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An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper,
which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of
the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey
species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on
the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for
an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species
can greatly impact the permanence, extinction, and coexistence of the population.

1. Introduction

In real ecosystems, since the spatial distribution and dynam-
ics of a population are greatly affected by their spatial
heterogeneity and population mobility, dispersal becomes
one of the dominant themes in mathematical biology. In fact,
animal dispersal movements between patches are extremely
prevalent in ecological environments; for example, many
types of birds and mammals will migrate from cold regions
to warm regions in search of a better habitat or a breeding
site [1]. Therefore, to take spatial heterogeneity into account,
realistic population models should contain the dispersal
process. During the past couple of decades, predator-prey
models with diffusion in a patchy environment have attracted
significant attention from ecologists, biologists, and biomath-
ematicians. Many important works and monographs about
the properties of population dynamics in a spatial idiosyn-
cratic environment, for example, permanence, extinction,
and global asymptotic stability of positive periodic solutions,
have been written (see [2–14]). Teng and Chen [6] considered
a nonautonomous predator-prey Lotka-Volterra type disper-
sal system with periodic coefficients and distributed delays:

𝑥̇1 (𝑡) = 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏1 (𝑡) 𝑥1 (𝑡)

− 𝑐 (𝑡) ∫0
−∞

𝑘12 (𝑠) 𝑦 (𝑡 + 𝑠) 𝑑𝑠]
+ 𝑛∑
𝑗=1

𝑑1𝑗 (𝑡) [𝑥𝑗 (𝑡) − 𝑥1 (𝑡)] ,

𝑥̇𝑖 (𝑡) = 𝑥𝑖 (𝑡) [𝑎𝑖 (𝑡) − 𝑏𝑖 (𝑡) 𝑥𝑖 (𝑡)] + 𝑛∑
𝑗=1

𝑑𝑖𝑗 (𝑡) [𝑥𝑗 (𝑡)
− 𝑥𝑖 (𝑡)] , 𝑖 = 2, 3, . . . , 𝑛,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑒 (𝑡) + 𝑓 (𝑡) ∫0
−∞

𝑘21 (𝑠) 𝑥1 (𝑡 + 𝑠) 𝑑𝑠
− 𝑔 (𝑡) ∫0

−∞
𝑘21 (𝑠) 𝑥1 (𝑡 + 𝑠) 𝑑𝑠] ,

(1)

where 𝑦 is the population density of the predator species
confined to the 1st patch. Criteria for the permanence,
extinction, and existence of positive periodic solutions for
system (1) were established. In this model, the prey dispersal
behavior occurs at every point in time and simultaneously

Hindawi
Discrete Dynamics in Nature and Society
Volume 2017, Article ID 7037245, 15 pages
https://doi.org/10.1155/2017/7037245

https://doi.org/10.1155/2017/7037245


2 Discrete Dynamics in Nature and Society

between any patches; that is, it is a continuous bidirectional
dispersal.

However in practice, it is often the case that diffusion
occurs in the form of regular pulses. For example, when
winter comes, birds will migrate between patches to seek a
better habitat, whereas they do not diffuse in other seasons,
and the dispersion of foliage seeds occurs at a fixed period of
time every year. For another example, in the Pacific North-
west, Larimichthys polyactis cross over deep water during the
winter and migrate to the coast during the spring; then, 3–6
months after spawning, they scatter offshore and return to the
depths of the sea during late autumn [15]. All these types of
migratory behaviors are appropriately assumed to be in the
formof pulses in themodeling process.Thus, impulsive diffu-
sion provides a more natural description. Currently, theories
of impulsive differential equations [16] have been introduced
into population dynamics. A large number of models have
been described by impulsive diffusion (see [14, 17–24]) during
the past couple of decades.

Shao [23] considered the following predator-prey models
with impulsive prey diffusion between two patches:

𝑥̇1 (𝑡) = 𝑥1 (𝑡) (𝑟1 − 𝑎1𝑥1 (𝑡) − 𝑏1𝑦 (𝑡)) ,
𝑥̇2 (𝑡) = 𝑥2 (𝑡) (𝑟2 − 𝑎2𝑥2 (𝑡)) ,
̇𝑦 (𝑡) = 𝑦 (𝑡) (−𝑟3 + 𝑎3𝑥1 (𝑡 − 𝜏1) − 𝑏2𝑦 (𝑡 − 𝜏2)) ,

𝑡 ̸= 𝑛𝜏,
Δ𝑥1 (𝑡) = 𝑑1 (𝑥2 (𝑡) − 𝑥1 (𝑡)) ,
Δ𝑥2 (𝑡) = 𝑑2 (𝑥1 (𝑡) − 𝑥2 (𝑡)) ,
Δ𝑦 (𝑡) = 0,

𝑡 = 𝑛𝜏,

(2)

where the pulse diffusion of the species 𝑥 occurs in every
period𝑇 (a positive constant) and𝑑𝑖 is the dispersal rate in the𝑖th patch satisfying 0 < 𝑑𝑖 < 1 for 𝑖 = 1, 2. The system evolves
from its initial state without being further affected by diffu-
sion until the next pulse appears.Δ𝑥𝑖(𝑛𝑇) = 𝑥𝑖(𝑛𝑇+)−𝑥𝑖(𝑛𝑇),
where 𝑥𝑖(𝑛𝑇+) represents the density of the population of
the prey species 𝑥 in the 𝑖th patch immediately after the 𝑛th
diffusion pulse at time 𝑡 = 𝑛𝑇; 𝑥𝑖(𝑛𝑇) represents the density
of the population of the prey species in the 𝑖th patch before
the 𝑛th diffusion pulse at time 𝑡 = 𝑛𝑇, 𝑛 = 0, 1, . . .. Criteria
for the global attractivity and permanence of system (2) were
obtained.

Furthermore, migration movements of the population
will be influenced by many uncertain factors (such as the
landscape and weather). Therefore, the dispersal movement
ofmigratory species will have to be suspendedwhen the envi-
ronment becomes unavailable. In other words, patches would
permit normal movement patterns between patches to occur
only during certain time intervals instead of all the time. For
instance, in the Canary Islands of Spain, Anas platyrhynchos
undergo a spring migration from early March to the end of
March and a fall migration from late September to the end of
October, departing as late as early November, during which

they are extensively killed by humans, and other carnivorous
animals can prolong the journey [25]. As another example,
the wild goose will fly to the south when winter comes; in
this process, they will stop to rest in some places and at
certain time periods. In other words, their diffusion behavior
is neither continuous at all times nor impulsive at a fixed time,
but it is intermittent within some time intervals. Therefore, it
ismore reasonable tomodel this kind of population dynamics
with intermittent dispersals. Zhang et al. [26] considered
the following nonautonomous almost periodic single species
model with intermittent dispersals and dispersal delays
between two patches:

𝑥̇1 (𝑡) = 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏1 (𝑡) 𝑥1 (𝑡)] ,
𝑥̇2 (𝑡) = 𝑥2 (𝑡) [𝑎2 (𝑡) − 𝑏2 (𝑡) 𝑥2 (𝑡)] ,

𝑡 ∈ [𝜏2𝑘, 𝜏2𝑘+1) ,
𝑥1 (𝜏2𝑘+1) = 𝑑1𝑥1 (𝜏−2𝑘+1) ,
𝑥2 (𝜏2𝑘+1) = 𝑑2𝑥2 (𝜏−2𝑘+1) ,

𝑡 = 𝜏2𝑘+1,
𝑥̇1 (𝑡) = 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏̃1 (𝑡) 𝑥1 (𝑡)]

+ 𝐷12 (𝑡) (𝑥2 (𝑡 − 𝜏1) − 𝑥1 (𝑡)) ,
𝑥̇2 (𝑡) = 𝑥2 (𝑡) [𝑎2 (𝑡) − 𝑏̃2 (𝑡) 𝑥2 (𝑡)]

+ 𝐷21 (𝑡) (𝑥1 (𝑡 − 𝜏2) − 𝑥2 (𝑡)) ,
𝑡 ∈ [𝜏2𝑘+1, 𝜏2𝑘+2) ,

𝑥1 (𝜏2𝑘+2) = 𝐷1𝑥1 (𝜏−2𝑘+2) ,
𝑥2 (𝜏2𝑘+2) = 𝐷2𝑥2 (𝜏−2𝑘+2) ,

𝑡 = 𝜏2𝑘+2,

(3)

where all the parameters are almost periodic and the dispersal
movement happens only in the time interval 𝑡 ∈ [𝜏2𝑘+1, 𝜏2𝑘+2)
but not in 𝑡 ∈ [𝜏2𝑘, 𝜏2𝑘+1). Here, 𝑘 ∈ 𝑁. Criteria for the exis-
tence, uniqueness, and global attractivity of positive almost
periodic solution for system (3) were established.

Moreover, in a real ecological system, there always
exist natural enemies during the migratory process between
patches. For example, annually, at the end of July, with the
arrival of the dry season, millions of wildebeests, zebras, and
other herbivorous wildlife form a migratory army, migrating
from the Serengeti National Park, Tanzania, Africa, to Kenya’s
Masai Mara National Nature Reserve to find enough water
and food. Along the way, they will be preyed upon by lions,
leopards, and so on. Additionally, crocodiles and hippopota-
mus will wait and ambush the migration species in the Mara
River. As the seasons alternate, i.e., when the rainy season
comes, the migration movement starts again, and these
species will return to the Serengeti National Park, and vice
versa [27]. Obviously, the predation behavior for the above
situation is intermittent and only happens in the channels
where the dispersals of migratory species occur.
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Motivated by the above consideration, in this paper, we
introduce an almost periodic predator-preymodel with inter-
mittent predation and discontinuous prey dispersal between
two patches:

𝑥̇1 (𝑡) = 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏1 (𝑡) 𝑥1 (𝑡)] ,
𝑥̇2 (𝑡) = 𝑥2 (𝑡) [𝑎2 (𝑡) − 𝑏2 (𝑡) 𝑥2 (𝑡)] ,
̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑎3 (𝑡) − 𝑏3 (𝑡) 𝑦 (𝑡)] ,

𝑡 ∈ [𝜏2𝑘, 𝜏2𝑘+1) ,
𝑥1 (𝜏2𝑘+1) = 𝑑1𝑥1 (𝜏−2𝑘+1) ,
𝑥2 (𝜏2𝑘+1) = 𝑑2𝑥2 (𝜏−2𝑘+1) ,
𝑦 (𝜏2𝑘+1) = 𝑦 (𝜏−2𝑘+1) ,

𝑡 = 𝜏2𝑘+1,
𝑥̇1 (𝑡) = 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏̃1 (𝑡) 𝑥1 (𝑡) − 𝑐1 (𝑡) 𝑦 (𝑡)]

+ 𝐷12 (𝑡) (𝑥2 (𝑡 − 𝜏1) − 𝑥1 (𝑡)) ,
𝑥̇2 (𝑡) = 𝑥2 (𝑡) [𝑎2 (𝑡) − 𝑏̃2 (𝑡) 𝑥2 (𝑡) − 𝑐2 (𝑡) 𝑦 (𝑡)]

+ 𝐷21 (𝑡) (𝑥1 (𝑡 − 𝜏2) − 𝑥2 (𝑡)) ,
̇𝑦 (𝑡) = 𝑦 (𝑡)
⋅ [𝑎3 (𝑡) − 𝑏̃3 (𝑡) 𝑦 (𝑡) + 𝑐1 (𝑡) 𝑥1 (𝑡) + 𝑐2 (𝑡) 𝑥2 (𝑡)] ,

𝑡 ∈ [𝜏2𝑘+1, 𝜏2𝑘+2) ,
𝑥1 (𝜏2𝑘+2) = 𝐷1𝑥1 (𝜏−2𝑘+2) ,
𝑥2 (𝜏2𝑘+2) = 𝐷2𝑥2 (𝜏−2𝑘+2) ,
𝑦 (𝜏2𝑘+2) = 𝑦 (𝜏−2𝑘+2) ,

𝑡 = 𝜏2𝑘+2,

(4)

where 𝑥𝑖(𝑡) denotes the prey population density in the 𝑖th
patch (𝑖 = 1, 2) and 𝑦(𝑡) represents the predator popula-
tion density in channels between two patches. When 𝑡 ∈[𝜏2𝑘, 𝜏2𝑘+1) with 𝑘 ∈ 𝑁, the prey species 𝑥𝑖 inhabits the 𝑖th
patch and does not disperse. At the same time, the preda-
tor species 𝑦 inhabits the channels between two patches
with other food sources. When 𝑡 → 𝜏2𝑘+1, the intrinsic
discipline of the species 𝑥 in each patch changes. The
channels between the two patches will open, and the species𝑥 disperses bidirectionally from one patch to another; this
dispersal movement will continue for the time interval 𝑡 ∈[𝜏2𝑘+1, 𝜏2𝑘+2). Meanwhile, the predator species 𝑦 preys on the
species 𝑥 in the channels. When 𝑡 → 𝜏2𝑘+2, the gate of the
channels will close, the species 𝑥𝑖 will stop dispersing and
inhabit patch 𝑖. At the same time, the predator species 𝑦
will also stop preying on species 𝑥. Obviously, the predation
behavior only happens in the time interval 𝑡 ∈ [𝜏2𝑘+1, 𝜏2𝑘+2);
that is, it is intermittent. Here, 𝑎𝑖(𝑡), 𝑎𝑖(𝑡) (𝑖 = 1, 2) represent
the intrinsic growth rates of the species 𝑥 in the 𝑖th patch over

the time intervals [𝜏2𝑘, 𝜏2𝑘+1) and [𝜏2𝑘+1, 𝜏2𝑘+2), respectively;𝑎3(𝑡), 𝑎3(𝑡) denote the intrinsic growth rates of the species 𝑦
over the time intervals [𝜏2𝑘, 𝜏2𝑘+1) and [𝜏2𝑘+1, 𝜏2𝑘+2), respec-
tively; 𝑏𝑖(𝑡), 𝑏̃𝑖(𝑡) (𝑖 = 1, 2) represent the intercompetition
rates of the species 𝑥 in the 𝑖th patch over the time intervals[𝜏2𝑘, 𝜏2𝑘+1) and [𝜏2𝑘+1, 𝜏2𝑘+2), respectively; 𝑏3(𝑡), 𝑏̃3(𝑡) denote
the intercompetition rates of the species𝑦 over the time inter-
vals [𝜏2𝑘, 𝜏2𝑘+1) and [𝜏2𝑘+1, 𝜏2𝑘+2), respectively; 𝑑𝑖 represents
the survival rates of switching from stage 1 (without dispersal)
to stage 2 (dispersal movement);𝐷𝑖 denotes the survival rates
of switching from stage 2 to stage 1;𝐷𝑖𝑗(𝑡) is the dispersal rates
from the 𝑖th patch to the 𝑗th patch during the time interval[𝜏2𝑘+1, 𝜏2𝑘+2); and 𝜏𝑖 is the time for the population to disperse
frompatch 𝑗 to 𝑖 (𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2). During thewhole process,
the predator species 𝑦 never disperses.

In allusion to system (4) above, our main purpose in this
paper is to establish a series of criteria on the ultimate bound-
edness, permanence, and coexistence of the two populations
for system (4). The methods used in this paper are motivated
by the works on the permanence and extinction for periodic
predator-prey systems in patchy environments given by Teng
and Chen in [6] and the works on the survival analysis for a
periodic predator-prey model given by Zhang et al. in [22].

This paper is organized as follows. In Section 2, some
definitions, assumptions, and useful lemmas are introduced.
In Section 3, we state and prove the main results. Finally,
special examples and numerical simulations are illustrated to
demonstrate our theoretical results in Section 4.

2. Preliminaries

Let 𝑅 and 𝑅2 denote the set of real numbers and the 2-
dimensional Euclidean linear space, respectively, and 𝜏𝑘 be a
time sequence, satisfying 𝜏𝑘 < 𝜏𝑘+1, with 𝜏𝑘 → ∞ as 𝑘 → ∞.
Here, 𝑘 ∈ 𝑁. Define 𝜏 = max{𝜏1, 𝜏2}, 𝑃𝐶([𝑡 − 𝜏, 𝑡], 𝑅2) ={𝜓 : ([𝑡 − 𝜏, 𝑡] → 𝑅2) | 𝜑 = (𝜑1, 𝜑2) is continuous everywhere
except at 𝑡 = 𝜏𝑘 ∈ [𝑡−𝜏, 𝑡], and𝜑(𝜏+𝑘 ), 𝜑(𝜏−𝑘 ) exist with𝜑(𝜏+𝑘 ) =𝜑(𝜏𝑘)}. Define 𝐵𝑃𝐶 = {𝜑 ∈ 𝑃𝐶((−∞, 0], 𝑅2] : 𝜑 is bounded};
the norm of 𝜑 is defined by ‖𝜑‖ = sup𝜃∈[−𝜏,0]|𝜑(𝜃)|. Let𝐵𝑃𝐶+ = {𝜑 = (𝜑1, 𝜑2) ∈ 𝐵𝑃𝐶 : 𝜑𝑖(𝜃) ≥ 0 for all 𝜃 ∈ [−∞, 0]
and 𝜑𝑖(0+) > 0 for 𝑖 = 1, 2}.

In this paper, we assume that all solutions of system (4)
satisfy the following initial conditions:

𝑥𝑖 (𝑠, 𝜙) = 𝜙𝑖 (𝑠) ,
𝑠 ∈ [−𝜏, 0] ,

𝑥𝑖 (0+, 𝜙) = 𝜙𝑖 (0+) ,
𝑠 ∈ [−𝜏, 0] ,

(5)

where 𝜙 = (𝜙1, 𝜙2) ∈ 𝐵𝑃𝐶+. It is not hard to prove that the
functional of right of system (4) is continuous and satisfies
the local Lipschitz conditionwith respect to 𝜙 in the space𝑅×𝐵𝑃𝐶. Therefore, by the fundamental theory of the impulsive
functional differential equations with finite delays [16, 28,
29], system (4) has a unique solution (𝑥1(𝑡, 𝜙), 𝑥2(𝑡, 𝜙), 𝑦(𝑡))
satisfying the initial conditions (5). Obviously, the solution
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(𝑥1(𝑡, 𝜙), 𝑥2(𝑡, 𝜙), 𝑦(𝑡)) is positive in its maximal interval of
the existence.

Before going into details, we first draw some very useful
definitions and lemmas.

Definition 1 (see [30]). The set of sequences {𝜏𝑘𝑖 | 𝜏𝑘𝑖 = 𝜏𝑘+1 −𝜏𝑘, 𝑘, 𝑖 ∈ 𝑁, 𝜏𝑘 ∈ 𝐵} is said to be uniformly almost periodic
if, for arbitrary 𝜀 > 0, there exists a relatively dense set in 𝑅
of 𝜀-almost periodic common for all of the sequences; here𝐵 = {𝜏𝑘 | 𝜏𝑘 ∈ 𝑅, 𝜏𝑘 < 𝜏𝑘+1, 𝑘 ∈ 𝑁, lim𝑘→±∞𝜏𝑘 = ±∞}.
Definition 2 (see [30]). Assume that the following conditions
hold:

(1) The set of sequences {𝜏𝑖𝑘} is almost periodic, 𝑘, 𝑖 ∈ 𝑁.
(2) For any 𝜀 > 0 there exists a real number 𝛿 > 0 such

that if the points 𝑡󸀠, 𝑡󸀠󸀠 belong to the same interval of
continuity of 𝜑(𝑡) and satisfy the inequality |𝑡󸀠 − 𝑡󸀠󸀠| <𝛿, then |𝜑(𝑡󸀠) − 𝜑(𝑡󸀠󸀠)| < 𝜀.

(3) For any 𝜀 > 0 there exists a relatively dense set 𝐶 such
that if 𝜎 ∈ 𝐶, then |𝜑(𝑡 + 𝜎) − 𝜑(𝑡)| < 𝜀 for all 𝑡 ∈𝑅 satisfying the condition |𝑡 − 𝜎𝑘| > 𝜀, 𝑘 ∈ 𝑁. The
elements of 𝐶 are called 𝜖-almost periods.

We claim that function 𝜑 ∈ 𝑃𝐶([𝑡 − 𝜏, 𝑡], 𝑅2) is almost
periodic, and we denote 𝜑 ∈ 𝐴𝑃𝐶.
Definition 3 (see [31]). System (4) is said to be permanent
if there exist positive constants 𝑚 and 𝑀, such that for any
positive solutions 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡)) of system (4) with
initial value that satisfy condition (5)

𝑚 ≤ lim inf
𝑡→∞

𝑥𝑖 (𝑡) ≤ lim sup
𝑡→∞

𝑥𝑖 (𝑡) ≤ 𝑀, 𝑖 = 1, 2,
𝑚 ≤ lim inf

𝑡→∞
𝑦 (𝑡) ≤ lim sup

𝑡→∞
𝑦 (𝑡) ≤ 𝑀. (6)

Definition 4 (see [24]). Let𝑉 : 𝑅×𝑅2 → 𝑅2, then𝑉 is said to
belong to class 𝐿 if

(i) 𝑉 is continuous in (𝜏𝑘, 𝜏𝑘+1) ×𝑅2 for each 𝑥 ∈ 𝑅2, 𝑘 ∈𝑁,

lim
(𝑡,𝑦)→(𝜏−

𝑘+1
,𝑥)
𝑉 (𝑡, 𝑦) = 𝑉 (𝜏𝑘+1, 𝑥) . (7)

(ii) 𝑉 is locally Lipschitzian in 𝑥.
In this paper, there are some notations and assumptions

that shall be used:

(𝑁1) If 𝑓(𝑡), 𝑡 ∈ 𝑅, is an almost periodic function, we
define

𝐴 (𝑓) = lim
𝑡→∞

1𝑇 ∫𝑡+𝑇
𝑡

𝑓 (𝑠) 𝑑𝑠,
𝑓𝑢 = sup

𝑡∈𝑅

𝑓 (𝑡) ,
𝑓𝑙 = inf
𝑡∈𝑅

𝑓 (𝑡) ,
(8)

where 𝑇 is a positive constant.

(𝑁2) We let 𝜆𝑖(𝑡) = 𝑡 − 𝜏𝑖, 𝜆𝑖−1(𝑡) be an inverse function of
the function 𝜆𝑖(𝑡) (𝑖 = 1, 2).

(𝐻1) Functions 𝑎𝑖(𝑡), 𝑎𝑖(𝑡), 𝑏𝑖(𝑡), 𝑏̃𝑖(𝑡), and 𝐷𝑖𝑗(𝑡) are 𝜏-
almost periodic and bounded continuous functions
for all 𝑡 ∈ 𝑅 and 𝑏𝑙𝑖 ≥ 0, 𝑏̃𝑙𝑖 ≥ 0, 0 < 𝑑𝑖, 𝐷𝑖 ≤ 1 (𝑖 =1, 2, 3, 𝑗 = 1, 2).

(𝐻2) 𝐴(𝑎𝑖(𝑡)) > 0, 𝐴(𝑎𝑖(𝑡)) > 0, 𝐴(𝑏𝑖(𝑡)) > 0, 𝐴(𝑏̃𝑖(𝑡)) >0 (𝑖 = 1, 2).
(𝐻3) There exists a constant 𝜏 > 0, such that, for any 𝑡 ≥ 0,

∫𝑡+𝜏
𝑡

[(−1)𝑘 + 12 𝑎𝑖 (𝑠) + (−1)𝑘+1 + 12 𝑎𝑖 (𝑠)] 𝑑𝑠
+ ∑
𝑡<𝜏𝑘+1≤(𝑡+𝜏)

ln ℎ𝑖𝑘 > 0 (𝑖 = 1, 2, 𝑘 ∈ 𝑁) . (9)

(𝐻4) There exists a constant 𝜉𝑖 > 0 (𝑖 = 1, 2), such that, for
any 𝑡 ≥ 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑡<𝜏𝑘+1≤(𝑡+𝑠)

ln ℎ𝑖𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖, 𝑠 ∈ [0, 𝜏] . (10)

(𝐻5) 𝐴(𝑎𝑖𝑘(𝑡) − 𝑑𝑖𝑗𝑘(𝑡)) > 0 (𝑖, 𝑗 = 1, 2, 𝑘 ∈ 𝑁).
(𝐻6) There exist constants 𝜃 > 0, 𝑒𝑖 > 0 (𝑖 = 1, 2),

such that lim𝑡→∞inf 𝐵𝑖(𝑡) = lim𝑡→∞[𝑒𝑖(𝑏𝑖𝑘(𝑡)) −𝑑𝑖𝑗𝑘(𝜆𝑗−1(𝑡))/𝑚̃] ≥ 𝜃, where 𝑚̃ = max{1, [𝑚]} and [𝑚]
is the integer part of𝑚 (𝑘 ∈ 𝑁).

(𝐻7) The set of sequences {𝜏𝑖𝑘}, 𝑘 ∈ 𝑁, is uniformly almost
periodic, and 𝜏𝑘+2 = 𝜏𝑘 + 𝜏, inf𝑘∈𝑁|𝜏𝑘+1 − 𝜏𝑘| > 0,
where 𝜏 belongs to the relatively dense set 𝑇 (𝑖 =1, 2, 3).

(𝐻8) There exists a constant 𝜏 > 0, such that, for any 𝑡 ≥ 0,
∫𝑡+𝜏
𝑡

[(−1)𝑘 + 12 𝑎3 (𝑠) + (−1)𝑘+1 + 12 𝑎3 (𝑠)] 𝑑𝑠 > 0. (11)

Now, we give some useful lemmas which will be used in
the proofs of the main results.

If there is no predator 𝑦 in system (4), we have the
following predator-free system:

𝑥̇𝑖 (𝑡) = 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡) 𝑥𝑖 (𝑡)]
+ 𝑑𝑖𝑗𝑘 (𝑡) [𝑥𝑗 (𝑡 − 𝜏𝑖) − 𝑥𝑖 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑥𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑥𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(12)
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where

𝑎𝑖𝑘 (𝑡) = (−1)𝑘 + 12 𝑎𝑖 (𝑡) + (−1)𝑘+1 + 12 𝑎𝑖 (𝑡) ,
𝑏𝑖𝑘 (𝑡) = (−1)𝑘 + 12 𝑏𝑖 (𝑡) + (−1)𝑘+1 + 12 𝑏̃𝑖 (𝑡) ,
𝑑𝑖𝑗𝑘 (𝑡) = (−1)𝑘+1 + 12 𝐷𝑖𝑗 (𝑡) ,

ℎ𝑖𝑘 = (−1)𝑘 + 12 𝑑𝑖 + (−1)𝑘+1 + 12 𝐷𝑖,
𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2.

(13)

For system (12), we have the following result.

Lemma 5 (see [26] Theorem 3.4). Suppose that assumptions(𝐻1)–(𝐻7) hold; then system (12) has a unique globally attrac-
tive positive 𝜏-almost periodic solution 𝑥∗(𝑡) = (𝑥∗1 (𝑡), 𝑥∗2 (𝑡)).

If there is no prey 𝑥 in system (4), we have the following
prey-free system:

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑎3𝑘 (𝑡) − 𝑏3𝑘 (𝑡) 𝑦 (𝑡)] ,
𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,

𝑦 (𝜏𝑘+1) = 𝑦 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,
(14)

where

𝑎3𝑘 (𝑡) = (−1)𝑘 + 12 𝑎3 (𝑡) + (−1)𝑘+1 + 12 𝑎3 (𝑡) ,
𝑏3𝑘 (𝑡) = (−1)𝑘 + 12 𝑏3 (𝑡) + (−1)𝑘+1 + 12 𝑏̃3 (𝑡) .

(15)

For system (14), we have the following result.

Lemma 6 (see [26]). Suppose assumptions (𝐻1)-(𝐻2) and(𝐻7)-(𝐻8) hold; then system (14) has a unique globally attrac-
tive positive 𝜏-almost periodic solution 𝑦∗(𝑡) ∈ 𝐴𝑃𝐶.

For (𝑡, 𝑥) ∈ (𝜏𝑘, 𝜏𝑘+1) × 𝑅2, we define
𝐷+𝑉 (𝑡, 𝑥)

= lim sup
ℎ→0+

1ℎ [𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑓 (𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)] , (16)

where 𝑓 = (𝑓1, 𝑓2) is the right-hand side of system (12). We
give the following vector comparison results of the impulsive
differential equations.

Lemma 7 (see [1]). Let 𝑉 : 𝑅+ × 𝑅2+ and 𝑉 ∈ 𝐿. Assume that

𝐷+𝑉 (𝑡, 𝑥) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝜓𝑘 (𝑉 (𝑡, 𝑥)) , 𝑡 = 𝜏𝑘+1, (17)

where 𝑔(𝑡, 𝑢) : 𝑅 × 𝑅2 → 𝑅2 is continuous in(𝜏𝑘, 𝜏𝑘+1) × 𝑅2 and quasi-monotone nondecreasing in 𝑢, for

V ∈ 𝑅2, lim(𝑡,𝑢)→(𝜏−
𝑘+1
)𝑔(𝑡, 𝑢) = 𝑔(𝜏−𝑘+1, V) exists, and𝜓𝑘 : 𝑅2 →𝑅2 is nondecreasing. Let 𝑟(𝑡) be the maximal solution of the

following vector impulsive differential system:

𝑢̇ = 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑢 (𝑡) = 𝜓𝑘 (𝑢 (𝑡−)) ,
𝑢 (𝑡0) = 𝑢 (𝑡−0 ) = 𝑢0

𝑡 = 𝜏𝑘+1,
(18)

existing on [𝑡0,∞). Then 𝑉(𝑡0, 𝑥0) ≤ 𝑢0 implies that

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑟 (𝑡) , 𝑡 ≥ 𝑡0, (19)

where 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝑥0) is any solution of system (12) existing
on [𝑡0,∞). Here, we state that function 𝑔(𝑡, 𝑢) is quasi-
monotone nondecreasing in 𝑢; if 𝑢, V ∈ 𝑅2, 𝑢 ≤ V, and 𝑥𝑖 = 𝑦𝑖
for some 1 ≤ 𝑖 ≤ 2, then 𝑔𝑖(𝑡, 𝑥) ≤ 𝑔𝑖(𝑡, 𝑦).
3. Main Results

First, in terms of the ultimate boundedness for system (4), we
obtain the following result.

Theorem 8. Suppose that assumptions (𝐻1)–(𝐻9) hold. Then
there is a constant𝑀 > 0 such that

lim
𝑡→∞

sup𝑥𝑖 (𝑡, 𝜙) ≤ 𝑀 (𝑖 = 1, 2) ,
lim
𝑡→∞

sup𝑦 (𝑡) ≤ 𝑀 (20)

for any positive solutions (𝑥1(𝑡, 𝜙), 𝑥2(𝑡, 𝜙), 𝑦(𝑡, 𝜙)) of system
(4).

Proof. Let (𝑥1(𝑡, 𝜙), 𝑥2(𝑡, 𝜙), 𝑦(𝑡)) be any positive solution of
system (4) satisfying the initial condition (5). From system
(4), we have

𝑥̇𝑖 (𝑡) ≤ 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡) 𝑥𝑖 (𝑡)]
+ 𝑑𝑖𝑗𝑘 (𝑡) [𝑥𝑗 (𝑡 − 𝜏𝑖) − 𝑥𝑖 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑥𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑥𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(21)

for all 𝑡 ≥ 0, 𝑖, 𝑗 = 1, 2 (𝑖 ̸= 𝑗). Then by the Lemmas 5 and 7,
we obtain

𝑥𝑖 (𝑡) ≤ 𝑥𝑖 (𝑡) , ∀𝑡 ≥ 0, 𝑖 = 1, 2, (22)

where (𝑥1(𝑡), 𝑥2(𝑡)) is the solution of system (12) with the
initial condition (5). Under assumptions (𝐻1)–(𝐻7), from
Lemma 5 we obtain 𝑥𝑖(𝑡) → 𝑥∗(𝑡) (𝑖 = 1, 2, 𝑡 → ∞), where𝑥∗(𝑡) = (𝑥∗1 (𝑡), 𝑥∗2 (𝑡)) is the globally asymptotically stable
positive 𝜏-almost periodic solution of system (12). Hence,𝑥𝑖(𝑡) (𝑖 = 1, 2) is bounded on 𝑅+. Next, we choose a constant𝑀1 = sup𝑡∈𝑅|𝑥∗(𝑡)|, where |𝑥∗(𝑡)| = ∑2𝑖=1 𝑥∗𝑖 (𝑡). Since𝑥𝑖(𝑡) →
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𝑥∗(𝑡) (𝑖 = 1, 2, 𝑡 → ∞), there is a pair of 𝑇1 > 0 and 𝜌 > 0
such that

𝑥𝑖 (𝑡) ≤ 𝑥∗𝑖 (𝑡) + 𝜌 ≜ 𝑀1 ∀𝑡 ≥ 𝑇1, 𝑖 = 1, 2. (23)

Hence, by (22) we have

𝑥𝑖 (𝑡) ≤ 𝑀1 ∀𝑡 ≥ 𝑇1, 𝑖 = 1, 2. (24)

Consequently,

lim
𝑡→∞

sup 𝑥𝑖 (𝑡, 𝜙) ≤ 𝑀1, 𝑖 = 1, 2. (25)

Further, we prove that there is a constant𝑀2 > 0 such that

lim
𝑡→∞

sup𝑦 (𝑡) ≤ 𝑀2. (26)

From systems (4) and (24) we obtain

̇𝑦 (𝑡) ≤ 𝑦 (𝑡)
⋅ [𝑎3𝑘 (𝑡) + 𝑐1𝑘 (𝑡)𝑀1 + 𝑐2𝑘 (𝑡)𝑀2 − 𝑏3𝑘 (𝑡) 𝑦 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑦 (𝜏𝑘+1) = 𝑦 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(27)

for all 𝑡 ≥ 𝑇1, where
𝑐1𝑘 (𝑡) = (−1)𝑘+1 + 12 𝑐1 (𝑡) ,
𝑐2𝑘 (𝑡) = (−1)𝑘+1 + 12 𝑐2 (𝑡) ,

𝑘 ∈ 𝑁.
(28)

From the comparison theorem of the impulsive differential
equations [16, 28, 29], we have 𝑦(𝑡) ≤ 𝑧(𝑡) for all 𝑡 ≥ 𝑇1,
where 𝑧(𝑡) is the solution of the following auxiliary equation:

𝑧̇ (𝑡) = 𝑧 (𝑡)
⋅ [𝑎3𝑘 (𝑡) + 𝑐1𝑘 (𝑡)𝑀1 + 𝑐2𝑘 (𝑡)𝑀2 − 𝑏3𝑘 (𝑡) 𝑧 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑧 (𝜏𝑘+1) = 𝑧 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(29)

with initial value 𝑧(𝑇1) = 𝑦(𝑇1). According to assumptions(𝐻1)-(𝐻2) and (𝐻7)-(𝐻8), we also have
∫𝑡+𝜏
𝑡

{(−1)𝑘 + 12 𝑎3 (𝑠) + (−1)𝑘+1 + 12 [𝑎3 (𝑠)
+ 𝑐1𝑘 (𝑡)𝑀1 + 𝑐2𝑘 (𝑡)𝑀1]} 𝑑𝑠 > 0.

(30)

Hence from Lemma 6, system (29) has a unique globally
attractive positive 𝜏-almost periodic solution 𝑧∗(𝑡). For any
constant 𝜆 > 0, there is a 𝑇2 ≥ 𝑇1 such that 𝑧(𝑡) < 𝑧∗(𝑡) + 𝜆
for all 𝑡 ≥ 𝑇2. Therefore, we have

𝑦 (𝑡) < 𝑧∗ (𝑡) + 𝜆 ≤ 12 max
𝑡∈[0,𝜏]

𝑧∗ (𝑡) + 𝜆 ≜ 𝑀2, (31)

for all 𝑡 ≥ 𝑇2. Consequently,
lim
𝑡→∞

sup𝑦 (𝑡) ≤ 𝑀2. (32)

Therefore, (26) holds. Choose a constant𝑀 = max{𝑀1,𝑀2};
then we can see

lim
𝑡→∞

sup𝑥𝑖 (𝑡, 𝜙) ≤ 𝑀 (𝑖 = 1, 2) ,
lim
𝑡→∞

sup𝑦 (𝑡) ≤ 𝑀; (33)

this completes the proof of Theorem 8.

Next, on the permanence of system (4), we have the
following results.

Theorem 9. Suppose that assumptions (𝐻1)-(𝐻2) and (𝐻7)-(𝐻8) hold. Then the predator species 𝑦 of system (4) is
permanent.

Proof. Let (𝑥1(𝑡, 𝜙), 𝑥2(𝑡, 𝜙), 𝑦(𝑡)) be any positive solutions of
system (4) satisfying the initial condition (5). By system (4),
we easily obtain

̇𝑦 (𝑡) ≥ 𝑦 (𝑡) [𝑎3𝑘 (𝑡) − 𝑏3𝑘 (𝑡) 𝑦 (𝑡)] ,
𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,

𝑦 (𝜏𝑘+1) = 𝑦 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1.
(34)

Using comparison theorem of the impulsive differential
equations [16, 28, 29] and Lemma 6, we can easily obtain𝑦(𝑡) ≥ 𝑦(𝑡), for all 𝑡 ∈ 𝑅, where 𝑦(𝑡) is the solution of system
(14) with condition (5). Under the assumptions (𝐻1)-(𝐻2)
and (𝐻7)-(𝐻8), by Lemma 6, we can obtain 𝑦(𝑡) → 𝑦∗(𝑡)
as 𝑡 → ∞, where 𝑦∗(𝑡) is the globally asymptotically stable
positive 𝜏-almost periodic solution of system (14). Hence, we
can easily obtain that, for 𝜀0 = (1/2)min𝑡∈[0,𝜏]𝑦∗(𝑡), there
exists a 𝑇1 > 0 such that

𝑦 (𝑡) > 𝑦∗ (𝑡) − 𝜀0 ≥ 12 min
𝑡∈[0,𝜏]

𝑦∗ (𝑡) ≜ 𝑚2, (35)

for all 𝑡 ≥ 𝑇1. Together with Theorem 8, we have that the
predator species 𝑦 of system (4) is permanent.This completes
the proof of Theorem 9.

Remark 10. Set

𝜃 = ∫𝑡+𝜏
𝑡

[(−1)𝑘 + 12 𝑎3 (𝑠) + (−1)𝑘+1 + 12 𝑎3 (𝑠)] 𝑑𝑠. (36)

In system (4), based on the assumptions and the actual bio-
logicalmeanings of the parameters 𝑎3(𝑡), 𝑏3(𝑡) and 𝑎3(𝑡), 𝑏̃3(𝑡),
we can see that the conditions in Theorem 9 are easily
satisfied. Additionally, the constant 𝜃 represents the minimal
total growth rate of the predator species 𝑦. If 𝜃 > 0, which
means that the predator species 𝑦 has another food resource.
As a result,Theorem 9 implies that if 𝜃 > 0, then the predator
species 𝑦 will be permanent regardless of whether the prey
species 𝑥 exists or not.
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Next, on the permanence of the prey species 𝑥 of system
(4), we have the following result.

Theorem 11. Suppose that assumptions (𝐻1)–(𝐻7) and the
following inequality

∫𝑡+𝜏
𝑡

(−1)𝑘 + 12 𝑎𝑖 (𝑠)
+ (−1)𝑘+12 (𝑎𝑖 (𝑠) − 𝑐𝑖 (𝑠) 𝑦∗ (𝑠)) 𝑑𝑠
+ ∑
𝑡≤𝜏𝑘+1≤𝑡+𝜏

ln ℎ𝑖𝑘 > 0
(37)

for (𝑖 = 1, 2, 𝑘 ∈ 𝑁) hold.Then the prey species 𝑥 of system (4)
is permanent.

Proof. Owing to condition (37), we have that there is a small
enough constant 𝜀1 > 0, such that

∫𝑡+𝜏
𝑡

(−1)𝑘 + 12 (𝑎𝑖 (𝑠) − 𝑏𝑖 (𝑠) 𝜀1) + (−1)𝑘+12 [𝑎𝑖 (𝑠)
− 𝑏̃𝑖 (𝑠) 𝜀1 − 𝑐𝑖 (𝑠) (𝑦∗ (𝑠) + 𝜀1)] 𝑑𝑠
+ ∑
𝑡<𝜏𝑘+1≤(𝑡+𝜏)

ln ℎ𝑖𝑘 > 0.
(38)

Consider the following auxiliary system:

̇𝑛𝑖 (𝑡)
= 𝑛𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡) 𝑛𝑖 (𝑡) − 𝑐𝑖𝑘 (𝑡) (𝑦∗ (𝑠) + 𝜀1)]

+ 𝑑𝑖𝑗𝑘 (𝑡) [𝑛𝑗 (𝑡 − 𝜏𝑖) − 𝑛𝑖 (𝑡)] , 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑛𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑛𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(39)

where

𝑐1𝑘 (𝑡) = (−1)𝑘+1 + 12 𝑐1 (𝑡) ,
𝑐2𝑘 (𝑡) = (−1)𝑘+1 + 12 𝑐2 (𝑡) .

(40)

By (38), we have

∫𝑡+𝜏
𝑡

(−1)𝑘 + 12 𝑎𝑖 (𝑠)
+ (−1)𝑘+12 [𝑎𝑖 (𝑠) − 𝑐𝑖 (𝑠) (𝑦∗ (𝑠) + 𝜀1)] 𝑑𝑠
+ ∑
𝑡<𝜏𝑘+1≤(𝑡+𝜏)

ln ℎ𝑖𝑘 > 0.
(41)

Then, from (41) and Lemma 5, we know system (39) has a
unique globally attractive positive 𝜏-almost periodic solution𝑛∗𝜀1(𝑡) = (𝑛∗1𝜀1(𝑡), 𝑛∗2𝜀1(𝑡)).

And then, based on assumption 𝐻8 and Lemma 5, for
arbitrary constant 𝛾 > 0 the following system
𝑢̇ (𝑡) = (−1)𝑘 + 12 𝑢 (𝑡) [𝑎3 (𝑡) − 𝑏3 (𝑡) 𝑢 (𝑡)]

+ (−1)𝑘+1 + 12 𝑢 (𝑡)
⋅ [𝑎3 (𝑡) + 𝑐1 (𝑡) 𝛾 + 𝑐2 (𝑡) 𝛾 − 𝑏̃3 (𝑡) 𝑢 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑢 (𝜏𝑘+1) = 𝑢 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(42)

has a unique globally attractive positive 𝜏-almost periodic
solution 𝑢∗𝛾 (𝑡). For above 𝜀1 > 0 and 𝑀̂ = max{𝑀2, 𝑚−12 } > 0,
there is a 𝑡3 = 𝑡(𝜀1, 𝑀̂) > 0, such that, for any 𝑡0 ≥ 0 and𝑢0 ∈ [𝑀̂−1, 𝑀̂],

󵄨󵄨󵄨󵄨󵄨𝑢𝛾 (𝑡, 𝑡0, 𝑢0) − 𝑢∗𝛾 (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝜀12 (43)

for all 𝑡 ≥ 𝑡0 + 𝑡3, where 𝑢𝛾(𝑡, 𝑡0, 𝑢0) is the solution of system
(42) with the initial condition 𝑢𝛾(𝑡0) = 𝑢0.

According to the theorem of the continuity of solutions
with respect to parameters of the impulsive differential
equations [17], there exist 𝛾0 ∈ (0, 𝜀1) and 𝛾0 < 𝑛∗𝜀1(𝑡) − 𝛾0
such that

󵄨󵄨󵄨󵄨󵄨𝑢∗𝛾0 (𝑡) − 𝑦∗ (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝜀12 , (44)

for all 𝑡 ∈ [𝑡, 𝑡+𝜏]. Also owing to the almost periodic property
of 𝑢∗𝛾0(𝑡) and 𝑦∗(𝑡), we further have

󵄨󵄨󵄨󵄨󵄨𝑢∗𝛾0 (𝑡) − 𝑦∗ (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝜀12 , (45)

for all 𝑡 ∈ 𝑅.
Suppose (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡)) is arbitrary positive solution

of system (4); from above inequalities (24), (31), and (35), we
have

𝑥 (𝑡) ≤ 𝑀1,
𝑀−1 ≤ 𝑦 (𝑡) ≤ 𝑀 (46)

for all 𝑡 ≥ 𝑇̂ = max{𝑇1, 𝑇2}. If there exists a 𝑡2 ≥ 𝑇̂, such that𝑥𝑖(𝑡) ≤ 𝛾0 for all 𝑡 ≥ 𝑡2, then from system (4), we can obtain

̇𝑦 (𝑡) ≤ (−1)𝑘 + 12 𝑦 (𝑡) [𝑎3 (𝑡) − 𝑏3 (𝑡) 𝑦 (𝑡)]
+ (−1)𝑘+1 + 12 𝑦 (𝑡)
⋅ [𝑎3 (𝑡) + 𝑐1 (𝑡) 𝛾0 + 𝑐2 (𝑡) 𝛾0 − 𝑏̃3 (𝑡) 𝑦 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑦 (𝜏𝑘+1) = 𝑦 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(47)
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for all 𝑡 ≥ 𝑡2. By comparison theoremof impulsive differential
equations [16, 28, 29], we also have 𝑦(𝑡) ≤ 𝑢𝛾0(𝑡) for all 𝑡 ≥ 𝑡2,
where 𝑢𝛾0(𝑡) is the solution of system (42) satisfying 𝛾 = 𝛾0
and with the initial value 𝑢𝛾0(𝑡2) = 𝑦(𝑡2). For (43), let 𝑡0 = 𝑡2
and 𝑢(𝑡0) = 𝑦(𝑡2). From𝑀−1 ≤ 𝑦(𝑡) ≤ 𝑀, we have for 𝛾 = 𝛾0

𝑢𝛾0 (𝑡) = 𝑢𝛾0 (𝑡, 𝑡2, 𝑦 (𝑡2)) < 𝑢∗𝛾0 (𝑡) + 12𝜀1, (48)

for all 𝑡 ≥ 𝑡2+𝑡3.Then 𝑦(𝑡) < 𝑢∗𝛾0(𝑡)+(1/2)𝜀1 for all 𝑡 ≥ 𝑡2+𝑡3.
Thus, by condition (45), we further get

𝑦 (𝑡) < 𝑦∗ (𝑡) + 𝜀1. (49)

Taking into account system (4) again, from above
inequality (49) and system (4), we have

𝑥̇𝑖 (𝑡)
≥ 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡) 𝑥𝑖 (𝑡) − 𝑐𝑖𝑘 (𝑡) (𝑦∗ (𝑡) + 𝜀1)]

+ 𝑑𝑖𝑗𝑘 (𝑡) [𝑥𝑗 (𝑡 − 𝜏𝑖) − 𝑥𝑖 (𝑡)] , 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑥𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑥𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(50)

for all 𝑡 ≥ 𝑡2 + 𝑡3. From Lemma 7, we also have 𝑥𝑖(𝑡) ≥𝑛𝑖𝜀1(𝑡) (𝑖 = 1, 2) for all 𝑡 ≥ 𝑡2 + 𝑡3, where 𝑛𝜀1(𝑡) =(𝑛1𝜀1(𝑡), 𝑛2𝜀1(𝑡)) is the solution of system (39) satisfying the
initial value 𝑛𝑖𝜀1(𝑡2 + 𝑡3) = 𝑥𝑖(𝑡2 + 𝑡3). Because of the globally
attractivity of positive 𝜏-almost periodic solution 𝑛∗𝜀1(𝑡) of sys-
tem (39), we further have that, for previous constant 𝛾0, there
exists a 𝑡4 ≥ 𝑡2 + 𝑡3 such that

𝑛𝜀1 (𝑡) ≥ 𝑛∗𝜀1 (𝑡) − 𝛾0 > 𝛾0, (51)

for all 𝑡 ≥ 𝑡4. Hence, we have 𝑥𝑖(𝑡) > 𝛾0 for all 𝑡 ≥ 𝑡4, which
leads to a contradiction.

Hence, there exists a constant 𝑡5 ≥ 𝑡2 such that𝑥𝑖(𝑡5) > 𝛾0.
We now prove that

𝑥𝑖 (𝑡) ≥ 𝛾0 exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} ∀𝑡 ≥ 𝑡5, (52)

where

𝜑0 = max
𝑡∈[0,𝜏]

{󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑘 (𝑡) + 𝑏𝑖𝑘 (𝑡) 𝛾0 + 𝑐𝑖𝑘 (𝑡) (𝑦∗ (𝑡) + 𝜀1)
+ 𝑑𝑖𝑗𝑘 (𝑡)󵄨󵄨󵄨󵄨󵄨} ,

𝑀0 = min
𝑡∈[0,𝜏]

{󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡)𝑀1 − 𝑐𝑖𝑘 (𝑡)𝑀 − 𝑑𝑖𝑗𝑘 (𝑡)󵄨󵄨󵄨󵄨󵄨} .
(53)

If inequality (52) is not true, then from 𝑥𝑖(𝑡5) > 𝛾0 >𝛾0 exp{−[(𝑀0 + 𝜑0)𝑡3 + 2𝜉𝑖]}, there are constants 𝑡6 and 𝑡7
satisfying 𝑡7 ≥ 𝑡6 > 𝑡5, such that 𝑥𝑖(𝑡7) < 𝛾0 exp{−[(𝑀0 +𝜑0)𝑡3 + 2𝜉𝑖]}, 𝑥𝑖(𝑡−6 ) ≥ 𝛾0, 𝑥𝑖(𝑡6) ≤ 𝛾0.There are two cases for𝑡7.
Case 1. 𝑡6 = 𝑡7.
Case 2. 𝑡6 < 𝑡7.

For Case 1, we see that 𝑡6 is an impulsive time. Hence,
there is an integer 𝑘 > 0 such that 𝑡6 = 𝑡𝑘. We have

𝛾0 exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} > 𝑥𝑖 (𝑡6) = ℎ𝑖𝑘𝑥𝑖 (𝑡−6 )
≥ 𝛾0 exp (ln ℎ𝑖𝑘) ≥ 𝛾0 exp (−𝜉𝑖)
≥ 𝛾0 exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} ,

(54)

which leads to a contradiction.
For Case 2, we have 𝑥𝑖(𝑡) < 𝛾0, for all 𝑡 ∈ (𝑡6, 𝑡7]. Assume𝑡7 − 𝑡6 ≤ 𝑡3, then for any 𝑡 ∈ [𝑡6, 𝑡7) we have
𝑥̇𝑖 (𝑡)

≥ 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡)𝑀1 − 𝑐𝑖𝑘 (𝑡)𝑀]
− 𝑑𝑖𝑗𝑘 (𝑡) 𝑥𝑖 (𝑡)

≥ 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡)𝑀1 − 𝑐𝑖𝑘 (𝑡)𝑀 − 𝑑𝑖𝑗𝑘 (𝑡)]
≥ 𝑥𝑖 (𝑡)𝑀0, 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,

𝑥𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑥𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(55)

where

𝑀0
= min
𝑡∈[0,𝜏]

{󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡)𝑀1 − 𝑐𝑖𝑘 (𝑡)𝑀 − 𝑑𝑖𝑗𝑘 (𝑡)󵄨󵄨󵄨󵄨󵄨} . (56)

Integrating (55) from 𝑡6 to 𝑡, for any 𝑡 ∈ [𝑡6, 𝑡7], we obtain
𝑥𝑖 (𝑡) ≥ 𝑥𝑖 (𝑡6)

⋅ exp{∫𝑡
𝑡6

[𝑎𝑖𝑘 (𝑠) − 𝑏𝑖𝑘 (𝑠)𝑀1 − 𝑐𝑖𝑘 (𝑠)𝑀 − 𝑑𝑖𝑗𝑘 (𝑠)] 𝑑𝑠

+ ∑
𝑡6<𝜏𝑘+1≤𝑡

ln ℎ𝑖𝑘} ≥ 𝛾0 exp [− (𝑀0𝑡3 + 𝜉𝑖)] .
(57)

Assume 𝑡7 − 𝑡6 > 𝑡3; then when 𝑡 ∈ [𝑡6, 𝑡6 + 𝑡3], according to
above discussion we directly have

𝑥𝑖 (𝑡) ≥ 𝛾0 exp [− (𝑀0𝑡3 + 𝜉𝑖)] . (58)

Particularly,

𝑥𝑖 (𝑡6 + 𝑡3) ≥ 𝛾0 exp [− (𝑀0𝑡3 + 𝜉𝑖)] . (59)

Since 𝑥𝑖(𝑡) ≤ 𝛾0 for all 𝑡 ∈ (𝑡6, 𝑡7].Then we have

̇𝑦 (𝑡) ≤ (−1)𝑘 + 12 𝑦 (𝑡) [𝑎3 (𝑡) − 𝑏3 (𝑡) 𝑦 (𝑡)]
+ (−1)𝑘+1 + 12 𝑦 (𝑡)
⋅ [𝑎3 (𝑡) + 𝑐1 (𝑡) 𝛾0 + 𝑐2 (𝑡) 𝛾0 − 𝑏̃3 (𝑡) 𝑦 (𝑡)] ,

𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑦 (𝜏𝑘+1) = 𝑦 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(60)
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for 𝑡 ∈ (𝑡6, 𝑡7]. From comparison theorem of impulsive
differential equations [16, 28, 29], we also have 𝑦(𝑡) ⩽ 𝑢𝛾0(𝑡)
for all 𝑡 ∈ (𝑡6, 𝑡7), where 𝑢𝛾0(𝑡) is the solution of system (42)
with 𝛾 = 𝛾0 and satisfies 𝑢𝛾0(𝑡6) = 𝑦(𝑡6). In (43), choose a𝑡0 = 𝑡6 and 𝑢0 = 𝑦(𝑡6), since𝑀−1 ≤ 𝑦(𝑡6) ≤ 𝑀, we have for𝛾 = 𝛾0
𝑢𝛾0 (𝑡) = 𝑢𝛾0 (𝑡, 𝑡6, 𝑦 (𝑡6)) ≤ 𝑢∗𝛾0 (𝑡) + 12𝜀1

∀𝑡 ≥ 𝑡6 + 𝑡3.
(61)

Hence,

𝑦 (𝑡) < 𝑢∗𝛾0 + 𝜀12 ∀𝑡 ≥ 𝑡6 + 𝑡3. (62)

Thus, from (45) we further have

𝑦 (𝑡) < 𝑦∗ (𝑡) + 𝜀1 ∀𝑡 ≥ 𝑡6 + 𝑡3. (63)

From (63), we have

𝑥̇𝑖 (𝑡)
≥ 𝑥𝑖 (𝑡) [𝑎𝑖𝑘 (𝑡) − 𝑏𝑖𝑘 (𝑡) 𝛾0 − 𝑐𝑖𝑘 (𝑡) (𝑦∗ (𝑡) + 𝜀1)]

− 𝑑𝑖𝑗𝑘 (𝑡) 𝑥𝑖 (𝑡) 𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1) ,
𝑥𝑖 (𝜏𝑘+1) = ℎ𝑖𝑘𝑥𝑖 (𝜏−𝑘+1) , 𝑡 = 𝜏𝑘+1,

(64)

For arbitrary 𝑡 ∈ [𝑡6+𝑡3, 𝑡7). We choose an integer 𝑝 ≥ 0 such
that 𝑡7 ∈ [𝑡6 + 𝑡3 +𝑝𝜏, 𝑡6 + 𝑡3 + (𝑝+1)𝜏); then integrating (64)
from 𝑡6 + 𝑡3 to 𝑡7, we have
𝛾0exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} > 𝑥𝑖 (𝑡7) = 𝑥𝑖 (𝑡6 + 𝑡3)

⋅ exp{∫𝑡7
𝑡6+𝑡3

[𝑎𝑖𝑘 (𝑠) − 𝑏𝑖𝑘 (𝑠) 𝛾0
− 𝑐𝑖𝑘 (𝑠) (𝑦∗ (𝑠) + 𝜀1) − 𝑑𝑖𝑗𝑘 (𝑠)] 𝑑𝑠
+ ∑
𝑡6+𝑡3<𝜏𝑘+1≤𝑡7

ln ℎ𝑖𝑘} ≥ 𝛾0 exp [− (𝑀0𝑡3 + 𝜉𝑖)]

⋅ exp{(∫𝑡6+𝑡3+𝑝𝜔
𝑡6+𝑡3

+∫𝑡7
𝑡6+𝑡3+𝑝𝜔

) [𝑎𝑖𝑘 (𝑠) − 𝑏𝑖𝑘 (𝑠) 𝛾0
− 𝑐𝑖𝑘 (𝑠) (𝑦∗ (𝑠) + 𝜀1) − 𝑑𝑖𝑗𝑘 (𝑠)] 𝑑𝑠
+ ∑
𝑡6+𝑡3<𝜏𝑘+1≤𝑡7

ln ℎ𝑖𝑘} ≥ 𝛾0 exp [− (𝑀0𝑡3 + 𝜉𝑖)
− (𝜑0𝑡3 + 𝜉𝑖)] ≥ 𝛾0 exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} ,

(65)

which leads to a contradiction. According to the discussion
above, we finally have

lim
𝑡→∞

inf𝑥𝑖 (𝑡) ≥ 𝑚1 ≜ 𝛾0 exp {− [(𝑀0 + 𝜑0) 𝑡3 + 2𝜉𝑖]} . (66)

Obviously, 𝑚1 is independent of any positive solutions of
system (4). This completes the proof of Theorem 11.

Remark 12. Set

𝜆 = ∫𝑡+𝜏
𝑡

(−1)𝑘 + 12 𝑎𝑖 (𝑠)
+ (−1)𝑘+12 (𝑎𝑖 (𝑠) − 𝑐𝑖𝑘 (𝑠) 𝑦∗ (𝑡)) 𝑑𝑠
+ ∑
𝑡≤𝜏𝑘+1≤𝑡+𝜏

ln ℎ𝑖𝑘.
(67)

Since 𝑦∗(𝑡) is the globally asymptotically stable 𝜏− peri-
odic solution of the prey-free subsystem (14) of system
(4), we obtain that the integral ∫𝑡+𝜏

𝑡
(((−1)𝑘 + 1)/2)𝑎𝑖(𝑠) +((−1)𝑘+1/2)(𝑎𝑖(𝑠) − 𝑐𝑖𝑘(𝑠)𝑦∗(𝑡))𝑑𝑠 is the net total growth

rate of species 𝑥 within a whole almost period, while∑𝑡≤𝜏𝑘+1≤𝑡+𝜏 ln ℎ𝑖𝑘 is the maximal total survivability of species𝑥 within the process in which species 𝑥 disperses between
patches. Therefore, 𝜆 is the net total growth rate of species 𝑥
during awhole period of transference.Theorem 11 tells us that
if 𝜆 > 0, then species 𝑥 in system (4) is permanent.

4. Numerical Simulation and Discussion

In this paper, an almost periodic predator-prey model with
intermittent prey dispersals and intermittent predation has
been investigated. By using the methods of analysis and com-
parison theorems of the impulsive differential equations, we
obtain sufficient conditions of the boundedness and perma-
nence for this system.

To illustrate our results for system (4), we give some
numerical simulations by using the following values of
parameters in Table 1.

Due to system (4) being an almost periodic system, we
will show the numerical simulation on the following eight
intervals in Table 2.

Therefore, we can consider almost periodic system as
periodic approximately and the 𝜏− period is 10.

First, for system (12), when we take each parameter as in
Table 1, we have

∫10
0

𝑎1 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 𝑑1 ≈ 4.3918 > 0,

∫10
0

𝑎1 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln𝐷1 ≈ 5.4615 > 0,

∫10
0

𝑎2 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 𝑑2 ≈ 5.0316 > 0,

∫10
0

𝑎2 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln𝐷2 ≈ 5.6074 > 0.

(68)

We can see that all the assumptions (𝐻1)–(𝐻7) of Lemma 5
hold. Therefore, system (12) has a unique positive globally
attractive almost periodic solution 𝑥∗(𝑡) = (𝑥∗1 (𝑡), 𝑥∗2 (𝑡)).
Numerical simulations of these results can be observed in
Figures 1(a) and 1(b). From numerical simulations, we obtain
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Table 1: Parameter values used in the simulations of system (4).

Parameter Value
𝑎1(𝑡) 0.5 + 0.2 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝑎1(𝑡) 0.6 + 0.14 sin(1.2𝜋𝑡) + 0.14 sin(1.5𝜋𝑡)𝑎2(𝑡) 0.55 + 0.1 sin(1.2𝜋𝑡) + 0.1 sin(1.5𝜋𝑡)𝑎2(𝑡) 0.6 + 0.09 sin(1.2𝜋𝑡) + 0.09 sin(1.5𝜋𝑡)𝑎3(𝑡) 0.5 + 0.3 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝑎3(𝑡) 0.1 + 0.12 sin(1.2𝜋𝑡) + 0.12 sin(1.5𝜋𝑡)𝑏1(𝑡) 0.25 + 0.1 cos(1.2𝜋𝑡) + 0.1 cos(1.5𝜋𝑡)𝑏̃1(𝑡) 0.4 + 0.04 cos(1.2𝜋𝑡) + 0.04 cos(1.5𝜋𝑡)𝑏2(𝑡) 0.3 + 0.04 cos(1.2𝜋𝑡) + 0.04 cos(1.5𝜋𝑡)𝑏̃2(𝑡) 0.4 + 0.05 cos(1.2𝜋𝑡) + 0.05 cos(1.5𝜋𝑡)𝑏3(𝑡) 0.2 + 0.1 cos (1.2𝜋𝑡) + 0.2 cos (1.5𝜋𝑡)𝑏̃3(𝑡) 0.5 + 0.10 cos(1.2𝜋𝑡) + 0.10 cos(1.5𝜋𝑡)𝑐1(𝑡) 0.2 + 0.2 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝑐1(𝑡) 0.10 + 0.1 sin(1.2𝜋𝑡) + 0.1 sin(1.5𝜋𝑡)𝑐2(𝑡) 0.15 + 0.2 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝑐2(𝑡) 0.15 + 0.2 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝐷12(𝑡) 0.5 + 0.05 cos(1.2𝜋𝑡) + 0.05 cos(1.5𝜋𝑡)𝐷21(𝑡) 0.5 + 0.05 cos(1.2𝜋𝑡) + 0.05 cos(1.5𝜋𝑡)𝑑1 0.5𝑑2 0.6𝐷1 0.55𝐷2 0.65𝜏1 1.3𝜏2 1.6

the minimum values of (𝑥1(𝑡), 𝑥2(𝑡)), which are (0.6988,
0.8355).

Then, for system (14), when we also take the above
parameters 𝑎3𝑘(𝑡), 𝑏3𝑘(𝑡), we have

∫10
0

𝑎3 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 5.0509 > 0,

∫10
0

𝑎3 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 1.0509 > 0.
(69)

We can easily demonstrate that the assumptions (𝐻1)-(𝐻2)
and (𝐻7)-(𝐻8) of Lemma 6 and Theorem 9 hold. Obviously,
system (14) has a unique almost periodic solution 𝑦∗(𝑡), and
the predator species 𝑦 of system (4) always has the minimum
value of 0.3528 and themaximum value of 1.9017 when taking
different initial values; that is, it is permanent. All of these
results can be observed in Figure 2(a). However, for system
(4), when we keep the other parameters unchanged and only
just adjust the value of 𝑎3(𝑡) = −0.65 + 0.12 sin(1.2𝜋𝑡) +0.12 sin(1.5𝜋𝑡), then we have

∫10
0

𝑎3 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 1 ≈ −6.4491 < 0. (70)

This is contrary to the assumptions (𝐻1)-(𝐻2) and (𝐻7)-(𝐻8) of Theorem 9, that is, in the whole period, if 𝜃 < 0
without considering the prey species 𝑥, then the predator

species 𝑦 of system (4) will be extinct (see Figure 2(b)).
Nevertheless, if we take the prey species 𝑥 into account, using
the above parameters 𝑐1(𝑡), 𝑐2(𝑡) and the minimum values of(𝑥1(𝑡), 𝑥2(𝑡)) with 0.6988, 0.8355 to make

∫5
0
𝑎3 (𝑠) 𝑑𝑠
+ ∫10
5

[𝑎3 (𝑠) + 0.6988 × 𝑐1 (𝑠) + 0.8355 × 𝑐2 (𝑠)] 𝑑𝑠
+ ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 0.6275 > 0,
(71)

then we find an interesting phenomenon where the predator
species 𝑦 of system (4) goes from extinct to permanent (see
Figure 3(a)). It turns out that if the predator species 𝑦 in the
time intervals [𝜏2𝑘+1, 𝜏2𝑘+2)has no other food resource but can
only rely on the prey species 𝑥, then the more the predation
behavior happens, themore likely the predator species will be
permanent.

Moreover, to illustrate the difference between continuous
and intermittent predation of the predator species 𝑦, we
consider the following system [25]:
𝑥̇1 (𝑡)

= 𝑥1 (𝑡) [𝑎1 (𝑡) − 𝑏1 (𝑡) 𝑥1 (𝑡) − 𝑐1 (𝑡) 𝑦 (𝑡)]
+ 𝐷12 (𝑡) [𝑥2 (𝑡) − 𝑥1 (𝑡)] ,

𝑥̇2 (𝑡)
= 𝑥2 (𝑡) [𝑎2 (𝑡) − 𝑏2 (𝑡) 𝑥2 (𝑡) − 𝑐2 (𝑡) 𝑦 (𝑡)]

+ 𝐷21 (𝑡) [𝑥1 (𝑡) − 𝑥2 (𝑡)] ,
̇𝑦 (𝑡)
= 𝑦 (𝑡) [𝑎3 (𝑡) − 𝑏3 (𝑡) + 𝑐1 (𝑡) 𝑥1 (𝑡) + 𝑐2 (𝑡) 𝑥2 (𝑡)] .

(72)

We keep the other parameters unchanged including the
intrinsic growth rates of the species 𝑥, the interspecies
competition rates of all species, the survival rates of the
species 𝑥, and the dispersal rates of the species 𝑥 in system
(72). We take another set of parameters in Table 3, and we let𝜏𝑖 = 0, 𝑑𝑖 = 𝐷𝑖 = 1 (𝑖 = 1, 2) for the purpose of contrast.

By simple calculation, we have

∫10
0

[𝑎3 (𝑠) + 0.6988 × 𝑐1 (𝑠) + 0.8355 × 𝑐2 (𝑠)] 𝑑𝑠
+ ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 5.7530 > 0,

∫10
0

[𝑎1 (𝑠) − 1.9017 × 𝑐1 (𝑠)] 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 1
≈ −0.7009 < 0,

∫10
0

[𝑎2 (𝑠) − 1.9017 × 𝑐2 (𝑠)] 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 1
≈ −0.2434 < 0.

(73)
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Table 2: Parameter values used in the simulations of system (4).

Number Interval 𝜏𝑘+1 − 𝜏𝑘 Interval length Process
1 [0, 5) 𝜏1 − 𝜏0 5 12 [5, 9) 𝜏2 − 𝜏1 4 23 [14, 20) 𝜏3 − 𝜏2 6 14 [20, 25) 𝜏4 − 𝜏3 5 25 [25, 28) 𝜏5 − 𝜏4 3 16 [28, 35) 𝜏6 − 𝜏5 7 27 [40, 46) 𝜏7 − 𝜏6 6 18 [46, 50) 𝜏8 − 𝜏7 4 2
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Figure 1: (a)The globally stable positive almost periodic solution of the species 𝑥 of system (12). (b)The portrait of the globally stable positive
almost periodic solution of the species 𝑥 of system (12). Here, we take the initial values 𝜙𝑖(𝑠) = (𝜙1(𝑠), 𝜙2(𝑠)) = (1.5, 1.8), (1.6, 1.7), (1.7, 1.6)
for all 𝑠 ∈ [−5, 0].
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Figure 2: (a) The globally stable positive almost periodic solution of the species 𝑦 of system (14), and we take the initial condition 𝜙𝑖(𝑠) =(1.2, 0.8, 0.4) for all 𝑠 ∈ [−5, 0]. (b) Extinction of the species 𝑦 of system (14), and we take the initial values 𝜙𝑖(𝑠) = (0.8, 0.4) for all 𝑠 ∈ [−5, 0].
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Figure 3: (a) The globally stable positive almost periodic solution of the species 𝑦 of system (14), and the predator species 𝑦 is permanent
just relying on the predation; here, we take the initial condition 𝜙𝑖(𝑠) = (1.2, 0.8, 0.4) for all 𝑠 ∈ [−5, 0]. (b) The time series of almost periodic
solution of the species 𝑥, 𝑦 of system (72). (c) The 3-dimension time series of almost periodic solution of the species 𝑥, 𝑦 of system (72).

Table 3: Parameter values used in the simulations of system (4).

Parameter Value
𝑎3(𝑡) 0.1 + 0.3 sin(1.2𝜋𝑡) + 0.2 sin(1.5𝜋𝑡)𝑎3(𝑡) −0.6 + 0.12 sin (1.2𝜋𝑡) + 0.12 sin (1.5𝜋𝑡)𝑐1(𝑡) 0.3 + 0.1 sin(1.2𝜋𝑡) + 0.1 sin(1.5𝜋𝑡)𝑐1(𝑡) 0.3 + 0.14 sin (1.2𝜋𝑡) + 0.1 sin (1.5𝜋𝑡)𝑐2(𝑡) 0.3 + 0.1 sin(1.2𝜋𝑡) + 0.1 sin(1.5𝜋𝑡)𝑐2(𝑡) 0.3 + 0.14 sin (1.2𝜋𝑡) + 0.1 sin (1.5𝜋𝑡)

Then, we find that continuous predation makes the predator
permanent and the prey extinct (see Figures 3(b) and 3(c)).
However, if we keep all others parameters unchanged and just
change system (72) to system (4), that is, changing the model
fromcontinuous predation to intermittent predation,we have

∫5
0
𝑎3 (𝑠) 𝑑𝑠
+ ∫10
5

[𝑎3 (𝑠) + 0.6988 × 𝑐1 (𝑠) + 0.8355 × 𝑐2 (𝑠)] 𝑑𝑠
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Figure 4: (a)The time series of almost periodic solution of the species 𝑥 of the predator-prey model with continuous predation. (b)The time
series of almost periodic solution of the species 𝑥 of the predator-prey model with intermittent predation. Here, we take the initial condition𝜙𝑖(𝑠) = (𝜙1(𝑠), 𝜙2(𝑠)) = (1.5, 1.8), (1.6, 1.7), (1.7, 1.6) for all 𝑠 ∈ [−5, 0].

+ ∑
0<𝜏𝑘+1≤10

ln 1 ≈ −0.0981 < 0,

∫5
0
𝑎1 (𝑠) 𝑑𝑠 + ∫10

5
[𝑎1 (𝑠) − 1.9017 × 𝑐1 (𝑠)] 𝑑𝑠

+ ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 2.6762 > 0,

∫5
0
𝑎2 (𝑠) 𝑑𝑠 + ∫10

5
[𝑎1 (𝑠) − 1.9017 × 𝑐2 (𝑠)] 𝑑𝑠

+ ∑
0<𝜏𝑘+1≤10

ln 1 ≈ 2.8974 > 0.
(74)

Then, there are some interesting phenomena that the predator
goes from permanent to extinct, while the opposite occurs
for the prey. All of these results can be observed (Figures 4(a)
and 4(b)) by numerical simulations. By the above analysis,
we can conclude that if the predator continues preying on
prey and the predation intensity is higher than the intrinsic
growth of the prey, then the prey will be extinct, while
the predator will be permanent. We also obtain that if the
predation behavior is intermittent and the predation intensity
is small, then the predator will be extinct, while the prey will
be permanent. So, for an intermittent predator-prey model,
both the intermittent predation and the intrinsic growth
rates of the prey and predator species can greatly impact the
permanence or extinction of the system.

Finally, for system (4), to test our main results, we use the
above parameters in Table 1. We can simply calculate that the

assumptions (𝐻1)–(𝐻7) in Theorem 11 hold, and for (37), we
let 𝑦∗(𝑡) = 1.9017 then

∫10
0

𝑎1 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 𝑑1 ≈ 4.3918 > 0,

∫10
0

[𝑎1 (𝑠) − 1.9017 × 𝑐1 (𝑠)] 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln𝐷1
≈ 1.4967 > 0,

∫10
0

𝑎2 (𝑠) 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln 𝑑2 ≈ 5.0316 > 0,

∫10
0

[𝑎2 (𝑠) − 1.9017 × 𝑐1 (𝑠)] 𝑑𝑠 + ∑
0<𝜏𝑘+1≤10

ln𝐷2
≈ 2.5934 > 0.

(75)

From numerical simulations, we obtain that the minimum
value of 𝑥 of system (3) is always 0.8085 when using different
initial values; that is, the prey 𝑥 is permanent (see Figures 5(a)
and 5(b)).
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Figure 5: (a) The time series of the globally stable positive almost periodic solution of the species 𝑥. (b) The portrait of the globally stable
positive almost periodic solution of the species 𝑥, and we take the initial condition 𝜙𝑖(𝑠) = (𝜙1(𝑠), 𝜙2(𝑠)) = (1.5, 1.8), (1.6, 1.7), (1.7, 1.6) for
all 𝑠 ∈ [−5, 0].
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