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Recently, Abdeljawad and Baleanu have formulated and studied the discrete versions of the fractional operators of order 0 < 𝛼 ≤ 1
with exponential kernels initiated by Caputo-Fabrizio. In this paper, we extend the order of such fractional difference operators to
arbitrary positive order.The extension is given to both left and right fractional differences and sums.Then, existence and uniqueness
theorems for the Caputo (CFC) and Riemann (CFR) type initial difference value problems by using Banach contraction theorem are
proved. Finally, a Lyapunov type inequality for the Riemann type fractional difference boundary value problems of order 2 < 𝛼 ≤ 3
is proved and the ordinary difference Lyapunov inequality then follows as𝛼 tends to 2 from right. Illustrative examples are discussed
and an application about Sturm-Liouville eigenvalue problem in the sense of this new fractional difference calculus is given.

1. Introduction

In the last few decades, the continuous and discrete fractional
differential equations have received considerable interest due
to their importance in many scientific fields; see, by way of
example not exhaustive enumeration, [1–7].

In [8], the authors introduced a fractional derivative
with an exponential kernel which tends to the ordinary
derivative as 𝛼 tends to 1. More properties of this fractional
derivative have been studied in [9], where the correspondent
fractional integral operatorwas formulated.Then, the authors
in [7] defined the left and right fractional derivatives with
exponential kernel in the Riemann sense and formulated the
right fractional derivatives in the sense of Caputo-Fabrizio
with complete investigation to the correspondent fractional
integrals and all the discrete versions with integration and
summation by parts applied in the fractional and discrete
fractional variational calculus. Then, very recently, the same
authors proved an interestingmonotonicity result in the sense
of this new fractional difference calculus in [10].

In the same direction, for the purpose of providing
more fractional derivatives with different nonsingular ker-
nels, the authors in [11] defined a fractional operator with

Mittag-Leffler kernel and in [12, 13] the complete details and
discrete versions have been studied. The exponential kernel
fractional derivatives and hence their discrete counterparts
are quite different from the Mittag-Leffler kernel fractional
operators. For example, the integral operator corresponding
to exponential kernel fractional derivatives consists of a mul-
tiple of the function𝑓 added to amultiple of the integration of𝑓, whereas the Mittag-Leffler kernel correspondent integral
operator consists of a multiple of 𝑓 and a Riemann-Liouville
fractional integral of the same order. Also, the monotonicity
coefficient of the CFR fractional difference operator of order0 < 𝛼 ≤ 1 is 𝛼 as shown in [10], whereas for the discrete
Mittag-Leffler CFR operator is 𝛼2 as proven in [14].

Motivated, by what we mentioned above, we extend
the order of fractional difference type operators with dis-
crete exponential kernels to arbitrary positive order, prove
existence and uniqueness theorems for the fractional initial
value difference problems, and finally prove a Lyapunov type
inequality for theCFR fractional difference operators of order2 < 𝛼 ≤ 3. The ordinary discrete Lyapunov inequality is then
confirmed as 𝛼 tends to 2 from the right not as in the case of
the classical fractional difference as 𝛼 tends to 2 from the left
[15]. For various fractional Lyapunov extensions we refer, for
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example, to [16–29]. All the authors there were motivated by
the following theorem on ordinary Lyapunov inequality.

Theorem 1 (see [30]). If the boundary value problem

𝑦󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝑦 (𝑡) = 0, 𝑡 ∈ (𝑎, 𝑏) , 𝑦 (𝑎) = 𝑦 (𝑏) = 0, (1)

has a nontrivial solution, where 𝑞 is a real continuous function;
then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 > 4𝑏 − 𝑎 . (2)

Notice that inequality (2) is known as the classical
Lyapunov inequality. It is worth mentioning that Cheng [31]
had pointed out that Lyapunov neither stated nor proved
Theorem 1 but he only stated the following result.

Theorem 2 (see [26]). Let 𝑞(𝑡) be a nontrivial, continuous,
and nonnegative function with period 𝜔 and let

∫𝜔
0
𝑞 (𝑠) 𝑑𝑠 ≤ 4𝜔 . (3)

Then the roots of the characteristic equation corresponding to
Hills equation

𝑥󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝑥 (𝑡) = 0, −∞ < 𝑡 < ∞, (4)

are purely imaginary with modulus one.

For the classical fractional calculus which is behindmany
extensions, we refer the reader to [32–35] and for the sake of
comparison with the classical discrete fractional case we refer
to [36] and the references therein. In addition, for the discrete
fractional operators and their duality we refer to [37–39].

The article will be organised as follows: In the remain-
ing part of this section we shall give some basics about
the discrete CFC and CFR fractional differences and their
correspondent sums as used in [7, 10]. In Section 2, we
extend the order of CFC and CFR fractional differences
and their correspondent sums to arbitrary positive order
and give some illustrative examples. In Section 3, we prove
some existence and uniqueness theorems bymeans of Banach
fixed point theorem and give some illustrative examples.
In Section 4, we prove a Lyapunov type inequality for a
fractional CFR difference boundary value problem of order2 < 𝛼 ≤ 3 and give an application to the fractional difference
Sturm-Liouville Eigenvalue problem (SLEP) to enrich the
applicability of our proven Lyapunov inequality in the frame
of fractional difference operators with discrete exponential
kernels.

2. Preliminaries

Definition 3 (see [36]). For 𝛼 > 0, 𝑎 ∈ R, 𝜌(𝑠) = 𝑠 − 1, and 𝑓
a real-valued function defined on N𝑎 = {𝑎, 𝑎 + 1, . . .}, the left
Riemann-Liouville fractional sum of order 𝛼 > 0 is defined
by

(𝑎∇−𝛼𝑓) (𝑡) = 1Γ (𝛼)
𝑡∑
𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠))𝛼−1 𝑓 (𝑠) . (5)

This is fractionalising of the 𝑛-iterated nabla sum

(𝑎∇−𝑛𝑓) (𝑡) = 1(𝑛 − 1)!
𝑡∑
𝑎+1

(𝑡 − 𝜌 (𝑠))𝑛−1 𝑓 (𝑠) . (6)

The right fractional integral ending at 𝑏, where usually we
assume that 𝑎 ≡ 𝑏 (mod 1), is defined by

(∇−𝛼𝑏 𝑓) (𝑡) = 1Γ (𝛼)
𝑏−1∑
𝑠=𝑡

(𝑠 − 𝜌 (𝑡))𝛼−1 𝑓 (𝑠) , (7)

where 𝑡𝛼 = Γ(𝑡 + 𝛼)/Γ(𝑡) and Γ(𝑡) is the well-known gamma
special function of 𝑡.
Definition 4 (see [7, 10]). For 𝛼 ∈ (0, 1) and 𝑓 defined on
N𝑎, or 𝑏N = {𝑏, 𝑏 − 1, . . .} in right case, we have the following
definitions:

(i) The left (nabla) CFC fractional difference is given by

(CFC𝑎∇𝛼𝑓) (𝑡) = 𝐵 (𝛼)1 − 𝛼
𝑡∑
𝑠=𝑎+1

(∇𝑠𝑓) (𝑠) (1 − 𝛼)𝑡−𝜌(𝑠)

= 𝐵 (𝛼) 𝑡∑
𝑠=𝑎+1

(∇𝑠𝑓) (𝑠) (1 − 𝛼)𝑡−𝑠 .
(8)

(ii) The right (nabla) CFC fractional difference has the
following form:

(CFC∇𝛼𝑏𝑓) (𝑡) = 𝐵 (𝛼)1 − 𝛼
𝑏−1∑
𝑠=𝑡

(−Δ 𝑠𝑓) (𝑠) (1 − 𝛼)𝑠−𝜌(𝑡)

= 𝐵 (𝛼) 𝑏−1∑
𝑠=𝑡

(−Δ 𝑠𝑓) (𝑠) (1 − 𝛼)𝑠−𝑡 .
(9)

(iii) The left (nabla) CFR fractional difference is written
as

(CFR𝑎∇𝛼𝑓) (𝑡) = 𝐵 (𝛼)1 − 𝛼∇𝑡
𝑡∑
𝑠=𝑎+1

𝑓 (𝑠) (1 − 𝛼)𝑡−𝜌(𝑠)

= 𝐵 (𝛼) ∇𝑡 𝑡∑
𝑠=𝑎+1

𝑓 (𝑠) (1 − 𝛼)𝑡−𝑠 .
(10)

(iv) The right (nabla) CFR fractional difference is given
by

(CFR∇𝛼𝑏𝑓) (𝑡) = 𝐵 (𝛼)1 − 𝛼 (−Δ 𝑡) 𝑏−1∑
𝑠=𝑡

𝑓 (𝑠) (1 − 𝛼)𝑠−𝜌(𝑡)

= 𝐵 (𝛼) (−Δ 𝑡) 𝑏−1∑
𝑠=𝑡

𝑓 (𝑠) (1 − 𝛼)𝑠−𝑡 ,
(11)

where 𝐵(𝛼) is a normalization positive constant depending
on 𝛼 satisfying 𝐵(0) = 𝐵(1) = 1, (∇𝑔)(𝑡) = 𝑔(𝑡)−𝑔(𝑡−1), and(Δ𝑔)(𝑡) = 𝑔(𝑡 + 1) − 𝑔(𝑡).
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In [7, 8], it was verified that (CF𝑎∇−𝛼CFR𝑎∇𝛼𝑓)(𝑡) = 𝑓(𝑡)
and (CFR𝑎∇𝛼CF𝑎∇−𝛼𝑓)(𝑡) = 𝑓(𝑡). Also, in the right case
(CF𝐼𝛼𝑏CFR∇𝛼𝑏𝑓)(𝑡) = 𝑓(𝑡) and (CFR∇𝛼𝑏CF∇−𝛼𝑏 𝑓)(𝑡) = 𝑓(𝑡).
From [7, 8] we recall the relation between the CFC and CFR
fractional differences as

(CFC
𝑎∇𝛼𝑓) (𝑡) = (CFR𝑎∇𝛼𝑓) (𝑡)

− 𝐵 (𝛼)1 − 𝛼𝑓 (𝑎) (1 − 𝛼)𝑡−𝑎 , (12)

and for the right case by

(CFC∇𝛼𝑏𝑓) (𝑡) = (CFR∇𝛼𝑏𝑓) (𝑡)
− 𝐵 (𝛼)1 − 𝛼𝑓 (𝑏) (1 − 𝛼)𝑏−𝑡 . (13)

Notice that we extend Definition 4 to arbitrary 𝛼 > 0 in the
next section.

Lemma 5 (see [7]). For 0 < 𝛼 < 1, we have
(𝐶𝐹𝑎∇−𝛼𝐶𝐹𝐶𝑎∇𝛼𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑎) ,
(𝐶𝐹∇−𝛼𝑏 𝐶𝐹𝐶∇𝛼𝑏𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑏) . (14)

Notation. For a positive integer 𝑛, we have
(i) (∇𝑛𝑓)(𝑡) = (∇∇ ⋅ ⋅ ⋅ ∇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
𝑓)(𝑡).

(ii) (Δ𝑛𝑓)(𝑡) = (ΔΔ ⋅ ⋅ ⋅ Δ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

𝑓)(𝑡).
(iii) (⊖Δ𝑛𝑓)(𝑡) = (−1)𝑛(Δ𝑛𝑓)(𝑡).

3. Higher Order Fractional
Differences and Sums

Definition 6. Let 𝑛 < 𝛼 ≤ 𝑛 + 1 and 𝑓 be defined on N𝑎 ∩ 𝑏N.
Set 𝛽 = 𝛼 − 𝑛 and define

(CFC𝑎∇𝛼𝑓) (𝑡) = (CFC𝑎∇𝛽∇𝑛𝑓) (𝑡) ,
(CFR𝑎∇𝛼𝑓) (𝑡) = (CFR𝑎∇𝛽∇𝑛𝑓) (𝑡) .

(15)

The associated fractional sum is given by

(CF𝑎∇−𝛼𝑓) (𝑡) = (𝑎∇−𝑛 CF𝑎∇−𝛽𝑓) (𝑡) . (16)

Note that if we use the convention that (𝑎∇−0𝑓)(𝑡) = 𝑓(𝑡),
then for the case 0 < 𝛼 ≤ 1 we have 𝛽 = 𝛼 and hence we
obtain Definition 4. Also, the convention (∇0𝑓)(𝑡) = 𝑓(𝑡)
leads to (CFR𝑎∇𝛼𝑓)(𝑡) and (CFC𝑎∇𝛼𝑓)(𝑡) as in Definition 4 for0 < 𝛼 ≤ 1.
Remark 7. In Definition 6, if we let 𝛼 = 𝑛 + 1 then 𝛽 = 1 and
hence (CFR𝑎∇𝛼𝑓)(𝑡) = (CFR𝑎∇1∇𝑛𝑓)(𝑡) = (∇𝑛+1𝑓)(𝑡). Also, by

noting that (CF𝑎∇−1𝑓)(𝑡) = (𝑎∇−1𝑓)(𝑡), we see that for𝛼 = 𝑛+1
we have (CF𝑎∇−𝛼𝑓)(𝑡) = (𝑎∇−(𝑛+1)𝑓)(𝑡). Also, for 0 < 𝛼 ≤ 1 we
reobtain the concepts defined in Definition 4. Therefore, our
generalization to higher order case is confirmed.

Analogously, in the right case we have the following
extension.

Definition 8. Let 𝑛 < 𝛼 ≤ 𝑛 + 1 and 𝑓 be defined on N𝑎 ∩ 𝑏N.
Set 𝛽 = 𝛼 − 𝑛. Then 𝛽 ∈ (0, 1] and we define

(CFC∇𝛼𝑏𝑓) (𝑡) = CFC∇𝛽𝑏 (⊖Δ𝑛𝑓) (𝑡) ,
(CFR∇𝛼𝑏𝑓) (𝑡) = CFR∇𝛽𝑏 (⊖Δ𝑛𝑓) (𝑡) .

(17)

The associated fractional integral is given by

(CF∇−𝛼𝑏 𝑓) (𝑡) = (∇−𝑛𝑏 CF∇−𝛽𝑏 𝑓) (𝑡) . (18)

An immediate extension of (12) and (13) by using Defini-
tion 6 is the following.

Proposition 9. For 𝑓 defined on N𝑎 ∩ 𝑏N and 𝑛 < 𝛼 ≤ 𝑛 + 1,
we have

(𝐶𝐹𝐶𝑎∇𝛼𝑓) (𝑡) = (𝐶𝐹𝑅𝑎∇𝛼𝑓) (𝑡)
− 𝐵 (𝛼)1 − 𝛼 (∇𝑛𝑓) (𝑎) (1 − 𝛼)𝑡−𝑎 , (19)

and for the right case

(𝐶𝐹𝐶∇𝛼𝑏𝑓) (𝑡) = (𝐶𝐹𝑅∇𝛼𝑏𝑓) (𝑡)
− 𝐵 (𝛼)1 − 𝛼 (⊖Δ𝑛𝑓) (𝑏) (1 − 𝛼)𝑏−𝑡 . (20)

Next proposition explains the action of the arbitrary
order sum operator CF

𝑎∇−𝛼 on the arbitrary order CFR and
CFC differences (and vice versa) and the action of the CFR
difference on the CF correspondent sum operator.

Proposition 10. For 𝑢(𝑡) defined onN𝑎 ∩ 𝑏N and for some 𝑛 ∈
N0 with 𝑛 < 𝛼 ≤ 𝑛 + 1, we have

(i) (𝐶𝐹𝑅𝑎∇𝛼𝐶𝐹𝑎∇−𝛼𝑢)(𝑡) = 𝑢(𝑡).
(ii) (𝐶𝐹𝑎∇−𝛼𝐶𝐹𝑅𝑎∇𝛼𝑢)(𝑡) = 𝑢(𝑡) −∑𝑛−1𝑘=0((∇𝑘𝑢)(𝑎)/𝑘!)(𝑡 −𝑎)𝑘.
(iii) (𝐶𝐹𝑎∇−𝛼𝐶𝐹𝐶𝑎∇𝛼𝑢)(𝑡) = 𝑢(𝑡)−∑𝑛𝑘=0((∇𝑘𝑢)(𝑎)/𝑘!)(𝑡−𝑎)𝑘.

Proof. (i) ByDefinition 6 and the statement afterDefinition 4,
we have

(CFR𝑎∇𝛼CF𝑎∇−𝛼𝑢) (𝑡) = CFR
𝑎∇𝛽∇𝑛𝑎∇−𝑛 CF𝑎∇−𝛽𝑢 (𝑡)

= CFR
𝑎∇𝛽CF𝑎∇−𝛽𝑢 (𝑡) = 𝑢 (𝑡) .

(21)
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(ii) By Definition 6 and the statement after Definition 4,
we have

(CF𝑎∇−𝛼CFR𝑎∇𝛼𝑢) (𝑡) = (𝑎∇−𝑛 CF𝑎∇−𝛽CFR𝑎∇𝛽∇𝑛𝑢) (𝑡)
= 𝑎∇−𝑛∇𝑛𝑢 (𝑡)
= 𝑢 (𝑡) − 𝑛−1∑

𝑘=0

(∇𝑘𝑢) (𝑎)
𝑘! (𝑡 − 𝑎)𝑘 ,

(22)

where 𝛽 = 𝛼 − 𝑛.
(iii) By Lemma 5 applied to 𝑓(𝑡) = (∇𝑛𝑢)(𝑡), we have
(CF𝑎∇−𝛼CFC𝑎∇𝛼𝑢) (𝑡) = 𝑎∇−𝑛𝑎∇−𝛽CFC𝑎∇𝛽∇𝑛𝑢 (𝑡)

= 𝑎∇−𝑛 [∇𝑛𝑢 (𝑡) − (∇𝑛𝑢) (𝑎)]
= 𝑢 (𝑡) − 𝑛−1∑

𝑘=0

(∇𝑘𝑢) (𝑎)
𝑘! (𝑡 − 𝑎)𝑘

− (∇𝑛𝑢) (𝑎) (𝑡 − 𝑎)𝑛𝑛!
= 𝑢 (𝑡) − 𝑛∑

𝑘=0

(∇𝑘𝑢) (𝑎)
𝑘! (𝑡 − 𝑎)𝑘 .

(23)

Using the facts that ⊖Δ𝑛∇−𝑛𝑏 𝑔(𝑡) = 𝑔(𝑡),
∇𝑛𝑏 ⊖Δ𝑛𝑔 (𝑡) = 𝑔 (𝑡) − 𝑛−1∑

𝑘=0

(⊖Δ𝑘𝑔) (𝑏)𝑘! (𝑏 − 𝑡)𝑘 , (24)

and making use of Lemma 5 and the statement after Defini-
tion 4, we can state, for the right case, the following.

Proposition 11. For 𝑢(𝑡) defined on N𝑎,𝑏 and 𝛼 ∈ (𝑛, 𝑛 + 1],
for some 𝑛 ∈ N0, we have

(i) (𝐶𝐹𝑅∇𝛼𝑏𝐶𝐹∇−𝛼𝑏 𝑢)(𝑡) = 𝑢(𝑡).
(ii) (𝐶𝐹∇−𝛼𝑏 𝐶𝐹𝑅∇𝛼𝑏𝑢)(𝑡) = 𝑢(𝑡)−∑𝑛−1𝑘=0((⊖Δ𝑘𝑢)(𝑏)/𝑘!)(𝑏−𝑡)𝑘.
(iii) (𝐶𝐹∇−𝛼𝑏 𝐶𝐹𝐶∇𝛼𝑏𝑢)(𝑡) = 𝑢(𝑡)−∑𝑛𝑘=0((⊖Δ𝑘𝑢)(𝑏)/𝑘!)(𝑏−𝑡)𝑘.

Example 12. Consider the initial value problem:

(CFC𝑎∇𝛼𝑦) (𝑡) = 𝐹 (𝑡) , (25)

where 𝐹(𝑡) is defined on N𝑎,𝑏 = N𝑎 ∩ 𝑏N. Let us consider two
cases depending on the order 𝛼 > 0:

(i) Assume 0 < 𝛼 ≤ 1, 𝑦(𝑎) = 𝑐, and 𝐹(𝑎) = 0. By
applying CF

𝑎∇−𝛼 and making use of Proposition 10, we
get the solution

𝑦 (𝑡) = 𝑐 + 1 − 𝛼𝐵 (𝛼)𝐹 (𝑡) + 𝛼𝐵 (𝛼)
𝑡∑
𝑠=𝑎+1

𝐹 (𝑠) . (26)

Notice that the condition 𝐹(𝑎) = 0 verifies the initial
condition 𝑦(𝑎) = 𝑐. In addition, when 𝛼 → 1 we
obtain the solution of the ordinary difference initial
value problem (∇𝑦)(𝑡) = 𝐹(𝑡), 𝑦(𝑎) = 𝑐.

(ii) Assume 1 < 𝛼 ≤ 2, 𝐹(𝑎) = 0, 𝑦(𝑎) = 𝑐1, and(∇𝑦)(𝑎) = 𝑐2. By applying CF
𝑎∇−𝛼 and making use of

Proposition 10 and Definition 6 with 𝛽 = 𝛼 − 1, we
obtain the solution

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 2 − 𝛼𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

𝐾 (𝑠)

+ 𝛼 − 1𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠)) 𝐹 (𝑠) .
(27)

Notice that the solution𝑦(𝑡) verifies𝑦(𝑎) = 𝑐1 without
the use of 𝐹(𝑎) = 0. However, it verifies (∇𝑦)(𝑎) = 𝑐2
under the assumption 𝐹(𝑎) = 0. Also, note that when𝛼 → 2 we recover the solution of the second-order
ordinary difference initial value problem (∇2𝑦)(𝑡) =𝐹(𝑡), 𝑦(𝑎) = 𝑐1, and (∇𝑦)(𝑎) = 𝑐2.

In the next section, we prove existence and uniqueness
theorems for some types of CFC and CFR initial value
difference problems.

Example 13. Consider the CFC difference boundary value
problem

(CFC𝑎∇𝛼𝑦) (𝑡) + 𝑞 (𝑡) 𝑦 (𝑡) = 0,
1 < 𝛼 ≤ 2, 𝑡 ∈ N𝑎,𝑏, 𝑦 (𝑎) = 𝑦 (𝑏) = 0. (28)

Then 𝛽 = 𝛼−1 and by Proposition 10 if we apply the operator
CF
𝑎∇−𝛼, we obtain the solution

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) − (CF𝑎∇−𝛼𝑞 (⋅) 𝑦 (⋅)) (𝑡) . (29)

But

(CF𝑎∇−𝛼𝑞 (⋅) 𝑦 (⋅)) (𝑡) = 1 − 𝛽
𝐵 (𝛽)

𝑡∑
𝑠=𝑎+1

𝑞 (𝑠) 𝑦 (𝑠)
+ 𝛽
𝐵 (𝛽) 𝑎∇−2𝑞 (𝑡) 𝑦 (𝑡) .

(30)

Hence, the solution has the form

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) − 2 − 𝛼𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

𝑞 (𝑠) 𝑦 (𝑠)

− 𝛼 − 1𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠)) 𝑞 (𝑠) 𝑦 (𝑠) .
(31)

The boundary conditions imply that 𝑐1 = 0 and
𝑐2 = 2 − 𝛼(𝑏 − 𝑎) 𝐵 (𝛼 − 1)

𝑏∑
𝑠=𝑎+1

𝑞 (𝑠) 𝑦 (𝑠)

+ 𝛼 − 1(𝑏 − 𝑎) 𝐵 (𝛼 − 1)
𝑏∑
𝑠=𝑎+1

(𝑏 − 𝜌 (𝑠)) 𝑞 (𝑠) 𝑦 (𝑠) .
(32)
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Hence,

𝑦 (𝑡) = (2 − 𝛼) (𝑡 − 𝑎)(𝑏 − 𝑎) 𝐵 (𝛼 − 1)
𝑏∑
𝑠=𝑎+1

𝑞 (𝑠) 𝑦 (𝑠)

− (𝛼 − 1) (𝑡 − 𝑎)(𝑏 − 𝑎) 𝐵 (𝛼 − 1)
𝑏∑
𝑠=𝑎+1

(𝑏 − 𝜌 (𝑠)) 𝑞 (𝑠) 𝑦 (𝑠)

− 2 − 𝛼𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

𝑞 (𝑠) 𝑦 (𝑠)

− 𝛼 − 1𝐵 (𝛼 − 1)
𝑡∑
𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠)) 𝑞 (𝑠) 𝑦 (𝑠) .

(33)

4. Existence and Uniqueness Theorems for
the Initial Value Problem Types

In this section we prove existence and uniqueness theorems
for CFC and CFR type initial value problems.

Theorem 14. Consider the system

(𝐶𝐹𝐶𝑎∇𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,
𝑡 ∈ N𝑎,𝑏, 0 < 𝛼 ≤ 1, 𝑦 (𝑎) = 𝑐, (34)

such that 𝑓(𝑎, 𝑦(𝑎)) = 0,𝐴((1−𝛼)/𝐵(𝛼)+𝛼(𝑏−𝑎)/𝐵(𝛼)) < 1,
and |𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐴|𝑦1 − 𝑦2|, 𝐴 > 0, where 𝑓 : N𝑎,𝑏 ×
R → R and 𝑦 : N𝑎,𝑏 → R. Then, system (34) has a unique
solution of the form

𝑦 (𝑡) = 𝑐 + 𝐶𝐹𝑎∇−𝛼𝑓 (𝑡, 𝑦 (𝑡)) . (35)

Proof. First, by the help of Proposition 10, (12), and taking
into account the fact that 𝑓(𝑎, 𝑦(𝑎)) = 0, it is straight forward
to prove that 𝑦(𝑡) satisfies system (34) if and only if it satisfies
(35).

Let 𝑋 = {𝑥 : max𝑡∈N𝑎,𝑏 |𝑥(𝑡)| < ∞} be the Banach space
endowed with the norm ‖𝑥‖ = max𝑡∈N𝑎,𝑏 |𝑥(𝑡)|. On 𝑋 define
the linear operator

(𝑇𝑥) (𝑡) = 𝑐 + CF
𝑎∇−𝛼𝑓 (𝑡, 𝑥 (𝑡)) . (36)

Then, for arbitrary 𝑥1, 𝑥2 ∈ 𝑋 and 𝑡 ∈ N𝑎,𝑏, we have by
assumption that

󵄨󵄨󵄨󵄨(𝑇𝑥1) (𝑡) − (𝑇𝑥2) (𝑡)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨CF𝑎∇−𝛼 [𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡))]󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐴(1 − 𝛼𝐵 (𝛼) + 𝛼 (𝑏 − 𝑎)𝐵 (𝛼) ) 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 ,

(37)

and hence 𝑇 is a contraction. By Banach fixed point theorem,
there exists a unique 𝑥 ∈ 𝑋 such that 𝑇𝑥 = 𝑥 and hence the
proof is complete.

Remark 15. Similar existence and uniqueness theorems can
be proved for system (34) with higher order by making use of

Proposition 10. The condition 𝑓(𝑎, 𝑦(𝑎)) = 0 always can not
be avoided as we have seen in Example 12 with 𝑓(𝑡, 𝑦(𝑡)) =𝐹(𝑡). As a result ofTheorem 14,we conclude that the fractional
difference linear initial value problem

(CFC𝑎∇𝛼𝑦) (𝑡) = 𝑟𝑦 (𝑡) ,
𝑟 ∈ R, 𝑡 ∈ N𝑎,𝑏, 0 < 𝛼 ≤ 1, 𝑦 (𝑎) = 𝑐, (38)

can have only the trivial solution unless 𝛼 = 1. Indeed,
the solution satisfies 𝑦(𝑡) = 𝑐 + 𝑟((1 − 𝛼)/𝐵(𝛼))𝑦(𝑡) +(𝛼𝑟/𝐵(𝛼))∑𝑡𝑠=𝑎+1 𝑦(𝑠). This solution is only verified at 𝑎 if(1 − 𝛼)𝑦(𝑎) = 0.
Theorem 16. Consider the system

(𝐶𝐹𝑅𝑎∇𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,
𝑡 ∈ N𝑎,𝑏, 1 < 𝛼 ≤ 2, 𝑦 (𝑎) = 𝑐, (39)

such that (𝐴/𝐵(𝛼−1))((2−𝛼)(𝑏−𝑎)+(𝛼−1)(𝑏−𝑎)2/2) < 1, and|𝑓(𝑡, 𝑦1)−𝑓(𝑡, 𝑦2)| ≤ 𝐴|𝑦1−𝑦2|,𝐴 > 0, where𝑓 : N𝑎,𝑏×R → R

and 𝑦 : N𝑎,𝑏 → R. Then, system (34) has a unique solution of
the form

𝑦 (𝑡) = 𝑐 + 𝐶𝐹𝑎∇−𝛼𝑓 (𝑡, 𝑦 (𝑡))
= 𝑐 + 2 − 𝛼𝐵 (𝛼 − 1)

𝑡∑
𝑠=𝑎+1

𝑓 (𝑠, 𝑦 (𝑠))
+ 𝛼 − 1𝐵 (𝛼 − 1) (𝑎∇−2𝑓 (⋅, 𝑦 (⋅)) (𝑡)) .

(40)

Proof. If we apply CF
𝑎∇−𝛼 to system (39) and make use of

Proposition 10 with 𝛽 = 𝛼 − 1 then we reach at the
representation (40). Conversely, if we apply CFR

𝑎∇𝛼, make use
of Proposition 10 and by noting that

CFR
𝑎∇𝛼 = CFR

𝑎∇𝛽∇𝑡𝑐 = 0, (41)

we obtain system (39). Hence, 𝑦(𝑡) satisfies system (39) if and
only if it satisfies (40).

Let 𝑋 = {𝑥 : max𝑡∈N𝑎,𝑏 |𝑥(𝑡)| < ∞} be the Banach space
endowed with the norm ‖𝑥‖ = max𝑡∈N𝑎,𝑏 |𝑥(𝑡)|. On 𝑋 define
the linear operator

(𝑇𝑥) (𝑡) = 𝑐 + CF
𝑎∇−𝛼𝑓 (𝑡, 𝑥 (𝑡)) . (42)

Then, for arbitrary 𝑥1, 𝑥2 ∈ 𝑋 and 𝑡 ∈ N𝑎,𝑏, we have by
assumption that󵄨󵄨󵄨󵄨(𝑇𝑥1) (𝑡) − (𝑇𝑥2) (𝑡)󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨CF𝑎∇−𝛼 [𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡))]󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐴𝐵 (𝛼 − 1) ((2 − 𝛼) (𝑏 − 𝑎) + (𝛼 − 1) (𝑏 − 𝑎)22 )
⋅ 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 ,

(43)

and hence 𝑇 is a contraction. By Banach Contraction Princi-
ple, there exists a unique 𝑥 ∈ 𝑋 such that 𝑇𝑥 = 𝑥 and hence
the proof is complete.



6 Discrete Dynamics in Nature and Society

5. The Lyapunov Inequality for the CFR
Difference Boundary Value Problem

In this section, we prove a Lyapunov inequality for a CFR
boundary value difference problem of order 2 < 𝛼 ≤ 3.

Consider the boundary value problem

(CFR𝑎∇𝛼𝑦) (𝑡) + 𝑞 (𝑡) 𝑦𝜌 (𝑡) = 0,
2 < 𝛼 ≤ 3, 𝑡 ∈ N𝑎+1,𝑏−1, 𝑦 (𝑎) = 𝑦 (𝑏) = 0, (44)

where, 𝑦𝜌(𝑡) = 𝑦(𝜌(𝑡)) = 𝑦(𝑡 − 1).
Lemma 17. 𝑦(𝑡) is a solution of the boundary value problem
(44) if and only if it satisfies the equation

𝑦 (𝑡) = 𝑏∑
𝑠=𝑎+1

𝐺 (𝑡, 𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) , (45)

where
𝐺 (𝑡, 𝑠)

= {{{{{{{

(𝑡 − 𝑎) (𝑏 − 𝜌 (𝑠))
𝑏 − 𝑎 , 𝑡 + 1 ≤ 𝑠, 𝑡, 𝑠 ∈ N𝑎,𝑏,

( (𝑡 − 𝑎) (𝑏 − 𝜌 (𝑠))
𝑏 − 𝑎 − (𝑡 − 𝜌 (𝑠))) , 𝑠 − 1 ≤ 𝑡, 𝑡, 𝑠 ∈ N𝑎,𝑏,

𝑇 (𝑡, 𝑦 (𝑡)) = 𝐶𝐹𝑎∇𝛽 (𝑞 (⋅) 𝑦𝜌 (⋅)) (𝑡)
= 1 − 𝛽
𝐵 (𝛽)𝑞 (𝑡) 𝑦𝜌 (𝑡) +

𝛽
𝐵 (𝛽) (𝑎∇−1𝑞 (⋅) 𝑦𝜌 (⋅)) (𝑡) , 𝛽 = 𝛼 − 2.

(46)

Proof. Apply the integral CF
𝑎∇−𝛼 to (44) and make use of

Definition 6 and Proposition 10 with 𝑛 = 2 and 𝛽 = 𝛼 − 2
to reach

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) − (𝑎∇−2𝑇 (⋅, 𝑦 (⋅))) (𝑡)
= 𝑐1 + 𝑐2 (𝑡 − 𝑎) − 𝑡∑

𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠)) 𝑇 (𝑠, 𝑦 (𝑠)) . (47)

The condition 𝑦(𝑎) = 0 implies that 𝑐1 = 0 and the
condition 𝑦(𝑏) = 0 implies that 𝑐2 = (1/(𝑏 − 𝑎))∑𝑏𝑠=𝑎+1(𝑏 −𝜌(𝑠))𝑇(𝑠, 𝑦(𝑠)), and hence

𝑦 (𝑡) = 𝑡 − 𝑎𝑏 − 𝑎
𝑏∑
𝑠=𝑎+1

(𝑏 − 𝜌 (𝑠)) 𝑇 (𝑠, 𝑦 (𝑠))

− 𝑡∑
𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠)) 𝑞 (𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.
(48)

Then, the result follows by splitting the summation
𝑏∑
𝑠=𝑎+1

(𝑏 − 𝜌 (𝑠)) 𝑇 (𝑠, 𝑦 (𝑠))

= 𝑡∑
𝑠=𝑎+1

(𝑏 − 𝜌 (𝑠)) 𝑇 (𝑠, 𝑦 (𝑠))

+ 𝑏∑
𝑠=𝑡+1

(𝑏 − 𝜌 (𝑠)) 𝑇 (𝑠, 𝑦 (𝑠)) .

(49)

Lemma 18. Given that 𝑏 ≡ 𝑎 (mod 1), the Green function𝐺(𝑡, 𝑠) defined in Lemma 17 has the following properties:
(1) 𝐺(𝑡, 𝑠) ≥ 0 for all 𝑡, 𝑠 ∈ N𝑎,𝑏.
(2) max𝑡∈N𝑎,𝑏𝐺(𝑡, 𝑠) = 𝐺(𝜌(𝑠), 𝑠) for 𝑠 ∈ N𝑎+1,𝑏−1.(3) 𝑓(𝑠) = 𝐺(𝜌(𝑠), 𝑠) = (𝜌(𝑠) − 𝑎)(𝑏 − 𝜌(𝑠))/(𝑏 − 𝑎) has a

unique maximum, given by

max
𝑠∈N𝑎,𝑏

𝑓 (𝑠)

= {{{{{{{
𝑓((𝑎 + 𝑏 + 2)2 ) = 𝑏 − 𝑎4 if 𝑏 − 𝑎 is even
𝑓((𝑎 + 𝑏 + 3)2 ) = (𝑏 − 𝑎)2 − 14 (𝑏 − 𝑎) if 𝑏 − 𝑎 is odd.

(50)

Hence, in either casesmax𝑠∈N𝑎,𝑏𝑓(𝑠) ≤ (𝑏 − 𝑎)/4.
Proof. (1) It is clear that 𝑔1(𝑡, 𝑠) = (𝑡−𝑎)(𝑏−𝜌(𝑠))/(𝑏−𝑎) ≥ 0.
Regarding the part𝑔2(𝑡, 𝑠) = ((𝑡−𝑎)(𝑏−𝜌(𝑠))/(𝑏−𝑎)−(𝑡−𝜌(𝑠)))
we see that (𝑡 − 𝜌(𝑠)) = ((𝑡 − 𝑎)/(𝑏 − 𝑎))(𝑏 − (𝑎 + (𝜌(𝑠) − 𝑎)(𝑏 −𝑎)/(𝑡 − 𝑎))) and that 𝑎 + (𝜌(𝑠) − 𝑎)(𝑏 − 𝑎)/(𝑡 − 𝑎) ≥ 𝜌(𝑠) if and
only if 𝜌(𝑠)(𝑏− 𝑡) +𝑎(𝑡 − 𝑏) ≥ 0 if and only if 𝑠 ≥ 𝑎+1. Hence,
we conclude that 𝑔2(𝑡, 𝑠) ≥ 0 as well.

(2) Clearly,𝑔1(𝑡, 𝑠) is an increasing function in 𝑡. Applying∇ to 𝑔2 with respect to 𝑡 for every fixed 𝑠 ≥ 𝑎 + 1 we see that∇𝑡𝑔(𝑡, 𝑠) = (𝑏 − 𝑎)−1(𝑎 − 𝜌(𝑠)) and hence 𝑔2 is a decreasing
function in 𝑡.

(3) Let 𝑓(𝑠) = 𝐺(𝜌(𝑠), 𝑠) = (𝜌(𝑠) − 𝑎)(𝑏 − 𝜌(𝑠))/(𝑏 − 𝑎).
Then,

(∇𝑓) (𝑠) = 𝑎 + 𝑏 − 2𝑠 + 3𝑏 − 𝑎 = 0, (51)

if 𝑠 = (𝑎 + 𝑏 + 3)/2 and hence for 𝑎, 𝑏 ∈ N, 𝑓 attains its
maximum at 𝑠1 = (𝑎 + 𝑏 + 3)/2 if 𝑎 + 𝑏 (or 𝑏 − 𝑎) is odd and
at (𝑎 + 𝑏 + 2)/2 if 𝑎 + 𝑏 (or 𝑏 − 𝑎) is even. More generally, if 𝑎
and 𝑏 are such that 𝑏 ≡ 𝑎 (mod 1), we see that 𝑠1 ≡ 𝑎 (mod 1)
if 𝑏 − 𝑎 is odd and 𝑠2 ≡ 𝑎 (mod 1) if 𝑏 − 𝑎 is even. Finally,𝑓(𝑠1) = ((𝑏 − 𝑎)2 − 1)/4(𝑏 − 𝑎) and 𝑓(𝑠2) = (𝑏 − 𝑎)/4.

In next lemma, we estimate 𝑇(𝑡, 𝑦(𝑡)) for a function𝑦 ∈ 𝐵[N𝑎,𝑏], the Banach space of all Banach-valued finite
sequences on N𝑎,𝑏 with ‖𝑦‖ = max𝑡∈N𝑎,𝑏 |𝑦(𝑡)|, where | ⋅ | is
the norm in the Banach space.

Lemma 19. For 𝑦 ∈ 𝐵[N𝑎,𝑏] and 2 < 𝛼 ≤ 3, 𝛽 = 𝛼 − 2, we
have, for any 𝑡 ∈ N𝑎,𝑏,󵄨󵄨󵄨󵄨𝑇 (𝑡, 𝑦 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝑅 (𝑡) 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 , (52)

where

𝑅 (𝑡) = [ 3 − 𝛼𝐵 (𝛼 − 2) 󵄨󵄨󵄨󵄨𝑞 (𝑡)󵄨󵄨󵄨󵄨 + 𝛼 − 2𝐵 (𝛼 − 2)
𝑡∑
𝑠=𝑎+1

󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨] . (53)

Theorem 20 (the CFR fractional difference Lyapunov
inequality). If the boundary value problem (44) has a nontriv-
ial solution, where 𝑞(𝑡) is a real-valued bounded function on
N𝑎,𝑏, then

𝑏∑
𝑠=𝑎+1

𝑅 (𝑠) > 4𝑏 − 𝑎 . (54)
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Proof. Assume 𝑦 ∈ 𝑌 = 𝐵[N𝑎,𝑏] is a nontrivial solution of the
boundary value problem (44). By Lemma 17, 𝑦must satisfy

𝑦 (𝑡) = 𝑏∑
𝑠=𝑎+1

𝐺 (𝑡, 𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) . (55)

Then, by using the properties of the Green function 𝐺(𝑡, 𝑠)
proved in Lemmas 18 and 19, we come to the conclusion that

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 < 𝑏 − 𝑎4
𝑏∑
𝑠=𝑎+1

𝑅 (𝑠) 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 (56)

from which (54) follows.

Remark 21. Note that if 𝛼 → 2+, then 𝑅(𝑡) tends to |𝑞(𝑡)|
and hence we obtain the classical nabla discrete version of the
Lyapunov inequality (2). For the sake of more comparisons of
Lyapunov inequalities on time scales we refer to [40].

Example 22. Consider the following CFR Sturm-Liouville
difference eigenvalue problem (SLDEP) of order 2 < 𝛼 ≤ 3
(CFR0∇𝛼𝑦) (𝑡) + 𝜆𝑦𝜌 (𝑡) = 0,

𝑡 ∈ N1,𝑏−1, 𝑏 ∈ N, 𝑦 (0) = 𝑦 (𝑏) = 0. (57)

If𝜆 is an eigenvalue of (57), then byTheorem20with 𝑞(𝑡) = 𝜆,
we have

𝑇 (𝑡) = [ 3 − 𝛼𝐵 (𝛼 − 2) |𝜆| + 𝛼 − 2𝐵 (𝛼 − 2) (0∇−1 |𝜆|) (𝑡)]
= |𝜆| [ 3 − 𝛼𝐵 (𝛼 − 2) + 𝛼 − 2𝐵 (𝛼 − 2) 𝑡] .

(58)

Hence, we must have

𝑏∑
𝑠=1

𝑇 (𝑠) = |𝜆| [ 𝑏 (3 − 𝛼)𝐵 (𝛼 − 2) + 𝑏2 (𝛼 − 2)2𝐵 (𝛼 − 2)] > 4𝑏 . (59)

Notice that the limiting case 𝛼 → 2+ implies that |𝜆| > 4/𝑏2
which is the lower bound for the eigenvalues of the ordinary
difference eigenvalue problem:

(∇2𝑦) (𝑡) + 𝜆𝑦𝜌 (𝑡) = 0,
𝑡 ∈ N1,𝑏−1, 𝑦 (0) = 𝑦 (𝑏) = 0. (60)

6. Conclusions

Fractional differences and their correspondent fractional
sum operators are of importance in discrete modeling of
various problems in science. We extended the fractional
difference calculus whose difference operators depend on
a discrete exponential function kernel to arbitrary positive
order. The correspondent arbitrary order fractional sum
operators have been defined as well and applied to solve
fractional initial and boundary value difference problems.
The extension for right fractional differences and sums is also

achieved. To set up the basic concepts, we proved existence
and uniqueness theorems by means of Banach fixed point
theorem for initial value problems in the frame of CFC and
CFR fractional differences. We have come to the conclusion
that the condition𝑓(𝑎, 𝑦(𝑎)) = 0 is necessary to guarantee the
existence of solution and hence fractional linear difference
initial value problem with constant coefficients results in the
trivial solution unless the order is positive integer. We used
our extension to arbitrary order to prove a Lyapunov type
inequality for a CFR boundary value problem of order 2 <𝛼 ≤ 3 and then obtain the classical ordinary case when 𝛼
tends to 2 from right. This proves different behavior from
the classical fractional difference case, where the Lyapunov
inequality was proved for a fractional difference boundary
problem of order 1 < 𝛼 ≤ 2 and the classical ordinary case
was then recovered when 𝛼 tends to 2 from left.
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