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The existence and uniqueness results of two fractional Hahn difference boundary value problems are studied. The first problem
is a Riemann-Liouville fractional Hahn difference boundary value problem for fractional Hahn integrodifference equations. The
second is a fractional Hahn integral boundary value problem for Caputo fractional Hahn difference equations. The Banach fixed-
point theorem and the Schauder fixed-point theorem are used as tools to prove the existence and uniqueness of solution of the

problems.

1. Introduction

The quantum calculus is the subject of calculus without
limits and deals with a set of nondifferentiable functions.
The quantum operators are widely used in mathematic fields
such as hypergeometric series, complex analysis, orthogonal
polynomials, combinatorics, hypergeometric functions, and
the calculus of variations. The quantum calculus is also
found in many applications, such as quantum mechanics and
particle physics [1-9].

In 1949, the Hahn difference operator was introduced by
Hahn [10]. This operator is a combination of two well-known
operators, the forward difference operator and the Jackson g-
difference operator. The Hahn difference operator is defined
by

M, t:ﬁwo;:L )

Dowf (1) = t(g-1)+w 1-q

We note that
Dq)wf ) =A,f @)

Dq,wf () = qu (t)

!
Dq)wf (t)=f (t) wheneverg=1, w — 0.

whenever g = 1,

whenever w = 0, (2)

The Hahn difference operator has been used in finding
families of orthogonal polynomials as well to determine some
approximation problems (see [11-13]).

The right inverse of the Hahn difference operator was
proposed by Aldwoah in 2009 [14, 15]. This operator is in the
terms of the Jackson g-integral containing the right inverse of
D, [16] and Norlund sum containing the right inverse of A,
[16].

In 2010, Malinowska and Torres [17, 18] introduced the
Hahn quantum variational calculus. In 2013, Malinowska
and Martins [19] presented the generalized transversality
conditions for the Hahn quantum variational calculus. Next,
Hamza and Ahmed [20, 21] established the theory of lin-
ear Hahn difference equations. The authors also study the
existence and uniqueness of solution for the initial value
problems for Hahn difference equations by employing the
method of successive approximations; in addition, they
proved Gronwall’s and Bernoulli’s inequalities with respect to
the Hahn difference operator and investigated the mean value
theorems for this calculus. In 2016, Hamza and Makharesh
[22] investigated Leibnizs rule and Fubini’s theorem asso-
ciated with Hahn difference operator. In the same year,
Sitthiwirattham [23] studied the nonlocal boundary value
problem for nonlinear Hahn difference equation as given by
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D} x(t)+ f (t,x (), Dppx (pt +6)) =

t € [wy, T]

gw’

x(wg) =9 (x), 3)
x(T) = Ax (1),
ne (wo’T)q,w’

where0 < g < ,0 < w < T,wy, = w/(1-¢g),1 <A<
(T = wp)/(1 = @), p = q" m € N, 0 = w((1 - p)/(1 - ),
J i lwg Tlg X RX R — R is a given function, and ¢ :
C([wO,T]qw, R) — R is a given functional.

In 2010, Cermék and Nechvatal [24] established the
fractional (g, h)-difference operator and the fractional (g, h)-
integral for g > 1. In 2011, Cermadk et al. [25] studied linear
fractional difference equations with discrete Mittag-Leffler
functions for g > 1 in 2011. Rahmat [26, 27] presented
the (g, h)-Laplace transform and some (g, h)-analogues of
integral inequalities on discrete time scales for g > 1. In
2016, Du et al. [28] studied the monotonicity and convexity
for nabla fractional (g, h)-difference for ¢ > 0, g # 1. Since
fractional Hahn operators require the condition 0 < g < 1,
we note that the operators mentioned above are not fractional
Hahn operators. Recently, the fractional Hahn operators have
been introduced by Brikshavana and Sitthiwirattham [29].

In order to gain further insight into fractional Hahn
operators, in this paper, we study the boundary value problem
for fractional Hahn difference equation. Particularly, we
consider a Riemann-Liouville fractional Hahn difference
boundary value problem for a fractional Hahn integrodifter-
ence equation of the form

DS u(t)=F (tu), ¥ T ),

u(wy) =u(T), (4)

t € [wy, T]

qw’

Dﬁﬂu (wp) = Dﬁﬂu (pT +6)

and a fractional Hahn integral boundary value problem for a
Caputo fractional Hahn difference equation of the form

CDZ,wu () =G (t, u(t), CDI,¢“ (rt + </>)) ,
te [wO’ T]q)w >
u(wp) = o (u), )
p _ ("
T (1) = w0 L (T- (s)) u(s)d,ps
=B u),
where [wy, T, = {g"T + w[k], : k € No} U {wp}; & € (1,2],

B,y € (0,1, w >0, p,gr € (0,1),p=4q", r=4q", mn ¢
N, 0 = o((1-p)/(1~-¢q)and ¢ = w((1-1)/(1-q));
F,G € C(lwy, Tlyw x R x R,R) is given function; &, % :
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Clwy T g
Cllwp, Tl

,R) — R are given functionals; and for ¢ €
X [y, Ty [0, 00)), define

W u(t) = (Jr,gb(pu) t)

L (6)
= m on ( rqb (S)) (P(t S)u(s) dr¢5

In Section 2, we provide some basis definitions, proper-
ties, and lemma used as material for this work. In Sections
3 and 4, we prove the existence results of problems (4) and
(5), respectively, and we prove the existence and uniqueness
of a solution by using the Banach fixed-point theorem and
the existence of at least one solution by using the Schauder
fixed-point theorem. Finally, some examples are provided to
illustrate our results in the last section.

2. Preliminaries

In this section, we suggest some notations, definitions, and
lemmas which are used in the main results. Let g € (0,1) and
w > 0 and define

1_ n
(n], = 1_2 =g+t g+l
noq_ k
[yt =] 17— 1, @)
k=1 + 4
neR.

The g-analogue of the power function (a — b)% withn e Nj =

[0,1,2,...] is defined by
(a=by =1,
n—1
(a- b)g = (a - bqk) , (8)
k=0

a,beR.

The g, w-analogue of the power function (a — b)g)w withn €

Ny = [0,1,2,...] is defined by
(a-b), =1,
n—-1
(a— b)g)w = H [a - (bqk +w [k]q)] , 9)
k=0
a,b eN.

In general, for « € R, we define

«_ a1 1-(/a)q"
(a- b)a l_([) (b/a) ain’ @ #0,

(a- b,
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T 1— (b ‘Uo (a wo))qn
=) L —an faman)

= ((a-wp) - (b-wp))2

a+ w.
(10)

We note that ag = a%and (a - wo)%w = (a - wy)® and use
the notation (O)g = (wo)%w = 0 for > 0. The g-gamma and
g-beta functions are defined by

(1-a)

I, (x) = —%_1’ xeR\{0,-1,-2,...],
(1-q) -

B o 1, L, (x) I, (s)

B, (x,5) = L £ (1-qt),dgt = m.

Definition 1. For g € (0,1), w > 0, and f defined on an
interval I € R containing w,, = w/(1-q), the Hahn difference
of f is defined by

f(gt+w)-f(t)

Dq)wf (t) = ta-1)+w for t # wy, (12)

and D, f(wy) = f'(w,). Providing that f is differentiable at
wg, we call D, f the g, w-derivative of f and say that f is
g, w-differentiable on I.

Remarks 2. We give some properties for the Hahn difference
as follows:

(1) Dyl f#) + (0] = Dy f(£) + Dy g (6).
(2) D, af ()] = aD,, f(1).
(3) Dy [f(Dg)] = f(£)D,,g(t) + g(gt + @)Dy, f ().
(4) Dy [f®)/g®)] = (gt)D,,f(t) — f(t)Dy,g(t))/
gt)g(gt + w).
Letting a,b € I € Rwitha < w, < band [k]q =(1-
qk)/(l —-q), k € Ny :=N U {0}, we define the g, w-interval by

1% = [a,b]

qw 9w

= {qka+w[k]q:k € NO}

U {qkb+w (k], : k € NO} U {w,}
(13)
=(a,b)g,

= [a, ‘Uo]q,w U [wp, ] U {a, b}

= [a,b),, U {b} = (a,b],, U {a},
Iqw = I“’0 = [w, T],, -
Observe that, for each s € [a,b] qw the sequence

{0l (N2 =

We also define the forward jump operator as of;w(t) =

= {¢*s + wlk] ko is uniformly convergent to .

qkt +w[k] q and the backward jump operator as pg,w(t) = (t—
wlkl,)/q" for k € N.

Definition 3. Let I be any closed interval of R containing a, b,
and w,. Assuming that f : I — R is a given function, we
define g, w-integral of f from a to b by

b b a
[ f@dgt= | f0dgut-[ rwrdue a9

where

| 7 ©dy
° (15)

M8

= [x(1-q)-w] Yq"f (xd" + w[k],), xel

kol
Il

0

Providing that the series converges at x = a and x = b, we
consider f as g, w-integrable on [a,b] and the sum to the
right-hand side of above equation will be called the Jackson-
Norlund sum.

We note that the actual domain of function f defined on
[a,b], C 1

We next introduce the fundamental theorem of Hahn
calculus in the following lemma.

Lemma 4 (see [14]). Let f :
Define

I — R be continuous at w.

F(x) = r f®)dy bt xel. (16)

Then, F is continuous at wy. Furthermore, D, ,F(x) exists for
every x € I and
Dq,wF (x) = f (x). (17)

Conversely, one has
b
J Dy F()dy,t=F((b)-F(a) Vabel (8)

Lemma 5 (see [23]). Letg € (0,1), w > 0, and f: I — R be
continuous at w,. Then,

t r t t
j I f(s)dq,wsdq,wrzj I
wy Jaw, wy Jgstw

Lemma 6 (see [23]). Letq € (0,1) and w > 0. Then,

f)dy,rdy,s. (19)

t
J' dgwS =1t—w,

Wy

(20)

N [t 040 (s)] dgos = T+ q

Jt (t_“)o)zl

We next introduce fractional Hahn integral and fractional
Hahn difference of Riemann-Liouville and Caputo types as
follows.



Definition 7. For a,w > 0,9 € (0,1), and f defined on
[wy, T, > the fractional Hahn integral is defined by

1 t
Fq («) LO (t

DOl ot 0) £ (o2, ),

I, («) = W

W

Toof ()= o (s)) f(8)dy,s

(21)

and (Jg)w ) = f(t).

Definition 8. Fora,w > 0,q € (0,1), N-1<a < N,N €N,
and f defined on [wy, T, ,, the fractional Hahn difference of
the Riemann-Liouville type of order « is defined by

DY, f (0) =

1 (22)
B I, (-a) LU (t Iq0 (5)) f (8)dgw

(Dh75a"f) ®

The fractional Hahn difference of the Caputo type of order «
is defined by

DL f (&)= (FNDN ) ()
t (23)
1 N-a-1
“T,(N-a) L(, (=040 9), Diuf O dgus,

and DY, f(t) =D, f(t) = f(¢).

Lemma 9 (see [29]). Let« > 0, g € (0,1), w > 0, and f :
I;w — R. Then,
J% D

CDE f (O = FB)+Cy(t-wy) " +

(24)
+Cy (t - ‘UO)WN’

forsomeC; € R, i =N, y,and N-1<a<N,NeN.

Lemma 10 (see [29]). Leta > 0, g € (0,1), w > 0, and f :
I;w — R. Then,

Ie Do f () = f () +Co+Cy (- wp) ++-
(25)

N-1
+Cyoy (£ - wp)

>

forsomeC; € R, i =Ny ,and N-1<a<N,N €N,

Next, we give some auxiliary lemmas for simplifying our
calculations.

Lemma 11 (see [29]). Let o, 3 > 0, p,q € (0,1), and w > 0.
Then,

t a1 s
on (t ~Ogw (S))q,w (S - wo);w dq,ws

= (t—w)** B, (B + La),
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JJ-x (t P“’(x)) (x qu(s))ﬁl WS Ap X

a+f
———B,(B+1Lq).

_ (t - w)
7,
(26)

In the following, we give a lemma that deals with the
linear variant of problem (4) and gives a representation of the
solution.

Lemma12. Let Q # 0, ¢ € (1,2], B € (0,1, w > 0, p,q €
0,1, p=4g", m e N, and 0 = w((1 - p)/(1 - q)) and let

h € C([wy, T, ,» R) be a given function. Then the problem
Dg’wu H=h(), te [wO,T]q)w ,
u(wy) =u(T), (27)

Dl;’@u (wy) = Dl;’@u (pT +0)

has the unique solution

a—1
w = 20N ()2 - a0
(t - w)"” a-1 (28)
- [(T =) 2 [h] - A, @ [h]

t
| (6= 0 ) 9y

Wy

T, @

where the functions Ph] and Q[h] are defined by

P = m
. J: " J: (PT+60-0,0(0) 2 (29)
(¥ =030 O) O dpgsdyx,

at = = jT (T =000 O h s (30)

respectively. The constants Q, A, and A, are defined by

a=2

Q= (T_wo)“_lAz_(T‘wo) Ay, (1)

1

pT+0 -B-1 a—1
. J (pT +0-0,9 (S))P,T (s—w)” dpes (32

Wy

L@ (p(T—w)
rp (‘X - ﬁ) ’
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1

pT+0
. J (pT +0-0,4 (s)) (S - wo) dpps  (33)

Wy

a—f-2

_ G @-D(p(T-w))
rp(a_ﬁ_l) ’

respectively.

Proof. Taking fractional Hahn g, w-integral of order « for
(27), we obtain

u(t) = Ig h(®)+Cy(t—w) +Cy(t—wp)"”

- ta) J (£ = 04 ©)) 0 1 (5) s (34)

Wo

a=2

+C, (t- wo)“_1 +C, (t - wy)

Taking fractional Hahn p, 0-difference of order S for (34), we
obtain

f - — 2 [T (e Bt
Dp,eu (t) = L@, ) on on (t Opo (x))pﬂ
(%= 04 ) H(5)
g (35)

C w

' I (_1,3) on ( po (S)) (S - wp)*” dpps
C ¢ w

' Iy (_2.3) on (t Tpo (S)) (5 — @) dps.

Substituting ¢ = w,, T into (34) and using the first condition
of (27), we have

Ci (T~ ("’0)0671 +C, (T - “’0)0672

1 (T (36)
_ rq(“)J (T =040 0 h ()

Wy

By letting t = w,, pT + 0 into (35) and employing the second
condition of (27), we obtain

C1 J~pT+9

,ﬁ,l
RED (pT+6-0,0 (5))%7 (s

Wy

- ‘Uo)m_1

C pT+0
dp)gs+r - B)J (pT+0

~ 0,0 (S))Z;;l (s—w)d
I S
L, ()T, (-B)

p6S

5
pT+0
j J (pT+60-0 g(x))
(=030 9) PO dgusdpox
(37)

To find C, and C,, we solve the system of equations (36) and
(37). Then, we obtain
a— 2
C, [(T w)" " P [h] - A,Gh]],
. (38)
C=-5 [(T - w)* " 2 [h] - A, @[H],

where P[h], Q[h], O, A, and A, are defined as (29)-(33),
respectively.

Substituting the constants C; and C, into (34) and by
Cramer’s rule, it is implied that (28) is the uniqueness
solution. O

We next prove a lemma that deals with the linear variant
of problem (5) and gives a representation of the solution.

Lemma 13. Let « € (1,2], B € (0,1, w > 0, p,q €

0,1), p = 4g", m € N and 0 = o((1 - p)/(1 - q)) and
let h e C(lwy,T]y,R) be a given function and oA, R :
Cllwy, T4 R) — R be given functionals. Then, the problem
CDZwu B =h(), telwT],,
u(wy) = A (u),
1 (T (39)
Jﬁ’eu (T) = ) L (T- apg(s)) u(s)d,ps
=RBw)
has the unique solution
- I 2
u(t) =9 u)+ % {%’(u)
w,)
(T wo)ﬂ 1
W) - ——————
I, (B+1) Iy ()T, (B)
T rx . o«
X J-w L (T 0,0 (9c))i791 (x — 040 (s));}1 (40)

1 t
ch(s)dy,s dp)ex} LW Lo (t

wu» h(s)dg,

Proof. Taking fractional Hahn g, w-integral of order « for
(39), we obtain

u(t) = Jg)wh () +C, (t — wy) + C,. (41)



Taking fractional Hahn p, 0-integral of order f for (41), we
have

Jﬁﬂu (t) =

P ot h(t)+r(ﬁ)J (t

pw (S)) [Cl (S

1
F(oc

wy) + G, dy0s

TR NGO

Wy LWy

(x -0, (s)) h(s)dg,

(t - “’o)ﬁ
r, (B+ 1)

(t_“’o)ﬁ+1
D

Letting t = w, into (41) and employing the first condition of
(39), we get

C,=d ). (43)

Substituting t = T into (42) and employing the second
condition of (39), we obtain

(T - wo)ﬁ

gy ®

~ T(B+2) { L
O 17

1 T rx .
S el I LRI

a—1
. (x ~ O (5))q,T;h (8)dg s dp’gx} .

Substituting the constants C, and C, into (41) and by
Cramer’s rule, it is implied that (40) is the uniqueness
solution. O

We next introduce Schauder’s fixed-point theorem used
to prove the existence of a solution to (4) and (5).

Lemma 14 ([30] (Arzela-Ascoli theorem)). A set of functions
in Cla, b] with the sup norm is relatively compact if and only if
it is uniformly bounded and equicontinuous on [a, b].

Lemma 15 (see [30]). If a set is closed and relatively compact,
then it is compact.

Lemma 16 ([31] (Schauder’s fixed-point theorem)). Let
(D,d) be a complete metric space, let U be a closed convex
subset of D, and let T : D — D be the map such that the
set Tu : u € U is relatively compact in D. Then the operator T
has at least one fixed pointu™ € U : Tu" =u".
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3. Existence Results for Problem (4)

In this section, we prove the existence results for problem (4).
Let X = C(I;w, R) be a Banach space of all function u with
the norm defined by

lully = gﬁx{lu ®l}, (45)

qw

where w > 0, p,g,r € (0,1),p = q", r = 4", mn € N,
0=w(1-p)/(1-q),and ¢ =w((l-7r)/(1-gq)). Define an
operator  : X — I by

(t - wO)o‘_1 a-2 *
(Fu) () = —— [(T - wy))" " 2" [F,]

Q
(t - wo)aiz
Q

- A,Q" [R]] - (T - )" 2" [E,]

(46)

t

- A,@" [F,]] +r;m)J (t-
q

%0 )0
(s u(s), v’ 7 (s))

where Q, A, and A, are defined as (31)-(33), respectively,
and the functions 2*[F,] and G"[F,] are defined by

1
I, (@) T, (=p)

pT+0 rx _a
J L (pT+6—ap,9 (x))Pii1

Wy

P* [Fu] =

. (x ~ Oy (s));‘,;w1 x F (s, u(s), ‘I’Z¢u (s)) dgwxdyps, (47)

. 1 (7 a1
4] [Fu] = rq () J (T_ Ogw (5))q,w

Wo

CF(s,u(s), W yu(9)) dyq

Obviously, problem (4) has solutions if and only if the
operator F has fixed points.

Theorem 17. Assume that F : I;:w xR xR — R is continuous
: I;w X I;w — [0,00) is continuous with ¢, =
max{g(t,s) : (t,s) € I;:w X I;:w}. In addition, suppose that

the following conditions hold:
(H,) There exist constants A, A, > 0 such that, for each

T
te Iq,w andu,v € R,

and ¢

lF (t, u, ‘{’Z(pu) -F (t, v, ‘I’Z(bv)'

(48)
<A lu—-v[+A, |‘{’2"¢u - \I’x¢v| .
(H,) Z0 < 1, where
(T -w,)’
L=+ Ay —— 49
TG )
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o (M=) [P, () (T - wp)
1 L, (=)L, (=B +1)
A,
ST (a+1)

PP (B) (T - )

20-2
T -
. (T - wp)

Ie] L, (-B) L, (a~B+1)
_ A + (T_wo)“
L (e +1) l"q((x+1)'

Then, problem (4) has a unique solution.

Proof. To prove that F is contraction, we consider

H |u—v|(t)
= |F tu(t), ‘Py¢u(t)) (t,v(t),\yz¢v(t))|

< P (0¥l g) P (0 9240) =

foreacht € I;:w and u, v € 2. We find that

1
L, ()T, (-B)

pT+0 (rx a
. I L (pT +0- Op0 (x))%

W

|7* [F,] - 2" [F]| =

%90 (S))

< ()Ll lu—v|+ A, |‘I’ry,¢u - ‘I’Z¢v|)

I, (-B) (p (T - @,))"”

x(x K |lu— v (s)d sdp)ex

. L, (<B) T, (= B+1) 7
* * 1
@ -Q -
| [Fu] [Fv]l rq ((X)
T
J (T- ng(s)) H |u—vl(s)d,
(T - w)
< (Al lu—v|+2A, |\I'ry,¢”_\yry,¢v|) L (« +01)

Finally, for each t € I;w andu,ve X,

(Fu) (&) = (F) )] < (A lu—v]

I Nlu =,

(T - “-’0)“

+ A W =) ]

(t- “’0)0‘71
) 1 101

7
PP () (T =) 4,
L,(-B) T, (x-p+1) l"q(oc+1)
o=2 o
+ (t—wp)” " (T - wp)
Q
50 o -p-1
0 PR (T-w) P 4,
L,(-B)T,(a-B+1)  T(a+1)
(t- “’0)“ (T - “’o)y
-— A+ A0 —— | @
+F(oc+1) 1t 2¢0F(y+1) I
Vg =Z0u-vlg,
(53)
where Z and © are defined on (49)-(50), respectively.
(H,) implies that # is a contraction. Therefore, by using
Banach fixed-point theorem, # has a fixed point which is a
unique solution of problem (4). O
(51)
We next show the existence of a solution to (4) by the
following Schauder’s fixed-point theorem.
Theorem 18. Suppose that (H,) holds. Then, problem (4) has
at least one solution.
Proof. We organize the proof into three steps.
Step 1. Verity ¥ map bounded sets into bounded sets in By =
{fu e X : luly < R} We set maxtel‘;rwIF(t, 0,0)] = K and
choose a constant
> KO (54)
1-%0
where Z and @ are defined on (49)-(50), respectively. Denote
that
(52)

| (6w, 0)] = |F(tu(), W u () - F (t,0,0)|
(55)
+|F(£,0,0)|.

For eacht € I;w and u € By, we obtain

1
L (@I, (-B)

. JPT+0 LO (pT +0-0,9 (x)) -~

W

|2 [F.]| =

x (x - aqw(s)) |8 (£, 1, 0)| dy 5 d g%

s[(m%@ W)y )nuqu]

1, (B) (p (T~ )
L, (AL, pr1)




|8 (t,14,0)] d,,

L (o)

<|(n

) (T - wp)”
[+ 1)

A2
L(y+1)

(1 - o)l ) i + |
(56)
Similarly with Theorem 17, we obtain

[(Fu) (£)]
Ay

< | (A, + 220
<[( L (et

) (T - “-’0)5) llull g + K] 0O (57)
= [Zluly +K]® < [ZR+K]© < R.

Therefore ||Full, < R. This implies that F
bounded.

is uniformly

Step 2. Show that & is continuous on By.
Letting € > 0, there exists § > 0 such that, for each t € I;:w
and for all u, v € By,

Hlu—-v|< % whenever |u—v| <§. (58)

Then, we have
|Fu—-Fvlg <F|lu-v|0O <e. (59)
This means that the operator F

is continuous on By.

Step 3. Examine that F is equicontinuous with By. For any

t,t, € I;w with t; < t,, we have
a—1
t, —
(0 (6) - () ()] < [ =)
(t — W, )0‘_1 a—2 *
ST w2t (8]

(ty - ‘Uo)o‘_2 (t, - wo)a_2

Q Q

-A,Q" [Fu]| +

(60)

(T =) 2" [E] - A0 [E]|

L a-1
J (tz ~ 040 (s))q’w dgws

@y

I

L, (@)

h a-1
- J (t1 ~ 040 (s))q’w dguS|-

Wy
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If [t, — t;| — 0, the right-hand side of the above inequality
tends to be zero. So F is relatively compact on By.

This means that the set (By) is an equicontinuous
set. As a consequence of Steps I to III together with the
Arzela-Ascoli theorem, we get that & X - is
completely continuous. By Schauder’s fixed-point theorem,
we can conclude that problem (4) has at least one solution.
The proof is done. O

4. Existence Results for Problem (5)

In this section, we present the existence results for problem
(5). Let % = cur 20 R) be a Banach space of all function u
with the norm defined by

Juall = max{lu(t)l CDlgutrt+ o)l (o

wherew >0, pgr € (0,1),p=4g"r=4q" mneN,
= w((l -p)/A-9), ¢ = w((1-7)/(1-q)),and &, B :
C( R) — R. Define an operator & : % — ¥ by

(t-wy) T, (B+2)
Rl CL

(T wo)ﬁd() I
L (B+1) L, ()T, (B)

X J;: J:; (T -
G(tu),©

I, ttx) J:)O (t

+¢))dq s

Obviously, problem (5) has solutions if and only if the
operator & has fixed points.

qw’

(Gu) (t) = o (u) +

O'p,@ (x))‘i);el (X - Gq,w (S)):);wl (62)

(rt +¢>)) x]»

Oy 9));, G (80, D] g (rt

Theorem 19. Assume that G : I;w xR xR — R is continuous

and oA, B : C(I‘Zw, R) — R. In addition, suppose that the
following conditions hold:

(Hs) There exist constants py, 4, > 0 such that, for each
te I;w andu,v € R,

|G (t, u, CDLPu) -G (t, v, CDf,¢V)|
) ) (63)
Spylu—vl+u, |CDr)¢u - CDWV' .
(H,) There exist constants £,,€, > 0 such that, for each u,v €
?}

|/ (u) = (V)| < € [lu=vly,
(64)
|B (1) =B V) <& lu—-vly.
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(Hs) © < 1, where

Fq([g’+2)

D = (1+[/3+1]q)€1+ )ﬁ€2+(M1 + )

~w,
(T - ‘Uo)a

{F(ﬁ)f(ﬁ”) 1 }
r,(B)T (¢x+ﬂ+1) L(a+ 1))

Then, problem (5) has a unique solution.

Proof. To show that F is contraction, we consider
Hlu-v(t)=|G(tu®),” (rt+¢>))
-G(tv(), Dwv (rt + ¢))|

< |G (tu (), Dy yu(rt +¢))

~G(tv(t) ,CDZ¢V (rt +¢))| = F lu— 1,

T
foreacht € Liw andu,v e %.

For each t € I » and u,v, CDT
that

g

(t —wp) [B+1]
[(Zu) (t) — (Zv) (1)] < [1 + (T——wo)q]

| () - (V)| +

( ( W (8+2)

_ wo)[;+1

(t-w)T,(B+2) (T *
- B+ o Lo Lﬂ (

(T—wo)ﬁﬂl“ ()T,
-0, (x)) (x aqw(s)) F |u—v|

1
. (S) dq,ws dp,gx + w

¢
J (t qw(S)) Hu—-vl(s)d,, 5<(

+[B+1],) e llu—vly + L(B+2)

T - w,
+ (a1 (8) = v (O] + iy DYy (8) = DY v (1))

' { r,(B+2)
(T - ) T, (@) T, (B)

T rx _
xJ J (T—(r;,)@(ac))f;T)1

CDZ’(bV € %, we find

el

1
.(x qw(s)) d sdpgx+%

T
J (T- aqw(s)) ws}suu—vu?

. «[(1 +[B+ l]q){?1 + (Fq(ﬁ+§l);€2} +u—vly

T - w,

T, (B)T, (B +2)
Ty (B)T, (a+ B+1)

(o + ) (T - ) {

1
f——— -y, @
Fq(oc+1)} =y

|<cDr)¢?u) (rt +¢) - (CDL[)?V) (rt + ¢)' < [1

N [/3+1]qC y
(T - w,)
L, (B+2)
(T “’o)ﬁJrl

o (£ - “’0)] | (u) — o (v)|

|B () - B (V)| Dy 41 (¢ - w,)

F (B+2)“D r¢r(t w,)
Tl @, () LLa

pe(x)) “(x- qu(s)) H |u—v|

1
. (S) dq,ws dp,ex + %

c.y rt+¢
.Dw“% (rt+¢- aqw(s)) K |u— |

- (s) dq’ws] < [1

A Ipl,(r-w)” ]
T, (2 _ V) = V"g
(B 2) (- )

+[ T Goy) :|€z||u—vlly

L B) (4 (B 2) (T-)

L, @) (T, (B) Ty (a+ B+ 1)T, (2-7)
nd b% (1 + )

T, (o + 1) (T - wy)* N =vily m

[1-y], L@+ T, («-y+1)

+ ) < llu=vly @.
(67)
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Hence, from (67), it is implied that [[(Tu)(t) — (Zv)(¥)lly <
llu = vllg .

By (H;), it is implied that & is a contraction. Therefore, by
using Banach fixed-point theorem, & has a fixed point which
is a unique solution of problem (5). O

We also deduce the existence of a solution to (5) by the
following Schauder’s fixed-point theorem.

Discrete Dynamics in Nature and Society

Theorem 20. Suppose that (H;)-(H,) hold. Then, problem (5)
has at least one solution.

Proof. We divide the proof into three steps.

Step 1. Verify & map bounded sets into bounded sets in B; =
fu e ¥ : luly < L} We set max;er |G(t,0,0)] = K,
supueyl.szi(uﬂ = M, and supugyl%’(u)l = N and choose a
constant

@)* [, (B)T, (B+2) /T, (B)T, (a+ B+1) + 1T, (@+1)] (68)

L
(1+[B+1],) M+ (T, (B+2)/ (T -wp)’ ) N+ K ( + ) (T -
< 1-0
where @ are defined on (65). Denote that
|7 (t,u,0)|
=G (tu) ,CDLPM (rt+¢))-G(0,0]  (69)

+1G (t,0,0)].
Foreacht € I;w and u € B;, we obtain

(t-w) [B+1],
(T - wo)

. (t—wo) T, (B+2)
(T - wo)ﬁJrl
(t—wy) T, (B+2)

(T - @)™ I, @ T, (B)

|(Gu) ()] < [1 + ] |/ ()]

|8 ()

LL

—0,0 (x))ﬁ%; (¥ =04 ©)) 0 T lu=]

T

(8)dy,sd,ex +

r,(5+2)
+[B+ l]q) (Zl lleellg +M) + m

1
I (x)

q

(t- 0, (s))‘q"fg ju— vl () dys < (1

(€, llully,

+N) + (p lu @) + 1,

{ r,(B+2)

(T - wp)' T, (@) T, (B)

D! u (t)] +K)

€

>

T rx
).
Wy Jwy
ﬂd d
. (x 040 (s))q’w quSdpeX +
T
L,

+[B+ l]q) l +

(T-0p0 ()5,

L
T (x)

q
(T-0,, (s)):wldq,ws} < lully {(1
T,

q(IBJFZ) (14084
m"z} (1+[p+1],)M
I (B+2

+ ﬁl\] + (“U"?/ + K) (‘ul + AMZ) (T _ wo)oc

{ LB+
L,(B)T, (a+p+1) T (a+1)

I, (B+2)
(T_“"o)l3

LELE)
L,(B) T, (x+B+1) T, (a+1)

}SL®+(1

+[,8+1]q)M+

o]

Similar to Theorem 19, we obtain

N+ K (4 + ) (T

f<u

(70)

|(CDI’¢5L{) (rt + ¢)| < L. (71)

So, we have II?uII? < L. This implies that & is uniformly
bounded.

Step 2. Show that € is continuous on B; .
Letting € > 0, there exist § = max{d;,0,,0;} > 0 such
that, for each t € IqT)w and for all u, v € B},

VAR

3T [, (BT, (+2) /T, (BT,

whenever |u—v| < 3§,
(rx+[3+1)+1/rq(oc+1)]



Discrete Dynamics in Nature and Society 11
| (u) — o (v)| < — € Whenever lu—v| <$6,,
3(1+[B+1],)
B
| B (1) — B (v)| < ( ( wO;) whenever |u —v| < &;.
(72)
Then, we h G " al .
en, we have r|| ((|)|C) CDX‘# J (t, - 00 (5)):,w d,0s J (1
Wo
19u-Zvl < (1+[B+1],) 1o W) - o W] 1
a=1
—0,,(8)) _d__s|.
+ [ fa(F2) ] 18 () = B ()] + (T = @) o O e
(T - )’ (75)
(73)
LOLE) ]
T (BT, (a+p+1) T (x+1) =l If [t, — t;| — O, the right-hand side of the above inequalities
P 1 1 (75) tends to be zero. So @ is relatively compact on B;.
cEL e 8 c Therefore the set &(B;) is an equicontinuous set. As a
3 3 3 consequence of Steps I to III together with the Arzeld-Ascoli
By a similar proof to the above, we obtain theorem, we get that & : % — % is completely continuous.
By Schauder’s fixed-point theorem, we can conclude that
“C ?u - D 5‘51;" < €. (74) problem (5) has at least one solution. The proof is com-

Hence, | Cu — ?VIIZ, < €. This means that the operator & is
continuous on B;.

Step 3. Examine that € is equicontinuous with B;. For any

t,ty € I, witht, <1y,
[(Fu) (,) = (Fu) (8,)] < |1, - 1,
L, (B+2) { (T - wp)” ‘Uo)ﬁ
RB
a7 G T

Gl T rx pt
Tr® o o)

(x qu(s)) d sd ]»

IGI
T, (@

t

t o
[ (6= o @) dyus= [ (1

W

qw(s)) ldqw

|(°Dy y%u) (rt, + ¢) - (°DL,Gu) (1, + )|

T, (B+2) {@ ) - (T - wo)ﬁ

Y
<Dy, It -] -

Gl T~ p-1
ol (u) - —rq @1, () X LO Lﬂ (T-0,9 (x))P’ ;

dq)ws dp,ex]»

(x40 @),

pleted. O

5. Some Examples

In this section, we provide some examples to illustrate our
results.

Examplel. Consider the following fractional Hahn boundary
value problem:

i3
Dy ,u (t)

o2
|ul

T2 ()
. arctan (sinzrrt) (t-0 ( 23
_3]s—t] (76)
X [m] u(s) d1/s,7/25’
€[4, 10]1/2,2 >

u(4) =u(10),
D2 D2 11
Dyjyst u(4) = Dyjysu < 2 )

Herea =4/3,=1/2,y=1/3,q=1/2,p=1/4,r = 1/8,
w=20=3¢=7/2,w0,=w/(1-q) =4,T =10, ¢(t,s) =

e 2171 /(100 + cos’mt), @, = 1/200, and F(t,u, ‘1’11;837/214) =

e Hul/(t+2)%(lul+1) + (arctan(sinzm‘)/IOetFI/8(1/3)) ﬂ(t -
-2/3
01/8;7/2(5))1/87,7/2(’)(1.’ s)u(s)dl/sj/zs.
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Since
1/3 1/3
|F (t w574 ) (t v ¥y /8,712Y )'
1 (77)
1/3
< 21668 |x = y|+ —— 400e* |\P1/8,7/2” \Ill/8 772V |
then (H,) is satisfied with A| = 1/216€® and A, = 77/400e*.
Also, we have
A, = 0.00402,
A, =—0.1387, (78)
|Q| = 0.00184.
‘We can show that
< =0.00002858,
(79)
® = 64.270.
Therefore, we find that
0 = 0.00184 < 1. (80)

Hence, by Theorem 17, problem (76) has a unique solution on
(4,10])5,.

Example 2. Consider the following fractional Hahn bound-
ary value problem:

.2
4/3 —sin“mt
D / u(t) e—lul
1/2,2 100 + ecosz(nt/Z)
_ 1/3
(@) £+ |°Dy g 751 (©)
1+ |u(t)] ’
(81)
€ [4,10],55,
u(4) = 1;?13 cos*mru,
1/2 o ul o
J1/43u(10) = Wsm TuU.
Here o = 4/3, 8 = 1/2,y = 1/3,q = 1/2, p = 1/4,
r=1/8w=2,0=3,¢=7/2,0, =w/(1-q) =4,T =10,

dw) = (Jul/125€>)cos*mu, B(u) = (|ul/1007?)sin’mu, and
E(t,1,°D g 51) = (€7 ™ 1l /(100+¢% /D)) ((|u(t)| 2+
1/3
€Dy oo OD/(L+ [u(®)]).
Since

C 1/3 C 1/3
IF (t, u, D1/8,7/2”) -F (t, v, D1/8,7/2V>

(82
1 1/3
= 1616| 101 Dl/87/2” D1/8,7/2V ,
1
|t ) = ()| < 1705 =il (83)
1
1B () = B V] < 505 lu =y (84)

Discrete Dynamics in Nature and Society

then (H;) and (H,) are satisfied with y; = 1/1616 and y, =
1/101 and ¢, = 1/125¢° and &, = 1/1007°.
Therefore, we get

®~02135< 1. (85)

Hence, by Theorem 19, problem (81) has a unique solution on
(4, 10]1/2)2.
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