𝐿̃𝐿̃𝑇 − (𝐴𝑇
𝑔𝑃𝑔𝐴 + 𝐴𝑇𝑃𝑔𝐴𝑔)

⪰ −𝑄𝑔 = −𝑄𝑔 − 𝐿𝑔𝐿𝑇𝑔 − 𝐿𝑔𝐿̃𝑇 − 𝐿̃𝐿𝑇𝑔 − 𝐿̃𝐿̃𝑇,
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𝐶 = (𝐵𝑇
𝑔 𝑃̃ + 𝐵𝑇 (𝑃𝑔 + 𝑃̃)) 𝐴𝑔 + (𝐵𝑇

𝑔 + 𝐵𝑇) (𝑃𝑔 + 𝑃̃)
⋅ 𝐴 + (𝐾𝑇

𝑔 + 𝐾̃𝑇) 𝐿̃𝑇 + 𝐾̃𝑇𝐿𝑇𝑔,
𝐷 ≥ 𝐵𝑇

𝑔 (𝑃𝑔 + 𝑃̃) 𝐵 + 𝐾𝑇
𝑔 𝐾̃ + 12 (𝐵𝑇

𝑔 𝑃̃𝐵𝑔 + 𝐵𝑇𝑃̃𝐵
+ 𝐵𝑇𝑃𝑔𝐵 + 𝐾̃𝑇𝐾̃ − 𝛾 (1 − 𝜌) 𝐼𝑝)

(59)

for some 𝜌 ∈ (0 , 1] and the given 𝛾 ∈ R+, for some existing
matrices 𝑄𝑔(≻ 0) ∈ R2𝑛×2𝑛, 𝑃𝑔(≻ 0 diagonal) ∈ R2𝑛×2𝑛, 𝐾𝑔 ∈
R𝑞×𝑝, 𝐿𝑔 ∈ R2𝑛×𝑞 which satisfy the following set of matrix
identities:

𝐴𝑇
𝑔𝑃𝑔𝐴𝑔 − 𝑃𝑔 = −𝐿𝑔𝐿𝑇𝑔 − 𝑄𝑔, (60)

𝐵𝑇
𝑔𝑃𝑔𝐴𝑔 + 𝐾𝑇

𝑔𝐿𝑇𝑔 = 𝐶𝑔, (61)

𝐾𝑇
𝑔𝐾𝑔 = 𝐷𝑔 + 𝐷𝑇

𝑔 − 𝛾𝐼𝑝 − 𝐵𝑇
𝑔𝑃𝑔𝐵𝑔. (62)

(ii) If 𝑄𝑔 ⪰ 0, 𝑄 ⪰ −𝑄𝑔, then 𝐺𝑔(𝑧) and 𝐺(𝑧) are positive
real even if 𝐴𝑔 is critically stable.

(iii) If 𝑄𝑔 ⪰ 0, 𝑄 ≻ −𝑄𝑔, then 𝐺𝑔(𝑧) is positive real, 𝐺(𝑧)
is strictly positive real, and 𝐺1(𝑧) is positive real even if 𝐴𝑔 is
critically stable.

(iv) If𝐺1𝑔(𝑧), and then𝐺𝑔(𝑧), (respectively,𝐺1(𝑧) and then𝐺(𝑧)) are positive real then they do not satisfy Lemma 6, and
conversely, for 𝑀𝑔 = [ 0 −𝐶𝑇

−𝐶 𝛾𝐼𝑝−(𝐷𝑔+𝐷
𝑇
𝑔 )

].
Proof. Note that [𝐶(𝐴𝑔, 𝐵𝑔)𝐶𝑇(𝐴𝑔, 𝐵𝑔)] −1 and [𝐶(𝐴,𝐵)𝐶𝑇(𝐴, 𝐵)] −1 are positive since 𝐶(𝐴𝑔, 𝐵𝑔)𝐶𝑇(𝐴𝑔, 𝐵𝑔) and𝐶(𝐴, 𝐵)𝐶𝑇(𝐴, 𝐵) aremonomial so that the sequences {𝑔𝑔𝑐[𝑘]}
and {𝑔𝑐[𝑘]} are nonnegative for any nonnegative control.
Note also that from the conditions on the parameterizing
matrices both extended discrete systems describing the
given hybrid system are positive. Note that 𝐴𝑔 is at
least critically stable although nonnecessarily convergent.
Note also that if 𝛾 > 0 then 𝐺𝑔(𝑧) is strictly positive
real and if 𝛾 = 0 then it is positive real if A is at least
critically stable (rather than convergent) with eventual
simple poles of positive semidefinite on |𝑧| = 1. Note that
Re(𝐺𝑔(𝑒𝑖𝜔) + Re𝐺𝑇

𝑔(𝑒−𝑖𝜔)) − 𝛾𝐼𝑝 ⪰ 0 for any 𝜔 ∈ [0, ∞] since𝐺𝑔(𝑧) − (𝛾/2)𝐼𝑝 is positive real and 𝑝 = 𝑚 + 𝑛. From the
equivalence between the Discrete Factorization Lemma and
the Discrete Positive Real Lemma [38], there exist a positive
definite real matrix 𝑃𝑔, which is diagonal since 𝐴𝑔 is positive
and convergent [3], and real matrices 𝐾𝑔, 𝐿𝑔, and 𝑄𝑔 ≻ 0
such that the matrix relations (61) hold implying from the
Discrete Positive Factorization Lemma that

𝑀̂𝑔 = − (𝑀𝑔 + 𝑀𝑔0) = [𝐿𝑔𝐿𝑇𝑔 + 𝑄𝑔 𝐿𝑔𝐾𝑔𝐾𝑇
𝑔𝐿𝑇𝑔 𝐾𝑇

𝑔𝐾𝑔

] ⪰ 0, (63)

where

𝑀𝑔 = [[
0 −𝐶𝑇−𝐶 𝛾𝐼𝑝 − (𝐷𝑔 + 𝐷𝑇

𝑔)]] ;
𝑀𝑔0 = [𝐴𝑇

𝑔𝑃𝑔𝐴𝑔 − 𝑃𝑔 𝐴𝑇
𝑔𝑃𝑔𝐵𝑔𝐵𝑇

𝑔𝑃𝑔𝐴𝑔 𝐵𝑇
𝑔𝑃𝑔𝐵𝑔

] (64)

so that the following factorization holds:

Re (𝐺1𝑔 (𝑒𝑖𝜔) + Re𝐺𝑇
1𝑔 (𝑒−𝑖𝜔))

= Re (𝐺𝑔 (𝑒𝑖𝜔) + Re𝐺𝑇
𝑔 (𝑒−𝑖𝜔)) − 𝛾𝐼𝑝= 𝑊𝑇

1𝑔 (𝑒−𝑖𝜔) 𝑊1𝑔 (𝑒𝑖𝜔) ⪰ 0; ∀𝜔 ∈ [0, ∞] ,
(65)

where𝑊1𝑔(𝑒𝑖𝜔) = 𝐾+𝐿𝑇(𝑒𝑖𝜔𝐼2𝑛−𝐴𝑔)−1𝐵𝑔.Thus, by invoking
similar arguments of the equivalence between both lemmas,𝐺(𝑧) = 𝐶(𝑧𝐼2𝑛 − 𝐴)−1𝐵 + 𝐷 − (𝛾𝜌/2)𝐼𝑝 is positive real for
some given 𝜌 ∈ (0, 1], if and only if, there exist a diagonal
positive definite real matrix𝑃 and real matrices𝐾, 𝐿, and𝑄 ≻0, subject to 𝑃̃ ≻ −𝑃𝑔, 𝑄 ⪰ −𝑄𝑔, satisfying𝑃 = 𝑃𝑔 + 𝑃̃;

𝐾 = 𝐾𝑔 + 𝐾̃
𝐿 = 𝐿𝑔 + 𝐿̃;
𝑄 = 𝑄𝑔 + 𝑄

(66)

such that the following matrix relations hold:𝐴𝑇𝑃𝐴 − 𝑃 = −𝐿𝐿𝑇 − 𝑄, (67)

𝐵𝑇𝑃𝐴 + 𝐾𝑇𝐿𝑇 = 𝐶, (68)

𝐾𝑇𝐾 = 𝐷 + 𝐷𝑇 − 𝛾𝜌𝐼𝑝 − 𝐵𝑇𝑃𝐵. (69)

Now, direct calculations show that (61) guarantee (68) if (59)
hold under the given constraints while similar conditions to
(63)–(65) hold by replacing 𝑀𝑔 → 𝑀𝐺, 𝑀̂𝑔 → 𝑀̂𝐺 =−(𝑀𝐺 + 𝑀𝐺0) ⪯ 0 with the matrices being defined from their
counterparts with the replacements 𝛾 → 𝛾𝜌, 𝐴𝑔 → 𝐴 =𝐴𝑔 + 𝐴, 𝐵𝑔 → 𝐵 = 𝐵𝑔 + 𝐵, 𝐶𝑔 → 𝐶 = 𝐶𝑔 + 𝐶, 𝐷𝑔 →𝐷 = 𝐷𝑔 + 𝐷, 𝑄𝑔 → 𝑄 = 𝑄𝑔 + 𝑄, 𝑃𝑔 → 𝑃 = 𝑃𝑔 + 𝑃̃, 𝐿𝑔 →𝐿 = 𝐿𝑔 + 𝐿̃, 𝐾𝑔 → 𝐾 = 𝐾𝑔 + 𝐾̃. Property (i) has been
proved.The proofs of Properties (ii)-(iii) are similar and they
follow straightforwardly. The proof of Property (iv) follows
by comparing 𝑀𝑔 in (64) with (54) and by noting that it has
negative entries except the last 𝑝 = 𝑚 + 𝑛 diagonal entries
because the entries of 𝐶𝑔 ̸= 0 are nonnegative since the
system is positive. So, the state-space realizations of 𝐺1𝑔(𝑧)
and 𝐺𝑔(𝑧) do not fulfill Lemma 6 for 𝑀𝑔 which has negative
off-diagonal entries. A similar conclusion follows for 𝐺1(𝑧)
and 𝐺(𝑧).
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Remark 11. (1) Note that in Theorem 10(ii) 𝐴𝑔 and 𝐴 can
be critically stable, since 𝐺𝑔(𝑧), 𝐺1𝑔(𝑧), 𝐺(𝑧), and 𝐺1(𝑧) are
positive real, so that they can eventually possess simple
eigenvalues, such that the four resulting matrices 𝐻(𝑒𝑖𝜔) +𝐻𝑇(𝑒−𝑖𝜔), with 𝐻 being any of the four above ones, have
positive semidefinite residuals at such simple critical poles.(2) Note that if the nominal extended discrete system𝐷𝐻𝑔 is positive and Theorem 10 holds, then the extended
discrete system 𝐷𝐻 is positive and it is also positive in
the input-output positivity (or “passivity”) sense of [13, 15]
(see also [30]) since positive realness of transfer matrices is
equivalent in the discrete-time domain to

𝑘1∑
𝑘=𝑘0

𝑦𝑇 [𝑘] 𝑔 [𝑘] = 𝜉 (𝑥 [𝑘1 + 1]) − 𝜉 (𝑥 [𝑘0])
+ 𝑘1∑

𝑘=𝑘0

𝜆 (𝑥 [𝑘] , 𝑔 [𝑘]) (70)

with 𝑔[𝑘] = (𝑔𝑇𝑐 [𝑘], 𝑢𝑇[𝑘])𝑇 and 𝜆(𝑥𝑘, 𝑢𝑘) ≥ 0 on any
discrete-time interval [𝑘0, 𝑘1] with 𝑘0 ≥ 0. In particular,

𝑘1∑
𝑘=𝑘0

𝑦𝑇 [𝑘] 𝑔 [𝑘] = 𝜉 (𝑥 [𝑘1 + 1]) − 𝜉 (𝑥 [𝑘0])
+ 𝑘1∑

𝑘=𝑘0

𝜆 (𝑥 [𝑘] , 𝑔 [𝑘]) = 12 {{{𝑥 [𝑘1 + 1]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘1
+ 1] − 𝑥 [𝑘0]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘0] + 𝑘1∑

𝑘=𝑘0

[𝑥 [𝑘]𝑔 [𝑘]]𝑇

⋅ [[
(𝐿𝑔 + 𝐿̃) (𝐿𝑇𝑔 + 𝐿̃𝑇) + 𝑄𝑔 + 𝑄 (𝐿𝑔 + 𝐿̃) (𝐾𝑔 + 𝐾̃)(𝐾𝑇

𝑔 + 𝐾̃𝑇) (𝐿𝑇𝑔 + 𝐿̃𝑇) (𝐾𝑇
𝑔 + 𝐾̃𝑇) (𝐾𝑔 + 𝐾̃)]]

⋅ [𝑥 [𝑘]𝑔 [𝑘]]}}} ≥ −12𝑥 [𝑘0]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘0] ≥ −12𝑥 [𝑘0]𝑇
⋅ 𝑃𝑎𝑥 [𝑘0]

(71)

for any integers 𝑘0 ≥ 0 and 𝑘1 ≥ 𝑘0 with 𝑃𝑎 = 𝑃𝑔 − |𝑃̃| and a
close relation for the nominal 𝐷𝐻𝑔 with 𝐿̃ = 0, 𝐾̃ = 0, 𝑃̃ =𝑄 = 0.(3) Usually, the positive real and positive factorization
lemmas are stated for minimal (i.e., simultaneously con-
trollable and observable) state-space realizations in order to
exclude from the analysis eventual unstable and critically
stable (in the nonstrict positive realness case) zero-pole
cancellations in the transfer matrices [13, 15]. The intuitive
reason is that the state-space realization is got as a min-
imal one from the given transfer matrix so that it does
not give information about eventual cancellations removed
from the transfer matrices and its implication in the state-
space descriptions when dealing with the Continuous or
Discrete Positive Real Lemmas or their equivalent Youla’s
Factorization Lemmas.

Theorem 10 states a characterization of the admissible
structured perturbations for the dynamics, output, control,
and interconnection matrices of a state-space realization
associated with the discrete nominal positive real transfer
matrix which guarantee that the perturbed system 𝐷𝐻 being
positive maintains the positivity and the positive realness
property of the nominal 𝐷𝐻𝑔. Based on the Discrete Positive
Real Lemma without invoking the factorization result, we
now establish a parallel result to be applicable for nonstruc-
tured parametrical disturbances at the expense of testing the
positive definiteness of an associated matrix.

Theorem 12. Assume that the hypothesis of Theorem 10 holds
for the parametrical disturbancematrices.Then, both𝐷𝐻𝑔 and𝐷𝐻 are positive and the following properties hold:

(i) The transfer matrix 𝐺(𝑧) = 𝐶(𝑧𝐼2𝑛 − 𝐴)−1𝐵 + 𝐷 is
strictly positive real (then 𝐴 is convergent), 𝐴, 𝐵, 𝐶, 𝐷 > 0,
and 𝐺1(𝑧) = 𝐺(𝑧) − 𝛾𝜌/2 is positive real if there exist matrices𝑆 ∈ R2𝑛×𝑝, 𝑃̃(≻ 𝑃𝑔) ∈ R2𝑛×2𝑛 (being diagonal), 𝑅̃ ∈ R𝑝×𝑝, 𝑄 ∈
R2𝑛×2𝑛 satisfying the following set of matrix relations:

𝑄 = 𝑃̃ − (𝐴𝑇
𝑔𝑃𝑔𝐴 + 𝐴𝑇𝑃𝑔𝐴𝑔) − (𝐴𝑇

𝑔𝑃̃𝐴 + 𝐴𝑇𝑃̃𝐴𝑔)
− 𝐴𝑇

𝑔𝑃̃𝐴𝑔 − 𝐴𝑇𝑃𝑔𝐴 − 𝐴𝑇𝑃̃𝐴 ⪰ −𝑄𝑔,
𝐶 = (𝐵𝑇

𝑔 𝑃̃ + 𝐵𝑇 (𝑃𝑔 + 𝑃̃)) 𝐴𝑔+ (𝐵𝑇
𝑔 + 𝐵𝑇) (𝑃𝑔 + 𝑃̃) 𝐴 + 𝑆𝑇,

𝐷 ≥ 𝐵𝑇
𝑔 (𝑃𝑔 + 𝑃̃) 𝐵 + 𝑅̃

+ 12 (𝐵𝑇
𝑔 𝑃̃𝐵𝑔 + 𝐵𝑇𝑃̃𝐵 + 𝐵𝑇𝑃𝑔𝐵 − 𝛾 (1 − 𝜌) 𝐼𝑝)

(72)

for some 𝜌 ∈ (0 , 1] and the given 𝛾 ∈ R+, for some existing
matrices 𝑄𝑔(≻ 0) ∈ R2𝑛×2𝑛, 𝑃𝑔(≻ 0 diagonal) ∈ R2𝑛×2𝑛, 𝑆𝑔 ∈
R2𝑛×𝑝 and 𝑅𝑔 ∈ R𝑝×𝑝, which satisfy the following set of matrix
identities:

𝐴𝑇
𝑔𝑃𝑔𝐴𝑔 − 𝑃𝑔 = −𝐿𝑔𝐿𝑇𝑔 − 𝑄𝑔, (73)

𝐵𝑇
𝑔𝑃𝑔𝐴𝑔 + 𝑆𝑇𝑔 = 𝐶𝑔, (74)

𝑅𝑔 = 𝐷𝑔 + 𝐷𝑇
𝑔 − 𝛾𝐼𝑝 − 𝐵𝑇

𝑔𝑃𝑔𝐵𝑔 (75)

provided that

𝑀̂1𝑔 = [𝐿𝑔𝐿𝑇𝑔 + 𝑄𝑔 𝑆𝑔𝑆𝑇𝑔 𝑅𝑔

] ⪰ 0;
̃̂𝑀1𝑔 = [𝑄 𝑆𝑆𝑇 𝑅̃] ⪰ −𝑀̂1𝑔. (76)

Furthermore, 𝐷𝐻 satisfies (71):
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𝑘1∑
𝑘=𝑘0

𝑦𝑇 [𝑘] 𝑔 [𝑘] = 12 {{{𝑥 [𝑘1 + 1]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘1 + 1] − 𝑥 [𝑘0]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘0]
+ 𝑘1∑

𝑘=𝑘0

[𝑥 [𝑘]𝑔 [𝑘]]𝑇 [[
(𝐿𝑔 + 𝐿̃) (𝐿𝑇𝑔 + 𝐿̃𝑇) + 𝑄𝑔 + 𝑄 (𝐿𝑔 + 𝐿̃) (𝐾𝑔 + 𝐾̃)(𝐾𝑇

𝑔 + 𝐾̃𝑇) (𝐿𝑇𝑔 + 𝐿̃𝑇) (𝐾𝑇
𝑔 + 𝐾̃𝑇) (𝐾𝑔 + 𝐾̃)]] [𝑥 [𝑘]𝑔 [𝑘]]}}} ≥ −12𝑥 [𝑘0]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘0]

≥ −12𝑥 [𝑘0]𝑇 𝑃𝑎𝑥 [𝑘0]
(77)

for any integers 𝑘0 ≥ 0 and 𝑘1 ≥ 𝑘0 with 𝑃𝑎 = 𝑃𝑔 − |𝑃̃| and a
close relation is satisfied by the nominal 𝐷𝐻𝑔 with 𝐿̃ = 0, 𝐾̃ =0, 𝑃̃ = 𝑄 = 0.

(ii) If 𝑄𝑔 ⪰ 0, 𝑄 ⪰ −𝑄𝑔, then 𝐺𝑔(𝑧) and 𝐺(𝑧) are positive
real even if 𝐴𝑔 is critically stable.

(iii) If 𝑄𝑔 ⪰ 0, 𝑄 ≻ −𝑄𝑔, then 𝐺𝑔(𝑧) is positive real, 𝐺(𝑧)
is strictly positive real, and 𝐺1(𝑧) is positive real even if 𝐴𝑔 is
critically stable.

Proof. Note that (74)-(76) lead to 𝑀̂1𝐺 = 𝑀̂1𝑔 + ̃̂𝑀1𝑔 ⪰ 0 for
the nominal discrete hybrid system if the parametrical dis-
turbances satisfy (72). Then, both 𝐷𝐻𝑔 and 𝐷𝐻 are positive,
have positive real transfer matrices, and satisfy the respective
passivity conditions (77) (see (65) and Remark 11(1)).
Example 13. A particular system of the studied hybrid class
with 𝑛 = 4 is now discussed with some of the param-
eters being fixed “a prior” while others are primarily left
undetermined in order to find the needed positive realness
conditions. Consider the following the hybrid system (1a),
(1b), and (1c) with 𝑛𝑐 = 𝑛𝑑 = 2, 𝑚 = 𝑝 = 1, 𝑇 = 0.01,

𝐴𝑐 = [−1 10 −2] ;
𝐵𝑐 = [𝑏𝑐1𝑏𝑐2] = [01] ;
𝐶𝑐 = [𝑐𝑐1 𝑐𝑐2] ;𝐷𝑐 = 𝑑𝑐,

𝐴𝑐𝑠 = [0.5 00.1 0.5] ;
𝐴𝑐𝑑 = [ 1 00.1 0.5] ;
𝐴𝑑𝑠 = 0.0001𝐼4,
𝐴𝑑 = [0.5 10.4 0] ;
𝐵𝑑 = [0.010.1 ] ;

𝐵𝑐𝑠 = [0.20.1] ,
𝐶𝑑 = 𝑐𝑇𝑑 = (1, 0) ;𝐷𝑑 = 𝑑𝑑 = 1

(78)

which leads to the following matrices:

𝐶 = [𝐶𝑐 + 𝐶𝑐𝑠

... 1, 0] ;
𝐷 = 𝑑 = 𝑑𝑐 + 1. (79)

One gets directly that

Φ𝑐 (0.01) = 𝑒𝐴𝑐×0.01 = [0.988019 0.0098510 0.990050] ;
Γ𝑐 (0.01) = ∫0.01

0
𝑒𝐴𝑐(0.01−𝜏)𝑑𝜏

= [0.990066 0.0049510 0.995017] ,
𝐴󸀠
𝑐 = [ 0.989014 0.0098560.000995017 0.991045] ;

𝐴󸀠
𝑑 = [0.6520998 0.09998940.0432332 0.216166 ] ,

𝐵0 = [[[[[[
0.1464030.04323320.250.4

]]]]]]
.

(80)

If 𝑉 = 1, note that 𝐴𝑐 is Hurwitz and Metzler and thenΦ𝑐(0.01) is positive and convergent. If 𝑑𝑐 ≥ 0, 𝐵𝑐 > 0, and𝐶𝑐 > 0, then both the continuous-time subsystem and its dis-
cretized version to any sampling period are positive dynamic
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systems. Also, 𝐴𝑑 is convergent. The transfer function of the
uncoupled continuous-time subsystem is

𝐺𝑐 (𝑠) = 𝐶𝑐 (𝑠𝐼2 − 𝐴𝑐)−1 𝐵𝑐 + 𝑑𝑐
= (𝑐𝑐1𝑏𝑐1 + 𝑐𝑐2𝑏𝑐2) 𝑠 + 𝛾𝑐𝑠2 + 3𝑠 + 2 + 𝑑𝑐;𝛾𝑐 = 2𝑐𝑐1𝑏𝑐1 + (𝑐𝑐1 + 𝑐𝑐2) 𝑏𝑐2,

(81)

where 𝑠 is the Laplace transform argument. It can be easily
checked that the continuous transfer function is positive real
if 𝑏𝑐1 = 𝑐𝑐2 = 0; 0 ≤ 𝛾𝑐 = 𝑐𝑐1𝑏𝑐2 ≤ 3 and 𝑑𝑐 > 0. If 𝑏𝑐2 > 0
and 𝑐𝑐1 > 0 with 𝑏𝑐1 = 𝑐𝑐2 = 0, then the triple (𝐴𝑐, 𝐵𝑐, 𝐶𝑐)
is controllable and observable. If, in addition, 𝛾𝑐 > 0, then𝐺𝑐(𝑠) is strictly positive real. If, furthermore, 𝑑𝑐 > 0 or 𝛾𝑐 < 3,
then 𝐺𝑐(𝑠) is strongly strictly positive real in the sense that
Re𝐺𝑐(𝑖𝜔) ≥ 𝑑𝑐 > 0, ∀𝜔 ∈ [−∞, ∞] [19]. We can choose𝑏𝑐1 = 𝑐𝑐2 = 0, 𝑐𝑐1 = 𝑏𝑐2 > 0, 𝑑𝑐 ≥ 0.

On the other hand, note that the uncoupled continuous-
time subsystem is a mathematical model for some well-
known linear dynamic systems as a damped mechanical sys-
tem, or an RLC electric circuit, described by the differential
equation:

V󸀠󸀠 (𝑡) + 3V󸀠 (𝑡) + 2V (𝑡) = 𝑓 (𝑡)= (𝑐𝑐1𝑏𝑐2 + 2𝑑𝑐) 𝑢 (𝑡) + 𝑑𝑐 (𝑢󸀠󸀠 (𝑡) + 3𝑢󸀠 (𝑡)) (82)

forced by a term 𝑓(𝑡) calculated from a primary control𝑢(𝑡) which is everywhere piecewise continuous if 𝑑𝑐 = 0
and everywhere twice continuous-time differentiable with
piecewise continuous second time-derivative if 𝑑𝑐 > 0.
Note that if ‖𝐴𝑐𝑠‖2 < 0.581976, then 𝐴𝑐 being Hurwitz
guarantees that 𝐴󸀠

𝑐 is convergent from the fulfillment of
the stability constraint 1 > ‖Φ−1

𝑐 (0.01)Γ𝑐(0.01)‖2‖𝐴𝑐𝑠‖2.
The transfer function of the digital subsystem is 𝐺𝑑(𝑧−1) =(1 − 0.25𝑧−1)/(1 − 0.5𝑧−1 − 0.4𝑧−2), where 𝑧 is the discrete
transfer function argument representing in the time delay
a one-step advance operator 𝑞, and equivalently, 𝑞−1 is a
one-step delay operator formally equivalent to 𝑧−1. It can
be directly checked that the digital transfer function is
strictly positive real with Re𝐺𝑑(𝑒𝑖𝜔) ≥ 𝑑𝑑 = 1 for 𝜔 ∈[0, 2𝜋].The extended𝐷𝐻 has four stable eigenvalues, namely,0.367879, 0.135335, 0.930074, −0.430074 in the free cou-
pling case, that is, if 𝐴𝑑𝑠 = 0, 𝐴𝑐𝑑 = 0. By using a similar
reasoning to that guaranteeing that𝐴𝑐 being Hurwitz implies
that 𝐴󸀠

𝑐 is convergent, one concludes that the system matrix𝐴 of the 𝐷𝐻 is convergent if the sufficiency constraint below
holds:󵄩󵄩󵄩󵄩󵄩𝐴 − Block Diag (𝐴󸀠

𝑐, 𝐴𝑑)󵄩󵄩󵄩󵄩󵄩2≤ max (󵄩󵄩󵄩󵄩Γ𝑐 (0.1)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝐴𝑐𝑑
󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐴𝑑𝑠

󵄩󵄩󵄩󵄩2)≤ max (0.632121 󵄩󵄩󵄩󵄩𝐴𝑐𝑑
󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐴𝑑𝑠

󵄩󵄩󵄩󵄩2)< 1󵄩󵄩󵄩󵄩󵄩Block Diag (𝐴󸀠
𝑐
−1, 𝐴−1

𝑑 )󵄩󵄩󵄩󵄩󵄩2 = 0.7406,

𝐴𝑔

= [[[[[[
0.989014 0.009856 0.6520998 0.09998940.000995017 0.991045 0.0432332 0.2161660.0001 0.0001 0.85 0.50.0001 0.0001 0 0.9

]]]]]]
,

𝐵𝑔 = [[[[[[
0.146403 0 00.0432332 0 0.082419990.25 0 00.4 0 0

]]]]]]
.

(83)

Now, the Discrete Positive Real Lemma holds by defining
an extended output 𝑦[𝑘] = (𝑦[𝑘], 𝑔𝑇𝑐 [𝑘])𝑇 = (𝑦[𝑘], 𝑢2[𝑘],𝑢3[𝑘])𝑇 equalizing the dimension of the input, that is, 𝑝 =𝑚 = 3 while incorporating two extra components to the
output to obtain the extended output with the corresponding
replacements 𝐶𝑔 → 𝐶𝑔, 𝐷𝑔 → 𝐷𝑔 in (74) leading to

𝑃𝑔 = 𝐼4;𝐿𝑔 = 0;
𝐶𝑔 = [[[[

𝐶𝑔0 0 0 00 0 0 0
]]]] = [[[

1 + 𝑐𝑐𝑠1 𝑐𝑐𝑠2 1 00 0 0 00 0 0 0]]] ;
𝐷𝑔 = [[[

𝑑𝑑 0 00 1 00 0 1]]] ,
𝑃𝑔 − 𝐴𝑇

𝑔𝑃𝑔𝐴𝑔 ⪰ 0.994093𝐼4 ≻ 0,
𝑆𝑇𝑔 = 𝐶𝑔 − 𝐵𝑇

𝑔𝐴𝑔

= [[[
𝑐𝑐𝑠1 + 0.855097 𝑐𝑐𝑠2 − 0.044354 0.690162 −0.1489840 0 0 0−0.000082 −0.0811681 −0.003563 −0.017816]]] ,

𝑅𝑔 = [[[
2𝑑𝑑 − 𝛾 − 0.033403 0 −0.0035630 2 − 𝛾 0−0.003563 0 2 − 𝛾 − 0.006793]]]

= [[[
1.21 0 −0.0035630 1.26793 0−0.003563 0 1.2 ]]] .

(84)

Now, for 𝛾 = 0.73207, 𝑑𝑑 = 0.9877365,𝑄𝑔

= [[[[[[
0.0217762 −0.019591 −1.1996452 −0.517061−0.001974 0.017794 −0.08024 −0.430494−1.19964524 −0.08024 −0.430494 −0.875032−0.517061 −0.430494 −0.875032 0.189968

]]]]]]
, (85)
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̃̂𝑀1𝑔 = [𝑄 𝑆𝑆𝑇 𝑅̃] ⪰ −𝑀̂1𝑔. (86)

(i) Note that if 𝑐𝑠1 = 𝑐𝑠2 = 0, 𝑑𝑑 = 1, 𝛾 = 1, then
𝑅𝑔 = [[[

0.956597 0 −0.0035630 1 0−0.003563 0 0.9932069]]] ,
𝛾 = 0.956597,𝑑𝑑 = 0.9732985.

(87)

The condition 𝑀̂1𝑔 ≻ 0 holds since 1 > 𝑠𝑔 = ‖𝑆𝑔‖2/
min[𝜆min(𝑃𝑔 − 𝐴𝑇

𝑔𝑃𝑔𝐴𝑔), 𝜆min(𝑅𝑔)] with ‖𝑆𝑔‖2 = 1.109815.
The positive realness condition of𝐺𝑔(𝑧) = Block Diag(𝐺𝑔(𝑧) −𝛾/2, (1 − 𝛾/2)𝐼2) is guaranteed, where 𝐺𝑔(𝑧) is the transfer
function of the nominal 𝐷𝐻𝑔, and is ensured from the
Discrete Positive Real Lemma under nominal parametrical
conditions of the state-space realization. See Theorem 12(i),
Eqs. (74). If the above basic constraint holdswith amargin 𝜀 >0 under the form 1 > 𝑠𝑔+𝜀, then one gets from (72) admissible
parametrical disturbances which keep the positive realness
and the Discrete Positive Real Lemma. Alternative results can
be got fromTheorem 10 based on the hybrid version of Youla’s
Factorization Lemma.

(ii) However, note that the positive realness of 𝐷𝐻 is
not fulfilled if, for instance, 𝛾 ≤ 2𝑑𝑑 − 1 and 𝑅𝑔 =[ 1.96656 0 −0.003563

0 1 0
−0.003563 0 0.9932069

] has two nonstable eigenvalues 1, 1.99933,
then 𝜆min(𝑃𝑔 − 𝐴𝑇

𝑔𝑃𝑔𝐴𝑔) = 1.93469, 𝜆min(𝑅𝑔) = 0.9932069.
A direct extension of the two last theorems for the case

when 𝑝 < 𝑚 + 𝑛 is the following.

Corollary 14. Assume that the hypotheses of Theorems 10 and
12 hold except that 𝑝 < 𝑚 + 𝑛. Then, both theorems still hold
for any fictitious extended output of 2𝑚 components defined by𝑦[𝑘] = [𝑦𝑇[𝑘] ... 𝑢−𝑇[𝑘]]𝑇, where 𝑢−[𝑘] is any set of 2𝑚 −𝑝 input components, with the matrices 𝐷𝑝 and 𝐷 having an
appropriate block submatrix with zero and unit entries.

The following alternative result to Theorems 10 and 12
follows with a direct proof, then omitted, for the case when
the control input in-between sampling instants is generated
directly from its value at sampling instants instead of from an
independent discrete sequence.

Corollary 15. Assume that the 𝑔𝑔𝑐[𝑘] = Δ 𝑔𝑢[𝑘] and 𝑔𝑐[𝑘] =Δ𝑢[𝑘] for the nominal 𝐷𝐻𝑔 and current 𝐷𝐻 for some given
matrices Δ 𝑔, Δ ∈ R𝑚×𝑚

+ and that hypothesis of Theorem 10
holds with the dimensional change 𝑝 = 𝑚 for inputs and
outputs resulting in the modified nominal and current control
matrices of order 2𝑛 × 𝑝 to those defined in (25c):𝐵𝑔

= [[∫𝑇

0
𝑒𝐴𝑔𝑐(𝑇−𝜏) [𝐵𝑔𝑐𝑠 + 𝐵𝑔𝑐𝑉𝐵𝑇

𝑔𝑐𝑒𝐴𝑇𝑔𝑐(𝑇−𝜏)Δ 𝑔] 𝑑𝜏𝐵𝑔𝑑

]] ;

𝐵 = [[∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏) [𝐵𝑐𝑠 + 𝐵𝑐𝑉𝐵𝑇

𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)Δ] 𝑑𝜏𝐵𝑑

]] .
(88)

Then, Theorems 10 and 12 hold.

4. Hyperstability Results

Hyperstability is a property associated with the nonnegativity
for all time of the input-output energy for all nonlinear
and time-varying output-feedback controller belonging to a
certain class which satisfies Popov’s type inequality for any
bounded initial conditions [11–13, 15] and which is linked
to the positive realness of the transfer matrix of the linear
dynamics. Thus, such a property is not associated, and it
should not be confused, with the positivity of the trajectory
solutions for any nonnegative initial conditions and controls.
Both properties can be simultaneously inherent to some sys-
tems under certain conditions. The following hyperstability
theoremholds as linked toTheorems 10 and 12 under controls
got from any feedback nonlinear time-varying controller
within the class satisfying Popov’s type inequality.

Theorem 16. Consider the discrete hybrid system 𝐷𝐻, (25a),
(25b), (25c), and (25d) driven by a sequence {𝑔[𝑘]}, with 𝑝 =𝑚 + 𝑛, and 𝐴𝑔, 𝐵𝑔, 𝐶𝑔, and 𝐷𝑔 being positive matrices, and
assume the following:

(1) The sequence {𝑔[𝑘]} is generated by feedback from
any nonlinear and eventually time-varying device of the form𝑔[𝑘] = −𝜑([𝑦[𝑘]], 𝑘) which satisfies the following Popov’s
inequality:

𝑘1∑
𝑘=𝑘0

𝑦𝑇 [𝑘] 𝜑 ([𝑦 [𝑘]] , 𝑘) ≥ −𝛾20 (89)

for some finite real number 𝛾0 ̸= 0 and any given integers 𝑘0 ≥ 0
and 𝑘1 > 𝑘0.

(2)The transfer matrix𝐺𝑔1(𝑧) = 𝐶𝑔(𝑧𝐼2𝑛−𝐴𝑔)−1𝐵𝑔+𝐷𝑔−(𝛾/2)𝐼𝑝 is positive real for some real constant 𝛾 ∈ R+ so that its
state-space realization satisfies (74)-(76) (equivalently (61)) for
some existing matrices 𝑄𝑔(⪰ 0) ∈ R2𝑛×2𝑛, 𝑃𝑔(≻ 0 diagonal) ∈
R2𝑛×2𝑛, 𝑆𝑔 ∈ R2𝑛×𝑝, and 𝑅𝑔 ∈ R𝑝×𝑝 (equivalently with existing
matrices 𝐾𝑔 ∈ R𝑞×𝑝, 𝐿𝑔 ∈ R2𝑛×𝑞).

(3) The parametrical disturbances satisfy the matrix con-
straints (72) or, equivalently, (59) with 𝑃̃ ⪰ −𝑃𝑔. Then, the
following properties hold:

(i) The given class of controls keeps the hyperstability of the
closed-loop DH from that of 𝐷𝐻𝑔 in the sense that {‖𝑥[𝑘]‖2}
is uniformly bounded for any given initial condition 𝑥[0]
and any nonlinear eventually time-varying controller satisfying
Popov’s inequality (89). If, furthermore, (𝐴𝑔, 𝐵𝑔) is controllable
and (26) holds, then (𝐴, 𝐵) is controllable and {‖𝑔[𝑘]‖2} is
uniformly bounded.

(ii) If 𝑀̂1𝐺 = 𝑀̂1𝑔 + ̃̂𝑀1𝑔 ≻ 0, 𝑄 ≥ −𝑄𝑔, 𝑅̃ ⪰ −𝑅𝑔, then{𝑥[𝑘]} → 0, {𝑢[𝑘]} → 0 (even if (𝐴, 𝐵) is not controllable)
under the given class of controls so that the closed-loop system
is asymptotically hyperstable. Equivalently,𝐺1𝑔(𝑧) = 𝐶𝑔(𝑧𝐼2𝑛−𝐴𝑔)−1𝐵𝑔 + 𝐷𝑔 − (𝛾/2)𝐼𝑝 is strictly positive real.
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(iii) Assume that 𝐺1𝑔(𝑧) is strictly positive real for some𝛾 ∈ R+.Then, the closed-loop 𝐷𝐻 keeps the asymptotic hyper-
stability property from that of the nominal 𝐷𝐻𝑔 in the sense
that Property (i) holds and, furthermore, {‖𝑥[𝑘]‖2}, {‖𝑔𝑐[𝑘]‖2},
and {‖𝑢[𝑘]‖2} converge asymptotically to zero for any given
initial condition 𝑥[0].

(iv) Assume that 𝑀̂1𝐺 ⪰ 0 with 𝑄𝑔 ≻ 0 and 𝑄 ≥−𝑄𝑔 (so that 𝐺𝑔1(𝑧) is positive real). Assume also that either𝐾𝑇
𝑔𝐾𝑔 ≻ 0 or (𝐴𝑔, 𝐵𝑔) is stabilizable while, furthermore and

correspondingly, either𝐾𝑇𝐾 ≻ 0 (equivalently𝑅 ≻ 0) or (𝐴, 𝐵)
is stabilizable. Then, Property (iii) still holds.

(v) Properties (i)–(iii) hold for Corollary 14 (𝑝 < 𝑚 + 𝑛)
and Corollary 15 (𝑝 = 𝑚) with the given modifications of the
parameterizations.

Proof. One gets from (86) and (89)

+ ∞ > 𝛾20 + 12𝑥 [𝑘0]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘0] ≥ 𝑘1∑
𝑘=𝑘0

𝑦𝑇 [𝑘] 𝑔 [𝑘]
= 12 {{{𝑥 [𝑘1 + 1]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘1 + 1] + 𝑘1∑

𝑘=𝑘0

[𝑥 [𝑘]𝑔 [𝑘]]𝑇
⋅ [[

(𝐿𝑔 + 𝐿̃) (𝐿𝑇𝑔 + 𝐿̃𝑇) + 𝑄𝑔 + 𝑄 (𝐿𝑔 + 𝐿̃) (𝐾𝑔 + 𝐾̃)(𝐾𝑇
𝑔 + 𝐾̃𝑇) (𝐿𝑇𝑔 + 𝐿̃𝑇) (𝐾𝑇

𝑔 + 𝐾̃𝑇) (𝐾𝑔 + 𝐾̃)]]
⋅ [𝑥 [𝑘]𝑔 [𝑘]]}}}

(90a)

≥ 12𝑥 [𝑘1 + 1]𝑇 (𝑃𝑔 + 𝑃̃) 𝑥 [𝑘1 + 1] (90b)

for any integers 𝑘0 ≥ 0 and 𝑘1 > 𝑘0 with the four-
block partitioned matrices of (90a) being at least positive
semidefinite (see Theorems 10 and 12). Since 𝑃𝑔 + 𝑃̃ ≻ 0, the
sequence {‖𝑥[𝑘]‖2} is uniformly bounded for any given initial
condition 𝑥[0] and any nonlinear eventually time-varying
controller satisfying Popov’s inequality (89).Thus, the current
closed-loop system 𝐷𝐻 is hyperstable as it is the nominal
one. If (𝐴𝑔, 𝐵𝑔) is controllable and (26) holds, then (𝐴, 𝐵) is
controllable for the parameterizations defined in (25c) and
then the uniform boundedness of {‖𝑥[𝑘]‖2} implies that of{‖𝑔[𝑘]‖2}. Property (i) has been proved. Under the conditions
of Property (ii), since 𝑀̂1𝑔 ≻ 0, so that 𝑄𝑔 ≻ 0 and 𝑅𝑔 ≻0 (equivalently, 𝐾𝑇

𝑔𝐾𝑔 ≻ 0), and ̃̂𝑀1𝑔 ⪰ −𝑀̂1𝑔, so that𝑄 ≥ −𝑄𝑔, 𝑅̃ ⪰ −𝑅𝑔, then 𝑀̂1𝐺 = 𝑀̂1𝑔 + ̃̂𝑀1𝑔 ≻ 0 and𝑃𝑔 ≻ 0 and 𝑃̃ ⪰ −𝑃𝑔, then it follows from the boundedness
of the second inequality of (89) for all 𝑘1 > 𝑘0 that the
sampled state and input of the nominal and current 𝐷𝐻
converge asymptotically to zero without the need for any
controllability assumption. This proves Property (ii). Under
the additional conditions of Property (iii), 𝐴 is convergent
and {𝑥[𝑘]} → 0 from the first identity of (68) which is
a discrete Lyapunov matrix equation. Note that (74)-(76)
hold with 𝑄𝑔 ≻ 0 and 𝑄 ⪰ −𝑄𝑔 (from the strict positive
realness condition) and 𝑅𝑔 ≻ 0 as well as 𝑅 ≻ 0 (since𝑅̃ ⪰ −𝑅𝑔) and furthermore, 𝐾𝑇

𝑔𝐾𝑔 ≻ 0 and 𝐾𝑇𝐾 ≻ 0.

Otherwise, lim𝜔→∞Re(𝐺1𝑔(𝑒𝑖𝜔) + 𝐺𝑇
1𝑔(𝑒−𝑖𝜔)) = 0 and the

nominal 𝐺1𝑔(𝑧) would not be strictly positive real as it would
happen with the disturbed transfer matrix. This implies that{𝑥[𝑘]} → 0 since otherwise lim𝑘1→∞ ∑𝑘1

𝑘0
𝑥𝑇[𝑘]𝑄𝑥[𝑘] would

be infinity from the system positivity. A similar argument
concludes that {𝑔[𝑘]} → 0, since𝐾𝑇𝐾 ≻ 0, without requiring
a controllability condition, since any eventual zero/pole
cancellation in the transfermatrix is necessarily strictly stable
(since the transfer matrix 𝐺1𝑔(𝑧) is strictly positive real)
so that any eventual uncontrollable mode is asymptotically
stable.This proves Property (iii). To prove Property (iv), note
that if 𝑀̂1𝐺 ⪰ 0 with 𝑄𝑔 ≻ 0 and 𝑄 ≥ −𝑄𝑔, then 𝐺1𝑔(𝑧) is
positive real. From the system positivity and the finite upper-
boundedness of (89), lim𝑘1→∞ ∑𝑘1

𝑘0
𝑥𝑇[𝑘](𝑄𝑔 + 𝑄)𝑥[𝑘] < ∞

for any𝑄 ⪰ −𝑄𝑔 implying that {𝑥[𝑘]} → 0 for any given finite𝑥[0]. In the same way, lim𝑘1→∞ ∑𝑘1
𝑘0

𝑔𝑇[𝑘]𝐾𝑇𝐾𝑔[𝑘] < ∞. If𝐾𝑇𝐾 ≻ 0, equivalently 𝑄 ≻ 0, {𝑔[𝑘]} → 0. Else, if the
discrete pair (𝐴, 𝐵) associated with 𝐷𝐻 is stabilizable, then
there exists a matrix transformation 𝑇 such that 𝑇−1𝐴𝑇 =[ 𝐴𝑐𝑐 𝐴𝑐𝑐

0 𝐴𝑐𝑐
], 𝑇−1𝐵 = [ 𝐵𝑐𝑐

0
] such that (𝐴𝑐𝑐, 𝐵𝑐𝑐) is controllable

and𝐴𝑐 (associatedwith uncontrollable but stablemodes from
the stabilizability assumption) is convergent. Therefore, the
uncontrollable (but globally asymptotically stable) discrete
substate of the transformed state sequence {𝑥𝑐𝑐[𝑘]} → 0
while its forced controllable substate of dimension 𝑛𝑐𝑐 ≤ 𝑛 =𝑛𝑐 + 𝑛𝑑 (the inequality being strict if there exists at least one
uncontrollable mode) satisfies𝑥𝑐𝑐𝑓 [𝑘]

= [𝐵𝑐𝑐 𝐴𝑐𝑐𝐵𝑐𝑐 ⋅ ⋅ ⋅ 𝐴𝑛𝑐𝑐−1
𝑐𝑐 𝐵𝑐𝑐] [[[[[[[

𝑔 [𝑘 − 𝑛𝑐𝑐]𝑔 [𝑘 − 𝑛𝑐𝑐 − 1]...𝑔 [𝑘 − 1]
]]]]]]]

(91)

so that {𝑥𝑐𝑐𝑓[𝑘]} → 0 (and the whole controllable state{𝑥𝑐𝑐[𝑘]} → 0 since its homogeneous response vanishes as
discrete time tends to infinity) if and only if {𝑔[𝑘]} → 0
since its associated controllability matrix is full rank. Thus,{𝑥𝑐𝑐[𝑘]} → 0, {𝑥𝑐𝑐[𝑘]} → 0 since the state in the original
coordinates satisfies {𝑥[𝑘]} → 0 and then {𝑔[𝑘]} → 0.
Property (iv) has been proved. Property (v) follows directly
from Properties (i)–(iii) and Corollaries 14-15.

Note that the assumption (3) of Theorem 16 implies that𝐺(𝑧) is positive real in Property (i) and strictly positive real
in Property (ii).

The solutions for any time satisfy the global stability
properties proved in the following result.

Corollary 17. Assume that 𝑉̂ is such that the factorization𝑉 = 𝑉̂𝑉̂𝑇 holds, the pair (𝐴𝑐, 𝐵𝑐𝑉̂𝑇) is controllable, and
all the hypotheses of Theorem 16(i) hold. Then, the current
hybrid system 𝐻 is globally asymptotically stable for any
bounded initial conditions under any continuous-time control
in-between samples (25b). As a result, the resulting hybrid 𝑆𝐻 is
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hyperstable. If the additional conditions of Theorem 16(ii) also
hold, then 𝐻 is, furthermore, asymptotically hyperstable.

Proof. FromTheorem 16(i), the sequences {𝑥[𝑘]}, {𝑢[𝑘]}, and{𝑔𝑐[𝑘]} are uniformly bounded for bounded initial condi-
tions. If the continuous-time control is generated from (25b)
and (𝐴𝑐, 𝐵𝑐𝑉̂𝑇) is controllable, then 𝑢(𝑡) is bounded for any𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇), ∀𝑘 ∈ Z0+. Also, 𝑥(𝑡) is bounded with
the proved bounded initial condition 𝑥[𝑘] for any 𝑘 ∈ Z0+
since the intersample control is bounded and the control
at sampling instants is also bounded. Property (i) has been
proved. Property (ii) is direct since, in addition, 𝑥[𝑘] → 0,𝑢[𝑘] → 0 as 𝑘 → ∞, and 𝑔𝑐[𝑘] → 0 as 𝑘 → ∞ implies𝑢(𝑡) → 0 for 𝑡 ∈ (𝑘𝑇, (𝑘 + 1)𝑇) as 𝑘 → ∞ from (25b).

Theorem 16 implies under the controllability of (𝐴𝑐, 𝐵𝑐)
that the hybrid system 𝐻 is globally stable as proved in the
subsequent result provided that the control input is piecewise
continuous on its definition domain. It does not require either
the stability or the critical stability of 𝐴𝑐.

Corollary 18. Consider the hybrid system 𝐻, (1a), (1b), and
(1c), with 𝑝 = 𝑚 + 𝑛, and 𝐴𝑔, 𝐵𝑔, 𝐶𝑔, and 𝐷𝑔 being
positive matrices so that the pair (𝐴𝑐, 𝐵𝑐) is controllable and
that the controllability Gramian ∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝐵𝑇

𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑑𝜏 is
monomial. Assume also that (𝐴𝑔, 𝐵𝑔) is controllable, that
(26) holds, that the control input 𝑢 is everywhere piecewise
continuous on its definition domain, and that an input driving
sequence {𝑔[𝑘]} is generated by feedback from any nonlinear
and eventually time-varying device of the form𝑔 [𝑘] = (𝑢𝑇 [𝑘] , 𝑔𝑇𝑐 [𝑘])𝑇 = −𝜑 ([𝑦 [𝑘]] , 𝑘) , (92)

𝑔𝑐 [𝑘] = (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝐵𝑇

𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑑𝜏)−1

⋅ (∫𝑇

0
𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝑢 (𝑘𝑇 + 𝜏) 𝑑𝜏) (93)

and satisfies Popov’s inequality (89) for some finite real number𝛾0 ̸= 0 and any given integers 𝑘0 ≥ 0 and 𝑘1 > 𝑘0. Assume also
that the assumptions (2) and (3) of Theorem 16 hold.

Then, {‖𝑥(𝑡)‖2} and {‖𝑢(𝑡)‖2} are uniformly bounded for
any bounded initial conditions so that the hybrid system 𝐻 is
globally stable.

Proof. Since ∫𝑇
0

𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝐵𝑇
𝑐 𝑒𝐴𝑇𝑐 (𝑇−𝜏)𝑑𝜏 is monomial, the

sequence {𝑔𝑐[𝑘]} is nonnegative from (93) for any nonneg-
ative input. Also, since 𝐺1𝑔(𝑧) = 𝐶𝑔(𝑧𝐼2𝑛 − 𝐴𝑔)−1𝐵𝑔 +𝐷𝑔 − (𝛾/2)𝐼𝑝 is strictly positive real from assumption (2)
of Theorem 16 the closed-loop nominal and current discrete𝐷𝐻𝑔 and𝐷𝐻 are hyperstable fromTheorem 16(i). Also, since
the pair (𝐴𝑐, 𝐵𝑐) is controllable, (93) is well posed since(𝑧𝐼2𝑛 −𝐴𝑔)−1 exists since it is the inverse of the controllability
Gramian on the time interval [0, 𝑇]. Equation (1a) has the
following unique solution for given initial conditions and
control input:𝑥𝑐 (𝑘𝑇 + 𝜎)= 𝑒𝐴𝑐𝜎𝑥𝑐 [𝑘]

+ ∫𝜎

0
𝑒𝐴𝑐(𝑇−𝜏) (𝐵𝑐𝑢 (𝑘𝑇 + 𝜏) + 𝐵𝑐𝑠𝑢 [𝑘]) 𝑑𝜏

+ (∫𝜎

0
𝑒𝐴𝑐(𝑇−𝜏)𝑑𝜏) (𝐴𝑐𝑠𝑥𝑐 [𝑘] + 𝐴𝑐𝑑𝑥𝑑 [𝑘]) ;

∀𝜏 ∈ (0, 𝑇) ; ∀𝑘 ∈ Z+.
(94)

FromTheorem 16(i) the sequences {‖𝑥[𝑘]‖2}, {‖𝑔𝑐[𝑘]‖2}, and{‖𝑢[𝑘]‖2} are uniformly bounded and 𝑢(𝑡) is bounded on[𝑘𝑇, (𝑘 + 1)𝑇), ∀𝑘 ∈ Z0+. Then, from (94), 𝑥𝑐(𝑡) is bounded as
well for 𝑡 ∈ (𝑘𝑇, (𝑘 + 1)𝑇), ∀𝑘 ∈ Z0+.

Example 19. Consider Example 13 with a choice of the aux-
iliary input satisfying {𝑔𝑐[𝑘]} → 0 and under the given
conditions guaranteeing that 𝐺𝑔(𝑧) = Block Diag(𝐺𝑔(𝑧) −𝛾/2, (1 − 𝛾/2)𝐼2) is positive real. From Corollary 18, the
closed-loop nominal system 𝐻𝑔 and the discrete 𝐷𝐻𝑔 are
positive and asymptotically hyperstable, that is, globally
asymptotically stable for the class of nonlinear and eventually
time-varying nonlinear controllers within the class satisfying
inequality (89). Thus, {𝑢[𝑘]} → 0, {𝑦[𝑘]} → 0, {𝑥[𝑘]} →0, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0, and 𝑢(𝑡) → 0 as 𝑡 → ∞ if 𝑢(𝑡) is
generated from (25b) in the intersample time interval for any
given initial conditions.

Remark 20. Note from (94) the important observation that
Corollary 18 does not conclude that 𝑥(𝑡) → 0 as 𝑡 → ∞
for any piecewise control input 𝑢(𝑡), even if 𝐴𝑐 is a stability
matrix and {𝑥[𝑘]} → 0 and {𝑢[𝑘]} → 0, which has been got
under the stronger conditions of Theorem 16(ii). If {𝑥[𝑘]} →0 and {𝑢[𝑘]} → 0, then

lim
𝑘→∞

(𝑥𝑐 (𝑘𝑇 + 𝜎) − ∫𝜎

0
𝑒𝐴𝑐(𝑇−𝜏)𝐵𝑐𝑢 (𝑘𝑇 + 𝜏) 𝑑𝜏)

= 0; ∀𝜎 ∈ [0, 𝑇) . (95)

We now introduce the concept of asymptotic hyperstability in
the mean in the sense that the system is globally stable and,
furthermore, the input and output power (and then its input-
output instantaneous power) converge asymptotically to zero
except eventually for a set of time instants zero measure.

Theorem 21. Assume the following:
(1) The pair (𝐴𝑐, 𝐵𝑐) is controllable.
(2) The nonlinear and eventually time-varying controller𝜑(𝑦(𝑡), 𝑡) is everywhere piecewise continuous with respect to 𝑦

and continuous with respect to 𝑡 in R𝑝
+ × R+.

(3) There is a partition of each interval [𝑘𝑇, (𝑘 + 1)𝑇) in
a finite number 𝑠𝑘 of disjoint intervals of length 0 < 𝑇𝑎𝑘 ≤𝑇 such that the sequences {𝑃𝑘𝑗𝑘}, {𝑄𝑘𝑗𝑘

}, and {𝑅𝑘𝑗𝑘
} consist of

positive definite elements for existing partitions of each interval[𝑘𝑇, (𝑘+1)𝑇) in a finite number 𝑠𝑘 of disjoint intervals of length0 < 𝑇𝑎𝑘 ≤ 𝑇 such that 𝜑(𝑦(𝑡), 𝑡) is continuous on each interval[𝑘𝑇 + (ℓ − 1)𝑇𝑎𝑘, (𝑘 + 1)𝑇 + ℓ𝑇𝑎𝑘) for ℓ = 1, 2, . . . , 𝑠𝑘, ∀𝑘 ∈ Z+.
Then, the closed-loop system 𝐻 is asymptotically hyper-

stable in the mean so that 𝑦(𝑡𝑘(𝜎)) → 0 and 𝑢(𝑡𝑘(𝜎)) → 0 as
for (𝑡𝑘+𝜎) ∈ ⋃𝑘∈Z+ ⋃1≤ℓ𝑘≤𝑠𝑘

(𝑘𝑇+(ℓ𝑘−1)𝑇𝑎𝑘, (𝑘+1)𝑇+ℓ𝑘𝑇𝑎𝑘)
as 𝑘 → ∞. If 𝜑(0, 𝑡) = 0, ∀𝑡 ∈ R+, then 𝐻 is asymptotically
hyperstable.
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Proof. Consider an auxiliary eventually time-varying sam-
pling period 𝑇𝑎𝑘 = 𝑇/𝑠𝑘 for the time interval [𝑘𝑇, (𝑘 + 1)𝑇) =[∑𝑘−1

𝑗=0 𝑠𝑗𝑇𝑎𝑗, ∑𝑘−1
𝑗=0 𝑠𝑗𝑇𝑎𝑗 + 𝑠𝑘𝑇𝑎𝑘) and 𝑠𝑘(∈ Z+) ≥ 1, ∀𝑘 ∈

Z+, is chosen so that 𝑢(𝑡) is continuous on [𝑘𝑇 + (ℓ𝑘 −1)𝑇𝑎𝑘, 𝑘𝑇 + ℓ𝑘𝑇𝑎𝑘) for ℓ = 1, 2, . . . , 𝑠𝑘, ∀𝑘 ∈ Z+. Note that, in
general, the nonunique choice of the eventually time-varying
auxiliary sampling period subject to a maximum threshold
period 𝑇𝑎𝑘 ≤ 𝑇𝑎 ≤ 𝑇, ∀𝑘 ∈ Z+, can be always made
since as 𝜑(𝑦(𝑡), 𝑡) is assumed to be everywhere piecewise
continuous with respect to 𝑦 and continuous with respect to𝑡, with eventual bounded isolated discontinuities, then 𝑢(𝑡) =−𝜑(𝑦(𝑡), 𝑡)has the sameproperty.Thus, one gets directly from
(1a) that the solution of the continuous-time substate from[𝑘𝑇, 𝑘𝑇 + 𝑇𝑎𝑘) to [𝑘𝑇, (𝑘 + 1)𝑇) = [𝑘𝑇, 𝑘𝑇 + 𝑠𝑘𝑇𝑎) with initial
conditions at 𝑘𝑇, ∀𝑘 ∈ Z+, is as follows:

𝑥𝑐 (𝑘𝑇 + ℓ𝑘𝑇𝑎𝑘) = 𝑥𝑐 (𝑘−1∑
𝑗=0

𝑠𝑗𝑇𝑎𝑗 + ℓ𝑘𝑇𝑎𝑘)
= 𝑒𝐴𝑐𝑇𝑎𝑘𝑥𝑐 (𝑘−1∑

𝑗=0

𝑠𝑗𝑇𝑎𝑗 + (ℓ𝑘 − 1) 𝑇𝑎𝑘)
+ ∫𝑇𝑎𝑘

0
𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏) [[𝐵𝑐𝑢 (𝑘−1∑

𝑗=0

𝑠𝑗𝑇𝑎𝑗 + (ℓ𝑘 − 1) 𝑇𝑎𝑘
+ 𝜏) + 𝐵𝑐𝑠𝑢 [𝑘]]] 𝑑𝜏 + (∫𝑇𝑎𝑘

0
𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏)𝑑𝜏)

⋅ (𝐴𝑐𝑠𝑥𝑐 [𝑘] + 𝐴𝑐𝑑𝑥𝑑 [𝑘]) = 𝑒𝐴𝑐𝑇𝑎𝑘𝑥𝑐 (𝑘𝑇 + (ℓ𝑘
− 1) 𝑇𝑎𝑘) + (∫𝑇𝑎𝑘

0
𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏)𝑑𝜏) (𝐴𝑐𝑠𝑥𝑐 [𝑘]

+ 𝐴𝑐𝑑𝑥𝑑 [𝑘])
+ [𝑇𝑎𝑘𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑐𝑘)𝐵𝑐

... 𝑇𝑎𝑘𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑑𝑘)𝐵𝑐𝑠
] 𝑢 [𝑘]

(96)

for ℓ𝑘 = 1, 2, . . . , 𝑠𝑘, ∀𝑘 ∈ Z+, where
V𝑐 (ℓ𝑘 − 1, 𝑇𝑎) [𝑘]

= (∫𝑇𝑎𝑘

0
𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏)𝐵𝑐𝐵𝑇

𝑐 𝑒𝐴𝑇𝑐 (𝑇𝑎𝑘−𝜏)𝑑𝜏)−1

⋅ (∫𝑇𝑎𝑘

0
𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏)𝐵𝑐𝑢 (𝑘−1∑

𝑗=0

𝑠𝑗𝑇𝑎𝑗 + (ℓ𝑘 − 1) 𝑇𝑎𝑘
+ 𝜏) 𝑑𝜏) ,

(97)

𝑢 [𝑘] = [[[
𝑢 (𝑘−1∑

𝑗=0

𝑠𝑗𝑇𝑎𝑗 + (ℓ𝑘 − 1) 𝑇𝑎𝑘 + 𝜏𝑐𝑘)𝑢 [𝑘] ]]] (98)

𝜏𝑐𝑘 = 𝜏𝑐𝑘(ℓ𝑘 − 1, 𝑇𝑎𝑘) and 𝜏𝑑𝑘 = 𝜏𝑑𝑘(𝑇𝑎𝑘) are vector func-
tions from (0, 𝑇𝑎𝑘) to R𝑛

+: ∀𝑘 ∈ Z+ after picking-up the

values in the open intersample fictitious period searching
its value leading to the integral mean value in the above
identities, one per row of 𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑐𝑘)𝐵𝑐 and one per row
of 𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑑𝑘)𝐵𝑐𝑠 and the corresponding input components,∀𝑘 ∈ Z+. The matrix inverse in (97), which is the inverse of
the controllability Gramian on [0, 𝑇𝑎𝑘], exists since the pair(𝐴𝑐, 𝐵𝑐) of nonnegative matrices is controllable on any time
interval [0, 𝑇𝑎𝑘] of nonzeromeasure.Thus, one gets from (96)
that

lim
𝑘→∞

(𝑥𝑐 (𝑘−1∑
𝑗=0

𝑠𝑗𝑇𝑎𝑗 + ℓ𝑘𝑇𝑎𝑘) − 𝑒𝐴𝑐𝑇𝑎𝑘𝑥𝑐 (𝑘−1∑
𝑗=0

𝑠𝑗𝑇𝑎𝑗
+ (ℓ𝑘 − 1) 𝑇𝑎𝑘) − 𝑇𝑎𝑘 [𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑐𝑘)𝐵𝑐𝑢 (𝑘𝑇
+ (ℓ𝑘 − 1) 𝑇𝑎𝑘 + 𝜏𝑐𝑘)]) = 0,

lim
𝑘→∞

(𝑦 (𝑘−1∑
𝑗=0

𝑠𝑗𝑇𝑎𝑗 + ℓ𝑘𝑇𝑎𝑘) − 𝐶𝑐𝑒𝐴𝑐𝑇𝑎𝑘𝑥𝑐 (𝑘−1∑
𝑗=0

𝑠𝑗𝑇𝑎𝑗
+ (ℓ𝑘 − 1) 𝑇𝑎𝑘) − 𝑇𝑎𝑘 [𝐶𝑐𝑒𝐴𝑐(𝑇𝑎𝑘−𝜏𝑐𝑘)𝐵𝑐𝑢 (𝑘𝑇
+ (ℓ𝑘 − 1) 𝑇𝑎𝑘 + 𝜏𝑐𝑘)]) − 𝐷𝑐𝑢 (𝑘−1∑

𝑗=0

𝑠𝑗𝑇𝑎𝑗
+ ℓ𝑘𝑇𝑎𝑘) = 0

(99)

since {𝑢[𝑘]} → 0 and {𝑦[𝑘]} → 0. Thus, for any given 𝜀 =(𝜀1, 𝜀2, . . . , 𝜀𝑛𝑐)𝑇 > 0, there exists 𝑡𝑘0 = 𝑡𝑘0(𝜀) ∈ R+ such that,
for any 𝑘1(> 𝑘0) ∈ Z+ and associate 𝑡𝑘1 > 𝑡𝑘0 ∈ R+ by defining
the auxiliary sampling instants 𝑡∑𝑘−1𝑗=0 𝑠𝑗+ℓ𝑘 , one gets from (90a)
and (90b)

+ ∞ > 𝛾20 = 𝛾20 + 12𝑥 [𝑡𝑘0]𝑇 (𝑃𝑔𝑐𝑘0 + 𝑃̃𝑐𝑘0) 𝑥 [𝑡𝑘0]
≥ 𝑘1∑

𝑘=𝑘0

𝑠𝑘∑
ℓ𝑗𝑘=0

𝑦𝑇 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘] 𝑢 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]
= 12 {𝑥 [𝑡𝑘1+1]𝑇 (𝑃𝑔𝑘1 + 𝑃̃𝑘1) 𝑥 [𝑡𝑘1+1] + 𝜀 (𝑡𝑘)
+ 𝑘1∑

𝑘=𝑘0

𝑠𝑘∑
ℓ𝑗𝑘=0

[[
𝑥 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]𝑔 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]]]

𝑇

⋅ [𝐿𝑘𝑗𝑘
𝐿𝑇𝑘𝑗𝑘 + 𝑄𝑗𝑘

𝐿𝑘𝑗𝑘𝐾𝑇
𝑘𝑗𝑘

𝐿𝑇𝑘𝑗𝑘 𝐾𝑇
𝑘𝑗𝑘

𝐾𝑘𝑗𝑘

] [[
𝑥 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]𝑔 [𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]]]

}}}}}

(100)

with |𝜀(𝑡𝑘)| ≤ 𝜀 for 𝑘 > 𝑘0, where 𝑦𝑐(𝑡) = 𝐶𝑐𝑥𝑐(𝑡) + 𝐷𝑐𝑢(𝑡)
for 𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇) = [∑𝑘−1

𝑗=0 𝑠𝑗𝑇𝑎𝑗, ∑𝑘−1
𝑗=0 𝑠𝑗𝑇𝑎𝑗 + 𝑠𝑘𝑇𝑎𝑘) and
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𝑦𝑐[𝑡𝑘] = 𝑦(∑𝑘−1
𝑗=0 𝑠𝑗𝑇𝑎𝑗) − 𝑦𝑑[∑𝑘−1

𝑗=0 𝑠𝑗𝑇𝑎𝑗], ∀𝑘 ∈ Z+. Note from
(100) that since 𝜀(𝑡𝑘) → 0 as 𝑘 → ∞, since 𝜀 can be taken
to be arbitrarily small, and simultaneously since the closed-
loop𝐷𝐻 is asymptotically hyperstable since thematrices𝑄𝑔𝑘,𝑃𝑔𝑘, 𝑅𝑔𝑘 and 𝑄𝑘, 𝑃𝑘, 𝑅𝑘, are positive definite matrices for all𝑘 ∈ Z+, then {𝑥[𝑘]} → 0, {𝑔[𝑘]} → 0, {𝑢[𝑘]} → 0, {𝑦[𝑘]} →0, { 𝑥[𝑡𝑘+ℓ𝑗𝑘𝑇𝑎𝑘+𝜏𝑐𝑗𝑘 ]

𝑔[𝑡𝑘+ℓ𝑗𝑘𝑇𝑎𝑘+𝜏𝑐𝑗𝑘 ]
} → 0, and {𝑢[𝑡𝑘 + ℓ𝑗𝑘𝑇𝑎𝑘 + 𝜏𝑐𝑗𝑘]} → 0 as

it follows from the direct extension Theorem 16(iv) to time-
varying parameterizations under sufficiency type conditions
of asymptotic hyperstability, provided that 𝑞 = 𝑝 and 𝐾𝑘

is nonsingular for all 𝑘 ∈ Z+ [13]. Since the state, input,
and output have nonnegative components, one also gets that𝑥𝑐(𝑡) → 0 and 𝑦(𝑡) → 0 as 𝑡 → ∞ except, eventually, at
isolated time instants where the nonlinearity 𝜑(𝑦(𝑡), 𝑡) is not
continuous.

If the linear part of the system is not positive real, or even
stable, or if it is suited to improve its relative stability, a linear
feedback law can be injected prior to the operation by the
nonlinear device towards the achievement of positive realness
or strictly positive realness of the transfer matrix describing
the linear feed-forward block. In particular, assume that
following state-feedback linear control law is given:𝑢 (𝑡) = 𝐹𝑐𝑥𝑐 (𝑡) + 𝐺𝑐𝑟 (𝑡) ,𝑢 [𝑘] = 𝐹𝑑𝑐𝑥𝑐 [𝑘] + 𝐹𝑑𝑑𝑥𝑑 [𝑘] + 𝐺𝑑𝑟 [𝑘] ; (101)

∀𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇); ∀𝑘 ∈ Z+, where the various matrices
are of the appropriate orders and nonnegative entries with𝑟(𝑡) = −𝜑(𝑦(𝑡), 𝑡) being an outer reference control generated
via output-feedback by nonlinear and, eventually, a time-
varying nonlinearity in the form 𝜑(𝑦(𝑡), 𝑡) subject to Popov’s

type inequality. If the control law is replaced in (1a)–(1c),
then the closed-loop hybrid system𝐻 becomes𝐻𝑐𝑙 described
according to the following parametrical replacements:

𝐴𝑐 󳨀→ 𝐴𝑐 = 𝐴𝑐 + 𝐵𝑐𝐹𝑐𝑐;𝐴𝑐𝑠 󳨀→ 𝐴𝑐𝑠 = 𝐴𝑐𝑠 + 𝐵𝑐𝑠𝐹𝑑𝑐,𝐴𝑐𝑑 󳨀→ 𝐴𝑐𝑑 = 𝐴𝑐𝑑 + 𝐵𝑐𝑠𝐹𝑑𝑑 + 𝐵𝑐𝐹𝑐𝑑,
𝐵𝑐 󳨀→ 𝐵𝑐 = 𝐵𝑐𝐺𝑐;𝐵𝑐𝑠 󳨀→ 𝐵𝑐𝑠 = 𝐵𝑐𝑠𝐺𝑑;
𝐵𝑑 󳨀→ 𝐵𝑑 = 𝐵𝑑𝐺𝑑,

𝐴𝑑𝑠 󳨀→ 𝐴𝑑𝑠 = 𝐴𝑑𝑠 + 𝐵𝑑𝐹𝑑𝑐;𝐴𝑑 󳨀→ 𝐴𝑑 = 𝐴𝑑 + 𝐵𝑑𝐹𝑑𝑑,
𝐶𝑐 󳨀→ 𝐶𝑐 = 𝐶𝑐 + 𝐷𝑐𝐹𝑐𝑐;𝐶𝑐𝑠 󳨀→ 𝐶𝑐𝑠 = 𝐶𝑐𝑠 + 𝐷𝑑𝐹𝑑𝑐,

(102)

𝐶𝑑 󳨀→ 𝐶𝑑 = 𝐶𝑑 + 𝐷𝑑𝐹𝑑𝑑;
𝐷𝑐 󳨀→ 𝐷𝑐 = 𝐷𝑐𝐺𝑑;𝐷𝑑 󳨀→ 𝐷𝑑 = 𝐷𝑑𝐺𝑑.

(103)

Consequently, (3) to (6) are modified, as driven by 𝑟(𝑡),
according to

𝐴 󳨀→ 𝐴 = [[𝑒𝐴𝑐𝑇 (𝐼𝑛𝑐 + (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐴𝑐𝑠) 𝑒𝐴𝑐𝑇 (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐴𝑐𝑑𝐴𝑑𝑠 𝐴𝑑

]] ,
𝐵0 󳨀→ 𝐵0 = [[𝑒𝐴𝑐𝑇 (∫𝑇

0
𝑒−𝐴𝑐𝜏𝑑𝜏) 𝐵𝑐𝑠𝐵𝑑

]] ,
𝐵V 󳨀→ 𝐵V = [𝐵0

... 𝐼𝑛𝑐0𝑛𝑑×𝑛𝑑 ] ,
𝐶 󳨀→ 𝐶 = [𝐶𝑐 + 𝐶𝑐𝑠

... 𝐶𝑑] ;
𝐷 = 𝐷𝑐 + 𝐷𝑑.

(104)

The following result is related to the achievement of the
hyperstability of the closed-loop extended discrete hybrid
system under the given control law as well as the asymptotic
hyperstability in the mean of 𝐻𝑐ℓ.

Theorem 22. Assume that (𝐴𝑐, 𝐵𝑐), (𝐴𝑑, 𝐵𝑑), (𝐴𝑑𝑠, 𝐵𝑑), and(𝐴𝑐𝑑, 𝐵𝑐) and (𝐴𝑐𝑑, 𝐵𝑐𝑠) are controllable pairs.Then, an appro-
priate feasible parameterization of the control gains in the
fictitious discrete control law (92)-(93), with the replacement
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𝑢(⋅) → 𝑟(⋅) and the system closed-loop reparameterization
(103), associated with the feedback control law (101), may lead
to a positive real transfer matrix of the positive closed-loop
system 𝐷𝐻𝑐ℓ and then its hyperstability if 𝑟(𝑡) = −𝜑(𝑦(𝑡), 𝑡)
for any nonlinear and eventually time-varying nonlinearity𝜑(𝑦(𝑡), 𝑡) which satisfies Popov’s type inequality.

If, furthermore,𝐷𝐻𝑐ℓ is asymptotically hyperstable and the
assumptions (2) and (3) of Theorem 21 hold, then the closed-
loop hybrid 𝐻𝑐ℓ is asymptotically hyperstable in the mean.

Proof. We refer with superscript bars to any matrices for
either the parameterization or the Positivity Real Lemma (𝑃,𝑄, 𝐿, 𝑆, and 𝑅) after performing the control law (101). Note
that, under controllability of any pair (𝐴, 𝐵), it is possible to
choose a state-feedback control gain 𝑋 for the achievement
of any given arbitrarily prescribed stable closed-loop place-
ment. Since (𝐴𝑐, 𝐵𝑐), (𝐴𝑑, 𝐵𝑑), (𝐴𝑑𝑠, 𝐵𝑑), and (𝐴𝑐𝑑, 𝐵𝑐) and(𝐴𝑐𝑑, 𝐵𝑐𝑠), so (𝐴𝑐𝑑 + 𝐵𝑐𝑠𝐹𝑑𝑑, 𝐵𝑐), are controllable pairs, it is
feasible to choose the control gains 𝐹𝑐𝑐 and 𝐹𝑑𝑑 in such a
way that 𝐴𝑐, and then 𝑒𝐴𝑐𝑇, and 𝐴𝑑 have stable eigenvalues
being as largely dominant, related to the spectral norms of𝐴𝑐𝑑 and 𝐴𝑑𝑠, as possible via the choices of 𝐹𝑐𝑑 and 𝐹𝑑𝑐 so
that the dynamics 𝐴 of the closed-loop extended discrete
hybrid systembe a convergentmatrix. On the other hand, one
can choose the 𝑝-matrix 𝐺𝑑 of sufficiently small nonnegative
entries so that 𝐵 and 𝐶, and then 𝑆 in the second constraint
of the Discrete Positive Real Lemma has a sufficiently small
spectral norm related to that of 𝐴 while 𝐷 + 𝐷𝑇 is dominant
norm of order 𝑜(‖𝐺𝑑‖2) over that of 𝐵𝑇𝑃𝐵, of order 𝑜(‖𝐺𝑑‖22),
so that 𝑅 ⪰ 0 and 𝑄 ⪰ 0. In this way, the discrete modified
closed-loop transfer matrix of 𝐷𝐻𝑐𝑙, related to the new input𝑟(𝑡), might be designed to be at least positive real. On the
other hand, the asymptotic hyperstability in the mean of 𝐻𝑐ℓ

follows from Theorem 21 from the asymptotic hyperstability
of 𝐷𝐻𝑐ℓ and the assumptions (2) and (3) of Theorem 21
since the first assumption of such a theorem holds since the
controllability of the pair (𝐴𝑐, 𝐵𝑐) implies that of the pair(𝐴𝑐, 𝐵𝑐).
5. Conclusions

This paper has investigated a class of hybrid systems dealt
with and characterized with explicit results its positivity and
some of its stability properties. The hybrid system consists
of a dynamic system which has a continuous-time substate
and a digital onewithmutual coupled dynamics. An extended
discrete hybrid system which describes any hybrid system in
the given class at sampling instants is investigated to establish
the stability and controllability properties of the discretized
system. The state of the extended discrete hybrid system
contains the discretized substate of the continuous-time
subsystem at sampling instants and the digital substate. The
paper studies the stability and controllability, in a robustness
context for parametrical disturbance, of such an extendeddis-
crete systemwhose state is defined by both the digital substate
and the discretized version of the continuous-time subsystem
at sampling instants. Two discrete versions of the KYP-
Lemma are given for (a) a simplified version of the hybrid

system related to the relevant pairs of the system and control
matrices and (b) for a more general version of such a lemma
related to the whole state-space realization involving the out-
put and input-output interconnection matrices as well. The
relationships of the positive realness of the transfer matrix to
the state-space realization are explicitly characterized related
to the discrete KYP-Lemma andYoula’s factorization Lemma.
The obtained results on positive realness are related to the
hyperstability and asymptotic hyperstability properties of the
hybrid system for any member of a class of nonlinear and
perhaps time-varying controller device satisfying Popov’s-
type inequality. Finally, some extensions are given for the
case where there is a supplementary stabilizing linear control
scheme which stabilizes the dynamics hybrid system prior
to the nonlinear and time-varying control law operation to
establish the hyperstability of the closed-loop system.
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