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Integral inequalities, which provide explicit bounds on unknown functions, are used to serve as handy tools in the study of the
qualitative properties of solutions to differential and integral equations. By utilizing some analysis techniques, such as amplification
method, differential, and integration, several new types of linear and nonlinear retarded integral inequalities in two independent
variables are provided. These results generalize and complement previous ones. An illustrative example is given to support the
obtained results. The study of the numerical example shows that the new results presented in this paper work well in the analysis
of retarded integral inequalities in two independent variables.

1. Introduction

With the development of science and technology, various
inequalities have been paidmore andmore attention, and the
generalization of inequalities has become one of the impor-
tant research directions inmodernmathematics.The integral
inequality, which has integrals of unknown functions, is
an important type of inequality. For nonlinear differential
equations derived from the natural science and engineering
technology, especially from various branches ofmathematics,
it is difficult or impossible to obtain explicit solutions in most
cases. Therefore, it is of great significance to get the bounds
of the solutions to those nonlinear differential equations.
Integral inequalities just can provide the bounds of the
solutions to the nonlinear differential equations and integral
equations. Hence, integral inequalities are used to serve as
handy tools in the study of the qualitative properties of solu-
tions to differential and integral equations, such as existence,
uniqueness, boundedness, oscillation, stability, and invariant
manifold. For example, these inequalities have been widely
employed to investigate the stability of switched systems
which can be applied to modeling many engineering system
problems in real world, such as traffic control, automobile
engine control, switching power converters, and multiagent
consensus [1–5]. For some related contributions on various

classes of integral inequalities, we refer the reader to [1–20]
and the references cited therein.

For convenience, throughout this paper,R represents the
set of real numbers, R+ = [0,∞), and 𝐶(𝐴, 𝐵) signifies the
class of all continuous functions defined on set 𝐴 with range
in the set 𝐵.

In what follows, we provide some background details that
motivated our study. One of themost famous andwidespread
integral inequalities in the study of differential and integral
equations is Gronwall-Bellman-type inequality [6–8], which
can be described as follows.

Theorem 1. Let 𝑢 and 𝑓 be nonnegative continuous functions
on an interval [𝑎, 𝑏] satisfying

𝑢 (𝑡) ≤ 𝑐 + ∫𝑡
𝑎
𝑓 (𝑠) 𝑢 (𝑠) d𝑠, 𝑡 ∈ [𝑎, 𝑏] (1)

for some constant 𝑐 ≥ 0. Then

𝑢 (𝑡) ≤ 𝑐 exp(∫𝑡
𝑎
𝑓 (𝑠) d𝑠) , 𝑡 ∈ [𝑎, 𝑏] . (2)

In recent years, many scholars have done a lot of
researches and generalization of the above integral inequality,
which make the integral inequalities develop continually and
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the application fields expand gradually. Pachpatte [9, 10]
investigated the inequality

𝑢 (𝑡) ≤ 𝑢1 + ∫𝑡
0
[𝑓 (𝑠) 𝑢 (𝑠) + 𝑝 (𝑠)] d𝑠

+ ∫𝑡
0
𝑓 (𝑠) (∫𝑠

0
𝑔 (𝜎) 𝑢 (𝜎) d𝜎) d𝑠

(3)

and the retarded inequality

𝑢 (𝑡) ≤ 𝑢2 + ∫𝑡
0
𝑓 (𝑠) 𝑢 (𝑠) d𝑠 + ∫𝛼(𝑡)

0
𝑔 (𝑠) 𝑢 (𝑠) d𝑠, (4)

where 𝛼 ∈ 𝐶1(𝐼, 𝐼) is nondecreasing with 𝛼(𝑡) ≤ 𝑡 on 𝐼 =[0, 𝑇) and 𝑢1 and 𝑢2 are constants. Abdeldaim and El-Deeb
[11] generalized [9] and analyzed the following retarded linear
and nonlinear inequalities:

𝑢 (𝑡)
≤ 𝑢0 + ∫𝛼(𝑡)

0
[𝑓 (𝑠) 𝑢 (𝑠) + 𝑝 (𝑠)] d𝑠

+ ∫𝛼(𝑡)
0

𝑓 (𝑠) (∫𝑠
0
𝑔 (𝜎) 𝑢 (𝜎) d𝜎) d𝑠,

𝑢 (𝑡)
≤ 𝑢0 + ∫𝛼(𝑡)

0
𝜑 (𝑢 (𝑠)) [𝑓 (𝑠) 𝜑 (𝑢 (𝑠)) + 𝑝 (𝑠)] d𝑠

+ ∫𝛼(𝑡)
0

𝜑 (𝑢 (𝑠)) 𝑓 (𝑠) (∫𝑠
0
𝑔 (𝜎) 𝜑 (𝑢 (𝜎)) d𝜎) d𝑠,

(5)

respectively. Tian et al. [16] introduced the retarded inequal-
ities in two independent variables as follows.

Theorem 2 (see [16, Theorem 1]). Let 𝑢, 𝑓, and 𝑔 ∈ 𝐶(R+ ×
R+,R+), 𝑎(𝑥) > 0, 𝑏(𝑦) > 0, 𝑎󸀠(𝑥) ≥ 0, 𝑏󸀠(𝑦) ≥ 0, and 𝛼,𝛽 ∈ 𝐶1(R+,R+) be nondecreasing with 𝛼(𝑥) ≤ 𝑥 and 𝛽(𝑦) ≤ 𝑦
onR+. Moreover, let 𝜑 ∈ 𝐶1(R+,R+) be an increasing function
with 𝜑(∞) = ∞ and let 𝜑(𝑥) > 0 on (0,∞), 𝜓 ∈ 𝐶1(R+,R+)
be a nondecreasing function with 𝜓(𝑥) > 0 on (0,∞). If

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑎 (𝑥) + 𝑏 (𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑢 (𝑡, 𝑠)
⋅ [𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) + 𝑔 (𝑡, 𝑠)] d𝑠 d𝑡,

(6)

then, for 0 ≤ 𝑥 < 𝜉1, 0 ≤ 𝑦 < 𝜂1,

𝑢 (𝑥, 𝑦) ≤ 𝜑−1 {Ω−1 [𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) d𝑠 d𝑡)]} ,
(7)

where

𝑃 (𝑥, 𝑦) = Ω (𝑎 (0) + 𝑏 (𝑦)) + ∫𝑥
0

𝑎󸀠 (𝑠)
𝜑−1 (𝑎 (𝑠) + 𝑏 (0))d𝑠

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝑡, 𝑠) d𝑠 d𝑡.
Ω (𝑥) = ∫𝑥

𝑥0

d𝑠
𝜑−1 (𝑠) , 𝑥 > 𝑥0 > 0,

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [𝜑−1 (Ω−1 (𝑠))] , 𝑧 > 𝑧0 > 0,

(8)

Ω−1, 𝜑−1, and 𝐺−1 are the inverses ofΩ, 𝜑, and 𝐺, respectively;(𝜉1, 𝜂1) ∈ R+ × R+ is chosen so that

𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) d𝑠 d𝑡 ∈ dom (𝐺−1) ,
(𝑡, 𝑠) ∈ R+ × R+,

𝐺−1 {𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) d𝑠 d𝑡}
∈ dom (Ω−1) , (𝑡, 𝑠) ∈ R+ × R+

(9)

with dom(⋅) denoting the function domain.

Theorem3 (see [16, Corollary 1]). Assume that 𝑢, 𝑓, 𝑔, 𝑎, 𝑏, 𝛼,
and 𝛽 are defined as in Theorem 2. Let 𝜑(𝑢) = 𝑢𝑝 and 𝜓(𝑢) =𝑢𝑞−1 in Theorem 2, where 𝑝 ≥ 𝑞 > 1 are positive constants. If

𝑢𝑝 (𝑥, 𝑦) ≤ 𝑎 (𝑥) + 𝑏 (𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑢 (𝑡, 𝑠)
⋅ [𝑓 (𝑡, 𝑠) 𝑢𝑞−1 (𝑡, 𝑠) + 𝑔 (𝑡, 𝑠)] d𝑠 d𝑡,

(10)

then, for all (𝑥, 𝑦) ∈ R+ × R+,

𝑢 (𝑥, 𝑦) ≤
{{{{{{{{{{{{{{{

([𝑝 − 1
𝑝 𝜆 (𝑥, 𝑦)](𝑝−𝑞)/(𝑝−1) + 𝑝 − 𝑞

𝑝 ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) d𝑠 d𝑡)
1/(𝑝−𝑞)

, when 𝑝 > 𝑞,

[𝑝 − 1
𝑝 𝜆 (𝑥, 𝑦)]1/(𝑝−1) exp( 1

𝑝 ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) d𝑠 d𝑡) , when 𝑝 = 𝑞,
(11)
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where

𝜆 (𝑥, 𝑦) = 𝑝
𝑝 − 1 [𝑎 (0) + 𝑏 (𝑦)](𝑝−1)/𝑝

+ ∫𝑥
0

𝑎󸀠 (𝑠)
(𝑎 (𝑠) + 𝑏 (0))1/𝑝 d𝑠

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝑡, 𝑠) d𝑠 d𝑡.

(12)

Motivated by the recent contributions of Abdeldaim and
El-Deeb [11], Zhang and Meng [14], and Tian et al. [16], our
principal goal is to extend the inequalities with one variable
in [11] to those with two variables which include Theorems 2
and 3 as special cases.

The rest of the work is organized as follows. A useful
lemma that plays a fundamental role in the proofs of the
main theorems is presented in Section 2. In Section 3, we
propose our main theorems and corollary on several new
types of linear and nonlinear retarded integral inequalities in
two independent variables. An illustrative example is given
to indicate the usefulness of these inequalities in Section 4,
which is followed by a short conclusion in Section 5.

2. Lemma

The subsequent lemma is helpful in proving our main
theorems.

Lemma 4. Assume that 𝑢, 𝑓, and 𝑔 ∈ 𝐶(R+ × R+,R+) and𝜑 ∈ 𝐶(R+,R+) is an increasing function with 𝜑(∞) = ∞
and 𝜓 ∈ 𝐶(R+,R+) is a nondecreasing function. Suppose
that 𝑐 is a nonnegative constant and 𝛼, 𝛽 ∈ 𝐶1(R+,R+) are
nondecreasing with 𝛼(𝑥) ≤ 𝑥, 𝛽(𝑦) ≤ 𝑦, 𝛼(0) = 0, and𝛽(0) = 0 on R+. If

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑐 + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) d𝑠 d𝑡

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(13)

then, for 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂,
𝑢 (𝑥, 𝑦) ≤ 𝜑−1 {𝐺−1 (𝐺 (𝑐)

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)} ,

(14)

where

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [𝜑−1 (𝑠)] , 𝑧 > 𝑧0 > 0; (15)

𝜑−1 and 𝐺−1 are the inverses of 𝜑 and 𝐺, respectively; (𝜉, 𝜂) ∈
R+ × R+ is chosen so that

𝐺 (𝑐)
+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡

∈ dom (𝐺−1) , 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂.
(16)

Proof. Define the nondecreasing positive function 𝑧 by

𝑧 (𝑥, 𝑦) = 𝑐 + 𝜀 + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) d𝑠 d𝑡

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(17)

where 𝜀 is an arbitrary small positive number. Utilizing
inequality (13) and the monotonicity of 𝜑−1, we get

𝑢 (𝑥, 𝑦) ≤ 𝜑−1 (𝑧 (𝑥, 𝑦)) . (18)

Differentiating (17) with respect to 𝑥 and combining (18) and
the monotonicities of 𝜑−1, 𝑧, and 𝜓, we conclude that

𝑧𝑥 (𝑥, 𝑦) = 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠) 𝜓 (𝑢 (𝛼 (𝑥) , 𝑠)) d𝑠

+ 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠

≤ 𝜓 [𝜑−1 (𝑧 (𝑥, 𝑦))] 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠) d𝑠

+ 𝜓 [𝜑−1 (𝑧 (𝑥, 𝑦))] 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠.

(19)

On account of𝜓[𝜑−1(𝑧(𝑥, 𝑦))] ≥ 𝜓[𝜑−1(𝑐+𝜀)] > 0, we deduce
that

𝑧𝑥 (𝑥, 𝑦)
𝜓 [𝜑−1 (𝑧 (𝑥, 𝑦))] ≤ 𝛼󸀠 (𝑥) ∫𝛽(𝑦)

0
𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (1 + ∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠.

(20)
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Integrating the latter inequality on [0, 𝑥] and letting 𝜀 → 0,
we have

𝐺 (𝑧 (𝑥, 𝑦)) ≤ 𝐺 (𝑐) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)
⋅ (1 + ∫𝑡

0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡

(21)

owing to (15). By virtue of (16), (18), and the last inequality,
we obtain inequality (14). The proof is complete.

Remark 5. Assume that ∫∞𝑧0 [𝜓(𝜑−1(𝑠))]−1d𝑠 = ∞. Then
𝐺(∞) = ∞ and (14) is valid on R+ × R+; that is, one can
select 𝜉 = ∞ and 𝜂 = ∞.

3. Main Results

The following are the main results of this paper.

Theorem 6. Let 𝑢, 𝑎, 𝑓, 𝑔, and ℎ ∈ 𝐶(R+ × R+,R+) and let𝛼, 𝛽 ∈ 𝐶1(R+,R+) be nondecreasing with 𝛼(𝑥) ≤ 𝑥, 𝛽(𝑦) ≤ 𝑦,𝛼(0) = 0, and 𝛽(0) = 0 on R+. If the inequality

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦)
+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

(𝑓 (𝑡, 𝑠) 𝑢 (𝑡, 𝑠) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑢 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡

(22)

holds, for all (𝑥, 𝑦) ∈ R+ × R+, then

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + exp(∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)

× ∫𝑥
0
exp(−∫𝛼(𝑙)

0
∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)

× 𝜕
𝜕𝑙 [∫

𝛼(𝑙)

0
∫𝛽(𝑦)
0

(𝑓 (𝑡, 𝑠) 𝑎 (𝑡, 𝑠) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡 + ∫𝛼(𝑙)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑎 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡] d𝑙.

(23)

Proof. Letting

𝑧 (𝑥, 𝑦) = ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

(𝑓 (𝑡, 𝑠) 𝑢 (𝑡, 𝑠) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑢 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡,

(24)

then 𝑧(0, 𝑦) = 𝑧(𝑥, 0) = 0 and
𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + 𝑧 (𝑥, 𝑦) . (25)

Our assumptions on 𝑓, 𝑢, ℎ, 𝑔, 𝛼, and 𝛽 indicate that 𝑧 is a
positive functionwhich is nondecreasingwith respect to each
of the two variables. Differentiating 𝑧 with respect to 𝑥 and
using (25), we arrive at

𝑧𝑥 (𝑥, 𝑦) = 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝑢 (𝛼 (𝑥) , 𝑠)

+ ℎ (𝛼 (𝑥) , 𝑠)) d𝑠 + 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑢 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 ≤ 𝛼󸀠 (𝑥)

⋅ ∫𝛽(𝑦)
0

[𝑓 (𝛼 (𝑥) , 𝑠) (𝑎 (𝛼 (𝑥) , 𝑠) + 𝑧 (𝛼 (𝑥) , 𝑠))

+ ℎ (𝛼 (𝑥) , 𝑠)] d𝑠 + 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) (𝑎 (𝜏, 𝜔) + 𝑧 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠

= 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠) 𝑧 (𝛼 (𝑥) , 𝑠) d𝑠 + 𝛼󸀠 (𝑥)

⋅ ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑧 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 + 𝛼󸀠 (𝑥)

⋅ ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝑎 (𝛼 (𝑥) , 𝑠) + ℎ (𝛼 (𝑥) , 𝑠)) d𝑠

+ 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑎 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠.

(26)
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By virtue of the monotonicity of 𝑧, we get
𝑧𝑥 (𝑥, 𝑦) − 𝑧 (𝑥, 𝑦) 𝛼󸀠 (𝑥) ∫𝛽(𝑦)

0
𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (1 + ∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 ≤ 𝛼󸀠 (𝑥)

⋅ ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝑎 (𝛼 (𝑥) , 𝑠) + ℎ (𝛼 (𝑥) , 𝑠)) d𝑠

+ 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠)

⋅ (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑎 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠.

(27)

Multiplying the latter inequality by
𝑒−∫𝛼(𝑥)0 ∫𝛽(𝑦)0 𝑓(𝑡,𝑠)(1+∫𝑡0 ∫𝑠0 𝑔(𝜏,𝜔)d𝜔 d𝜏)d𝑠 d𝑡 yields

𝜕
𝜕𝑥 (𝑧 (𝑥, 𝑦) 𝑒−∫𝛼(𝑥)0 ∫𝛽(𝑦)0 𝑓(𝑡,𝑠)(1+∫𝑡0 ∫𝑠0 𝑔(𝜏,𝜔)d𝜔 d𝜏)d𝑠 d𝑡)

≤ exp(−∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)

× 𝛼󸀠 (𝑥) (∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝑎 (𝛼 (𝑥) , 𝑠) + ℎ (𝛼 (𝑥) , 𝑠)) d𝑠

+ ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑥) , 𝑠) (∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑎 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠) .

(28)

Integrating this inequality on [0, 𝑥], we deduce that

𝑧 (𝑥, 𝑦) ≤ exp(∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)

× ∫𝑥
0

[exp(−∫𝛼(𝑙)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡) × 𝛼󸀠 (𝑙)

⋅ (∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑙) , 𝑠) 𝑎 (𝛼 (𝑙) , 𝑠) + ℎ (𝛼 (𝑙) , 𝑠)) d𝑠 + ∫𝛽(𝑦)
0

𝑓 (𝛼 (𝑙) , 𝑠) (∫𝛼(𝑙)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑎 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠)] d𝑙.

(29)

Combining (25) with (29), we get inequality (23). This
completes the proof.

Theorem 7. Let 𝑢, 𝑎, 𝑓, 𝑔, and ℎ ∈ 𝐶(R+×R+,R+), 𝑎(𝑥, 𝑦) >0, 𝑎𝑥 ≥ 0, 𝑎𝑦 ≥ 0, and 𝛼, 𝛽 ∈ 𝐶1(R+,R+) be nondecreasing
with 𝛼(𝑥) ≤ 𝑥, 𝛽(𝑦) ≤ 𝑦, 𝛼(0) = 0, and 𝛽(0) = 0 on R+.
Moreover, let 𝛾 and𝜓 ∈ 𝐶1(R+,R+) be nondecreasing function
with 𝛾 > 0 and 𝜓 > 0 on (0,∞). If

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠))
⋅ (𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡
+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠)) 𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(30)

then, for 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂,
𝑢 (𝑥, 𝑦) ≤ Ω−1 {𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)} ,

(31)

where

𝑃 (𝑥, 𝑦) = Ω (𝑎 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

ℎ (𝑡, 𝑠) d𝑠 d𝑡, (32)

Ω (𝑥) = ∫𝑥
𝑥0

d𝑠
𝛾 (𝑠) , 𝑥 > 𝑥0 > 0, (33)

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [Ω−1 (𝑠)] , 𝑧 > 𝑧0 > 0. (34)

Ω−1 and 𝐺−1 are the inverses of Ω and 𝐺, respectively; (𝜉, 𝜂) ∈
R+ × R+ is chosen so that

𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1
+ ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡

∈ dom (𝐺−1) ,
𝐺−1 {𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)

0
∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)
⋅ (1 + ∫𝑡

0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡}

∈ dom (Ω−1)

(35)

for 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂.
Proof. Define the nondecreasing function 𝑧 by

𝑧 (𝑥, 𝑦) = ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠))
⋅ (𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡
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+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠)) 𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡.

(36)

Then

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + 𝑧 (𝑥, 𝑦) . (37)

Differentiating (36) and using (37) and the monotonicity of𝛾, we obtain
𝑧𝑥𝑦 (𝑥, 𝑦) = 𝛼󸀠 (𝑥) 𝛽󸀠 (𝑦) 𝛾 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))

⋅ (𝑓 (𝛼 (𝑥) , 𝛽 (𝑦)) 𝜓 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))
+ ℎ (𝛼 (𝑥) , 𝛽 (𝑦))) + 𝛼󸀠 (𝑥) 𝛽󸀠 (𝑦)
⋅ 𝛾 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦))) 𝑓 (𝛼 (𝑥) , 𝛽 (𝑦))
⋅ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏 ≤ 𝛼󸀠 (𝑥)
⋅ 𝛽󸀠 (𝑦) 𝛾 [𝑎 (𝛼 (𝑥) , 𝛽 (𝑦)) + 𝑧 (𝛼 (𝑥) , 𝛽 (𝑦))]
⋅ (𝑓 (𝛼 (𝑥) , 𝛽 (𝑦)) 𝜓 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))
+ ℎ (𝛼 (𝑥) , 𝛽 (𝑦)) + 𝑓 (𝛼 (𝑥) , 𝛽 (𝑦))
⋅ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) .

(38)

Let 𝑇1 ≤ 𝜉 and 𝑇2 ≤ 𝜂 be arbitrary numbers. Utilizing (38)
and the monotonicities of 𝑎, 𝑧, and 𝛾, we get that, for 0 ≤ 𝑥 <𝑇1 and 0 ≤ 𝑦 < 𝑇2,

𝑧𝑥𝑦 (𝑥, 𝑦) ≤ 𝛼󸀠 (𝑥) 𝛽󸀠 (𝑦) 𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)]
⋅ (𝑓 (𝛼 (𝑥) , 𝛽 (𝑦)) 𝜓 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))
+ ℎ (𝛼 (𝑥) , 𝛽 (𝑦)) + 𝑓 (𝛼 (𝑥) , 𝛽 (𝑦))
⋅ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) .

(39)

For 𝑎(𝑇1, 𝑇2) > 0 and 𝛾[𝑎(𝑇1, 𝑇2) + 𝑧(𝑥, 𝑦)] > 0,
𝑧𝑥𝑦 (𝑥, 𝑦)

𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)] ≤ 𝛼󸀠 (𝑥) 𝛽󸀠 (𝑦)

⋅ (𝑓 (𝛼 (𝑥) , 𝛽 (𝑦)) 𝜓 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))
+ ℎ (𝛼 (𝑥) , 𝛽 (𝑦)) + 𝑓 (𝛼 (𝑥) , 𝛽 (𝑦))
⋅ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) .

(40)

From another point of view,

𝜕
𝜕𝑦 ( 𝑧𝑥𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)])

≤ 𝑧𝑥𝑦
𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)] .

(41)

It follows from (40) and (41) that

𝜕
𝜕𝑦 ( 𝑧𝑥𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)]) ≤ 𝛼󸀠 (𝑥) 𝛽󸀠 (𝑦)

⋅ (𝑓 (𝛼 (𝑥) , 𝛽 (𝑦)) 𝜓 (𝑢 (𝛼 (𝑥) , 𝛽 (𝑦)))
+ ℎ (𝛼 (𝑥) , 𝛽 (𝑦)) + 𝑓 (𝛼 (𝑥) , 𝛽 (𝑦))
⋅ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) .

(42)

Integrating the above inequality on [0, 𝑦] with respect to the
second variable and taking 𝑧𝑥(𝑥, 0) = 0 into account, we have

𝑧𝑥 (𝑥, 𝑦)
𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)] ≤ 𝑧𝑥 (𝑥, 0)𝛾 [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 0)]

+ 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝜓 (𝑢 (𝛼 (𝑥) , 𝑠))
+ ℎ (𝛼 (𝑥) , 𝑠) + 𝑓 (𝛼 (𝑥) , 𝑠)
⋅ ∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠

= 𝛼󸀠 (𝑥) ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝜓 (𝑢 (𝛼 (𝑥) , 𝑠))
+ ℎ (𝛼 (𝑥) , 𝑠) + 𝑓 (𝛼 (𝑥) , 𝑠)
⋅ ∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠.

(43)

From (33), the latter relation gives

𝜕
𝜕𝑥 (Ω [𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)]) ≤ 𝛼󸀠 (𝑥)

⋅ ∫𝛽(𝑦)
0

(𝑓 (𝛼 (𝑥) , 𝑠) 𝜓 (𝑢 (𝛼 (𝑥) , 𝑠)) + ℎ (𝛼 (𝑥) , 𝑠)
+ 𝑓 (𝛼 (𝑥) , 𝑠)
⋅ ∫𝛼(𝑥)
0

∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠.

(44)
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Integrating the last inequality over [0, 𝑥], we get
Ω(𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦)) ≤ Ω (𝑎 (𝑇1, 𝑇2))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

(𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) + ℎ (𝑡, 𝑠) + 𝑓 (𝑡, 𝑠)

⋅ ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡 = 𝑃 (𝑥,

𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) d𝑠 d𝑡 + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡

≤ 𝑃 (𝑇1, 𝑇2) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) 𝜓 (𝑎 (𝑇1, 𝑇2)

+ 𝑧 (𝑡, 𝑠)) d𝑠 d𝑡 + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑎 (𝑇1, 𝑇2) + 𝑧 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(45)

where 𝑃 is defined as in (32). Combining (37) and the
monotonicity of 𝑎 and employing Lemma 4, we obtain

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑇1, 𝑇2) + 𝑧 (𝑥, 𝑦) ≤ Ω−1 {𝐺−1 (𝐺 (𝑃 (𝑇1, 𝑇2))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)} ,

(46)

where 𝐺 is defined as in (34). Taking 𝑥 = 𝑇1 and 𝑦 = 𝑇2, we
conclude that

𝑢 (𝑇1, 𝑇2) ≤ Ω−1 {𝐺−1 (𝐺 (𝑃 (𝑇1, 𝑇2))

+ ∫𝛼(𝑇1)
0

∫𝛽(𝑇2)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)} .

(47)

As 𝑇1 ≤ 𝜉 and 𝑇2 ≤ 𝜂 are arbitrary, we get the desired
inequality (31). The proof is complete.

Theorem 8. Assume that 𝑢, 𝑎, 𝑓, 𝑔, ℎ, 𝛼, 𝛽, 𝛾, and 𝜓 are
defined as in Theorem 7. Moreover, let 𝜑 ∈ 𝐶1(R+,R+) be
increasing function with 𝜑(∞) = ∞ and 𝜑(𝑥) > 0 on (0,∞).
If

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑎 (𝑥, 𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠))
⋅ (𝑓 (𝑡, 𝑠) 𝜓 (𝑢 (𝑡, 𝑠)) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡
+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝛾 (𝑢 (𝑡, 𝑠)) 𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝜓 (𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(48)

then, for 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂,

𝑢 (𝑥, 𝑦) ≤ 𝜑−1 {Ω−1 [𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)]} ,

(49)

where

𝑃 (𝑥, 𝑦) = Ω (𝑎 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

ℎ (𝑡, 𝑠) d𝑠 d𝑡,
Ω (𝑥) = ∫𝑥

𝑥0

d𝑠
𝛾 [𝜑−1 (𝑠)] , 𝑥 > 𝑥0 > 0,

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [𝜑−1 (Ω−1 (𝑠))] , 𝑧 > 𝑧0 > 0;

(50)

𝜑−1,Ω−1, and 𝐺−1 are the inverses of 𝜑,Ω, and 𝐺, respectively;(𝜉, 𝜂) ∈ R+ × R+ is chosen so that

𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1

+ ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡

∈ dom (𝐺−1) ,
𝐺−1 {𝐺 (𝑃 (𝑥, 𝑦)) + ∫𝛼(𝑥)

0
∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡}

∈ dom (Ω−1)

(51)

for 0 ≤ 𝑥 < 𝜉, 0 ≤ 𝑦 < 𝜂.
Proof. Define function 𝑧 by (36). Then

𝑢 (𝑥, 𝑦) ≤ 𝜑−1 [𝑎 (𝑥, 𝑦) + 𝑧 (𝑥, 𝑦)] . (52)

The rest of the proof is similar to that ofTheorem 7 and hence
is omitted.

Remark 9. Letting 𝑎(𝑥, 𝑦) = 𝑎(𝑥) + 𝑏(𝑦), 𝛾(𝑢(𝑥, 𝑦)) =𝑢(𝑥, 𝑦), and 𝑔(𝑥, 𝑦) = 0 in Theorem 8, Theorem 8 turns
out to be Theorem 2. Therefore, the inequality established in
Theorem 8 generalizes that of [16, Theorem 1].

If 𝜑(𝑢) = 𝑢𝑝, 𝛾(𝑢) = 𝑢𝑞, and 𝜓(𝑢) = 𝑢𝑛 in Theorem 8,
where 𝑝 ≥ 𝑞 + 𝑛 > 1, and 𝑝, 𝑞, and 𝑛 are positive constants,
then we have the following corollary.
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Corollary 10. Assume that 𝑢, 𝑎, 𝑓, 𝑔, ℎ, 𝛼, and 𝛽 are defined as
in Theorem 8. If

𝑢𝑝 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑢𝑞 (𝑡, 𝑠)
⋅ (𝑓 (𝑡, 𝑠) 𝑢𝑛 (𝑡, 𝑠) + ℎ (𝑡, 𝑠)) d𝑠 d𝑡

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑢𝑞 (𝑡, 𝑠) 𝑓 (𝑡, 𝑠)

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) 𝑢𝑛 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡,

(53)

then, for all (𝑥, 𝑦) ∈ R+ × R+,

𝑢 (𝑥, 𝑦) ≤
{{{{{{{{{

([𝑝 − 𝑞
𝑝 𝜆 (𝑥, 𝑦)](𝑝−𝑞−𝑛)/(𝑝−𝑞) + 𝑝 − 𝑞 − 𝑛

𝑝 𝜃 (𝑥, 𝑦))
1/(𝑝−𝑞−𝑛)

, when 𝑝 > 𝑞 + 𝑛,
( 𝑛
𝑝𝜆 (𝑥, 𝑦))1/𝑛 exp( 1

𝑝𝜃 (𝑥, 𝑦)) , when 𝑝 = 𝑞 + 𝑛,
(54)

where

𝜆 (𝑥, 𝑦) = 𝑝
𝑝 − 𝑞 [𝑎 (𝑥, 𝑦)](𝑝−𝑞)/𝑝

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

ℎ (𝑡, 𝑠) d𝑠 d𝑡,

𝜃 (𝑥, 𝑦) = ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠)

⋅ (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡.

(55)

Proof. Assume that 𝑝 > 𝑞 + 𝑛 and let 𝜑(𝑢) = 𝑢𝑝, 𝛾(𝑢) = 𝑢𝑞,
and 𝜓(𝑢) = 𝑢𝑛. Then we have 𝜑−1(𝑢) = 𝑢1/𝑝, and so

Ω (𝑥) = ∫𝑥
𝑥0

d𝑠
𝛾 [𝜑−1 (𝑠)] = ∫𝑥

𝑥0
𝑠−𝑞/𝑝 d𝑠 = 𝑝

𝑝 − 𝑞 (𝑥(𝑝−𝑞)/𝑝

− 𝑥(𝑝−𝑞)/𝑝0 ) ,
Ω−1 (𝑥) = (𝑝 − 𝑞

𝑝 𝑥 + 𝑥(𝑝−𝑞)/𝑝0 )𝑝/(𝑝−𝑞) ,

𝜓 [𝜑−1 (Ω−1 (𝑥))] = (𝑝 − 𝑞
𝑝 𝑥 + 𝑥(𝑝−𝑞)/𝑝0 )𝑛/(𝑝−𝑞) ,

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [𝜑−1 (Ω−1 (𝑠))] = ∫𝑧

𝑧0
(𝑝 − 𝑞

𝑝 𝑠

+ 𝑥(𝑝−𝑞)/𝑝0 )−𝑛/(𝑝−𝑞) d𝑠 = 𝑝
𝑝 − 𝑞 − 𝑛 (𝑝 − 𝑞

𝑝 𝑧

+ 𝑥(𝑝−𝑞)/𝑝0 )(𝑝−𝑞−𝑛)/(𝑝−𝑞) − 𝑝
𝑝 − 𝑞 − 𝑛 (𝑝 − 𝑞

𝑝 𝑧0

+ 𝑥(𝑝−𝑞)/𝑝0 )(𝑝−𝑞−𝑛)/(𝑝−𝑞) ,

𝐺−1 (𝑧) = 𝑝
𝑝 − 𝑞

{{{
[𝑝 − 𝑞 − 𝑛

𝑝 𝑧

+ (𝑝 − 𝑞
𝑝 𝑧0 + 𝑥(𝑝−𝑞)/𝑝0 )(𝑝−𝑞−𝑛)/(𝑝−𝑞)]

(𝑝−𝑞)/(𝑝−𝑞−𝑛)

− 𝑥(𝑝−𝑞)/𝑝0
}}}

,

Ω−1 [𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)]

= {{{
[(𝑝 − 𝑞

𝑝 𝜆 (𝑥, 𝑦))(𝑝−𝑞−𝑛)/(𝑝−𝑞)

+ 𝑝 − 𝑞 − 𝑛
𝑝 𝜃 (𝑥, 𝑦)]

(𝑝−𝑞)/(𝑝−𝑞−𝑛)

− 𝑥(𝑝−𝑞)/𝑝0

+ 𝑥(𝑝−𝑞)/𝑝0
}}}

𝑝/(𝑝−𝑞)

= [(𝑝 − 𝑞
𝑝 𝜆 (𝑥, 𝑦))(𝑝−𝑞−𝑛)/(𝑝−𝑞)

+ 𝑝 − 𝑞 − 𝑛
𝑝 𝜃 (𝑥, 𝑦)]

𝑝/(𝑝−𝑞−𝑛)

,
(56)

where 𝜆 and 𝜃 are defined in (55). Using Theorem 8, one can
easily obtain

𝑢 (𝑥, 𝑦) ≤ 𝜑−1 {Ω−1 [𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)]}

= ([𝑝 − 𝑞
𝑝 𝜆 (𝑥, 𝑦)](𝑝−𝑞−𝑛)/(𝑝−𝑞) + 𝑝 − 𝑞 − 𝑛

𝑝 𝜃 (𝑥,

𝑦))
1/(𝑝−𝑞−𝑛)

.

(57)
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When 𝑝 = 𝑞 + 𝑛,

𝜓 [𝜑−1 (Ω−1 (𝑥))] = 𝑝 − 𝑞
𝑝 𝑥 + 𝑥(𝑝−𝑞)/𝑝0 ,

𝐺 (𝑧) = ∫𝑧
𝑧0

d𝑠
𝜓 [𝜑−1 (Ω−1 (𝑠))] = ∫𝑧

𝑧0
(𝑝 − 𝑞

𝑝 𝑠

+ 𝑥(𝑝−𝑞)/𝑝0 )−1 d𝑠 = 𝑝
𝑝 − 𝑞 [ln(𝑧 + 𝑝

𝑝 − 𝑞𝑥(𝑝−𝑞)/𝑝0 )

− ln(𝑧0 + 𝑝
𝑝 − 𝑞𝑥(𝑝−𝑞)/𝑝0 )] ,

𝐺−1 (𝑧) = (𝑧0 + 𝑝
𝑝 − 𝑞𝑥(𝑝−𝑞)/𝑝0 ) exp(𝑝 − 𝑞

𝑝 𝑧) − 𝑝
𝑝 − 𝑞

⋅ 𝑥(𝑝−𝑞)/𝑝0 ,
Ω−1 [𝐺−1 (𝐺 (𝑃 (𝑥, 𝑦))

+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) (1 + ∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) d𝜔 d𝜏) d𝑠 d𝑡)]

= [𝑝 − 𝑞
𝑝 𝜆 (𝑥, 𝑦) exp(𝑝 − 𝑞

𝑝 𝜃 (𝑥, 𝑦)) − 𝑥(𝑝−𝑞)/𝑝0

+ 𝑥(𝑝−𝑞)/𝑝0 ]𝑝/(𝑝−𝑞) = [ 𝑛
𝑝𝜆 (𝑥, 𝑦) exp(𝑛

𝑝𝜃 (𝑥, 𝑦))]𝑝/𝑛 ,

(58)

where 𝜆 and 𝜃 are the same as in (55). By Theorem 8, similar
discussions can give

𝑢 (𝑥, 𝑦) ≤ ( 𝑛
𝑝𝜆 (𝑥, 𝑦))1/𝑛 exp( 1

𝑝𝜃 (𝑥, 𝑦)) . (59)

This completes the proof.

Remark 11. Letting 𝑎(𝑥, 𝑦) = 𝑎(𝑥) + 𝑏(𝑦), 𝑞 = 1, 𝑛 = 𝑞 − 1,
and 𝑔(𝑥, 𝑦) = 0, Corollary 10 reduces to Theorem 3. Hence,

the inequality established in Corollary 10 includes the result
of [16, Corollary 1].
4. Example

Example 1. Consider the integral equation

𝑢𝑝 (𝑥, 𝑦) = 𝑘 (𝑥, 𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝐹(𝑡, 𝑠, 𝑢 (𝑡, 𝑠) ,

∫𝑡
0
∫𝑠
0
𝐻(𝜏, 𝜔, 𝑢 (𝜏, 𝜔)) d𝜔 d𝜏) d𝑠 d𝑡,

(60)

where 𝑘 : R+ × R+ → R and 𝐹 : R+ × R+ × R × R → R are
continuous functions, 𝛼, 𝛽 ∈ 𝐶1(R+,R+) is nondecreasing
with 𝛼(𝑥) ≤ 𝑥, 𝛽(𝑦) ≤ 𝑦, 𝛼(0) = 0, and 𝛽(0) = 0 on R+, and𝑝 ≥ 4 is a constant. Suppose that

󵄨󵄨󵄨󵄨𝑘 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑥, 𝑦) ,
|𝐹 (𝑡, 𝑠, 𝑢, V)| ≤ 𝑓 (𝑡, 𝑠) |𝑢|4 + ℎ (𝑡, 𝑠) |𝑢|2

+ 𝑓 (𝑡, 𝑠) |𝑢|2 V,
|𝐻 (𝑡, 𝑠, 𝑢)| ≤ 𝑔 (𝑡, 𝑠) |𝑢|2 ,

(61)

where 𝑎, 𝑓, ℎ, and 𝑔 are defined as in Corollary 10. Combining
(60)-(61) yields

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑦)󵄨󵄨󵄨󵄨𝑝 ≤ 𝑎 (𝑥, 𝑦) + ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

(𝑓 (𝑡, 𝑠) |𝑢 (𝑡, 𝑠)|4
+ ℎ (𝑡, 𝑠) |𝑢 (𝑡, 𝑠)|2) d𝑠 d𝑡
+ ∫𝛼(𝑥)
0

∫𝛽(𝑦)
0

𝑓 (𝑡, 𝑠) |𝑢 (𝑡, 𝑠)|2

⋅ (∫𝑡
0
∫𝑠
0
𝑔 (𝜏, 𝜔) |𝑢 (𝜏, 𝜔)|2 d𝜔 d𝜏) d𝑠 d𝑡.

(62)

Exploiting Corollary 10, we obtain an explicit bound to the
solutions of (60):

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{{{

([𝑝 − 2
𝑝 𝜆 (𝑥, 𝑦)](𝑝−4)/(𝑝−2) + 𝑝 − 4

𝑝 𝜃 (𝑥, 𝑦))
1/(𝑝−4)

, when 𝑝 > 4,

(1
2𝜆 (𝑥, 𝑦))1/2 exp (1

4𝜃 (𝑥, 𝑦)) , when 𝑝 = 4,
(63)

where 𝜆 and 𝜃 are defined as in Corollary 10.

5. Conclusions

This paper investigates some new types of linear and non-
linear retarded integral inequalities in two independent vari-
ables. Several theorems and a corollary of these inequalities

are obtained based on some analysis techniques, such as
amplification method, differential, and integration. An illus-
trative example is studied to demonstrate the effectiveness of
the new results.
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