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In this paper, we study the impulsive fractional differential inclusionswith two different Caputo fractional derivatives and nonlinear
integral boundary value conditions. Under certain assumptions, new criteria to guarantee the impulsive fractional impulsive
fractional differential inclusion has at least one solution are established by using Bohnenblust-Karlin’s fixed point theorem. Also,
some previous results will be significantly improved.

1. Introduction

In this paper, we consider the following fractional differential
inclusions with impulsive effects:

𝑐D𝛼
0,𝑡 ( 𝑐D𝛽

0,𝑡𝑢 (𝑡)) + 𝜆𝑢 (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡)) ,
𝑎.𝑒. 𝑡 ∈ 𝐽 = [0, 1] , 𝑡 ̸= 𝑡𝑘,

Δ𝑢 (𝑡𝑘) = 𝑢 (𝑡+𝑘) − 𝑢 (𝑡−𝑘 ) = 𝐼𝑘 (𝑢 (𝑡𝑘)) ,
𝑡 = 𝑡𝑘, 𝑘 = 1, 2, . . . 𝑛,

𝑎𝑢 (0) + 𝑏𝑢 (1) = ∫1

0
𝑔 (𝑠, 𝑢) 𝑑𝑠,

[ 𝑐D𝛽
0,𝑡𝑢 (𝑡)]

𝑡=𝑡𝑘
= 𝑐𝑘, 𝑘 = 0, 1, . . . , 𝑛,

(1)

where 0 < 𝛼, 𝛽 < 1, 𝑐D𝛼
0,𝑡, and

𝑐D𝛽
0,𝑡 represent the different

Caputo fractional derivatives of orders 𝛼 and 𝛽, respectively.𝐹 : 𝐽 × 𝑅 → P(𝑅) is a multivalued map,P(𝑅) is the family
of all nonempty subsets of 𝑅, and 𝑔 : 𝐽 × 𝑅 → 𝑅 is a given
continuous function. 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛+1 = 1, 𝑎 >0, 𝑏 ≥ 0, 0 ≤ 𝑐𝑘 ≤ 𝑐, 𝑘 = 0, 1, . . . , 𝑛 are real constants and 𝜆
is a given positive parameter. 𝑢(𝑡+𝑘 ) = limℎ→0+𝑢(𝑡𝑘 + ℎ) and𝑢(𝑡−𝑘 ) = limℎ→0−𝑢(𝑡𝑘 + ℎ) represent the right and left limits
of 𝑢(𝑡) at 𝑡 = 𝑡𝑘, 𝑘 = 1, 2, . . . 𝑛.

As an extension of integer-order differential equations,
fractional-order differential equations have been of great
interest since the equations involving fractional derivatives
always have better effects in applications than the traditional
differential equations of integer order.Due to these significant
applications in various sciences, such as physics, engineering,
chemistry, and biology, fractional differential equations have
received much attention by researchers during the past two
decades. Up to now, fractional boundary value problems
are still heated research topics. That is why, more and more
considerations by many people have been paid to study
the existence of solutions for fractional boundary value
problems; we refer readers to [1–12].

However, the articles of fractional boundary value prob-
lems with two different Caputo fractional derivatives are not
many. More precisely, in [10], the authors have studied the
following impulsive fractional Langevin equations with two
different Caputo fractional derivatives:

𝑐D𝛽
𝑡 ( 𝑐D𝛼

𝑡 + 𝜆) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ 𝐽 = 𝐽 \ {𝑡1, . . . , 𝑡𝑚} , 𝐽 fl [0, 1] ,

Δ𝑢 (𝑡𝑘) fl 𝑢 (𝑡+𝑘 ) − 𝑢 (𝑡−𝑘 ) = 𝐼𝑘, 𝐼𝑘 ∈ 𝑅,
𝑥 (0) = 0,
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𝑥 (𝜂𝑘) = 0,
𝑥 (1) = 0,

𝜂𝑘 ∈ (𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 1, 2, . . . 𝑚 − 1,
(2)

where 𝑓 : 𝐽 × 𝑅 → 𝑅 is a given function, 0 < 𝛼, 𝛽 < 1 and0 < 𝛼 + 𝛽 < 1, 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚+1 = 1, 𝜆 > 0, 𝑢(𝑡+𝑘 ) =
limℎ→0+𝑢(𝑡𝑘 + ℎ), and 𝑢(𝑡−𝑘 ) = limℎ→0−𝑢(𝑡𝑘 + ℎ) represent
the right and left limits of 𝑢(𝑡) at 𝑡 = 𝑡𝑘, 𝑘 = 1, 2, . . . 𝑚.

Then, in [11], the authors considered the following nonlin-
ear Langevin inclusions with two different Caputo fractional
derivatives:

𝑐D𝑝 ( 𝑐D𝑞 + 𝜆) 𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 0 < 𝑡 < 1,
𝑥 (0) = 𝑛∑

𝑖=1

𝛽𝑖 (𝐼𝜇𝑖𝑥) (𝜁) ,

𝑥 (1) = 𝑛∑
𝑖=1

𝛼𝑖 (𝐼]𝑖𝑥) (𝜂) ,
0 < 𝜁 < 𝜂 < 1,

(3)

where 0 < 𝑝, 𝑞 < 1, 𝜆 is a real number, 𝐼𝑘 is the Riemann-
Liouville fractional integral of order 𝑘 > 0 (𝑘 = ]𝑖, 𝜇𝑖; 𝑖 =1, 2, . . . , 𝑛), and 𝛼, 𝛽 are constants.

In [12], the author investigates the following impulsive
fractional differential equations with two different Caputo
fractional derivatives with coefficients:

𝑐D𝛼
0,𝑡 ( 𝑐D𝛽

0,𝑡𝑢 (𝑡)) + 𝜆𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,
𝑡 ∈ 𝐽 = 𝐽 \ {𝑡1, . . . , 𝑡𝑚} ,

Δ𝑢 (𝑡𝑘) = 𝑢 (𝑡+𝑘 ) − 𝑢 (𝑡−𝑘) = 𝑦𝑘,
𝑘 = 1, 2, . . . 𝑚,

𝑎𝑢 (0) + 𝑏𝑢 (1) = 𝑐,
[ 𝑐D𝛽

0,𝑡𝑢 (𝑡)]
𝑡=𝑡𝑘

= 𝑑𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚,

(4)

where 𝐽 = [0, 1], 𝑓 ∈ 𝐶(𝐽 × 𝑅, 𝑅), 0 < 𝛼, 𝛽 < 1, 𝑦𝑘 ∈ 𝑅, 𝜆 > 0,𝑎 > 0, 𝑏 ≥ 0, 𝑐 ≥ 0, 𝑑𝑘 ≥ 0 are real constants.
To the best of our knowledge, integral boundary condi-

tions appear in population dynamics and cellular systems;
it has constituted a very interesting and important class of
problems. However, fractional boundary value problemswith
integral boundary conditions have not received so much
attention as periodic boundary conditions, so the main aim
in this paper is intended as an attempt to establish some
criteria of existence of solutions for (1). It is worth pointing
out that there was no paper considering the impulsive
fractional differential inclusions with two different Caputo
fractional derivatives and nonlinear integral conditions by
using Bohnenblust-Karlin’s fixed point theorem up to now, so
our results are new. Also, we improve some previous results.

The arrangement of the rest paper is as follows. In
Section 2, some preliminaries and results which are applied in

the later paper are presented. In Section 3, the main proof of
theorems will be vividly shown. In Section 4, a corresponding
example is given to illustrate the obtained results in Section 3.

2. Preliminaries

In this section, we recall some basic knowledge of definitions
and lemmas that we shall use in the rest of the paper.

Let 𝐶(𝐽, 𝑅) denote a Banach space of continuous func-
tions from 𝐽 into 𝑅 with the norm

‖𝑢‖ = sup
𝑡∈𝐽

{|𝑢 (𝑡)|} (5)

for 𝑢 ∈ 𝐶(𝐽, 𝑅). Also, we denote the function space by

𝑃𝐶 (𝐽, 𝑅) = {𝑢 : 𝑢 ∈ 𝐶 ((𝑡𝑘, 𝑡𝑘+1] , 𝑅) 𝑢 (𝑡+𝑘 ) = 𝑢 (𝑡𝑘) 𝑘
= 1, . . . , 𝑚} (6)

with the norm ‖𝑢‖𝑃𝐶 = sup𝑡∈𝐽{|𝑢(𝑡)|}. Clearly, 𝑃𝐶(𝐽, 𝑅) is
Banach spaces.

Let 𝐿1(𝐽, 𝑅) be a Banach space of measurable functions𝑦 : 𝐽 → 𝑅 which are Lebesgue integrable and normed by

𝑦𝐿1 = ∫1

0

𝑦 (𝑡) 𝑑𝑡. (7)

Let (𝑋, |⋅|) be a Banach space.We give following notations
for convenience: let

P𝑐𝑙 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑} ,
P𝑏 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑} ,
P𝑐𝑝 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡} ,
P𝑐𝑝,𝑐 (𝑋)

= {𝑌 ∈ P (𝑋) : 𝑌 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑎𝑛𝑑 𝑐𝑜𝑛V𝑒𝑥} ,

(8)

and 𝐵𝐶𝐶(𝑋) denote the set of all nonempty bounded, closed,
and convex subset of 𝑋.

A multivalued map 𝐺 : 𝑋 → 2𝑋

(i) is convex (closed) valued if 𝐺(𝑥) is convex (closed) for
all 𝑥 ∈ 𝑋;

(ii) is bounded on bounded sets if 𝐺(𝐵) = ⋃𝑥∈𝐵 𝐺(𝑥) is
bounded in𝑋 for any bounded set𝐵 of𝑋(𝑖.𝑒. sup𝑥∈𝐵{sup{|𝑦| :𝑦 ∈ 𝐺(𝑥)}} < ∞);

(iii) is called upper semicontinuous (u.s.c.) on 𝑋 if, for
each 𝑥0 ∈ 𝑋, the set 𝐺(𝑥0) is nonempty closed subset of 𝑋,
and if, for each open set 𝑁 of 𝑋 containing 𝐺(𝑥0), there exists
an open neighborhoodN0 of 𝑥0 such that 𝐺(N0) ⊆ 𝑁;

(iv) is said to be completely continuous if𝐺(𝐵) is relatively
compact for every bounded subset 𝐵 of 𝑋;

(v) is completely continuous with nonempty compact
values; then 𝐺 is 𝑢.𝑠.𝑐. if and only if 𝐺 has a closed graph;𝑖.𝑒., 𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑦∗, 𝑦𝑛 ∈ 𝐺(𝑥𝑛) imply 𝑦∗ ∈ 𝐺(𝑥∗).

(vi) has a fixed point if there is 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥).
Definition 1. A multivalued map 𝐹 : 𝐽 × 𝑅 → P(𝑅) is
Carathéodory if
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(i) 𝑡 → 𝐹(𝑡, 𝑢) is measurable for each 𝑢 ∈ 𝑅,
(ii) 𝑢 → 𝐹(𝑡, 𝑢) is upper semicontinuous for almost all𝑡 ∈ 𝐽.

Moreover, a Carathéodory function 𝐹 is called 𝐿1− Carathéo-
dory if

(iii) for each 𝛼 > 0, there exists 𝜑𝛼 ∈ 𝐿1([0, 1], 𝑅+) such
that

‖𝐹 (𝑡, 𝑥)‖ = sup {|V| : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝜑𝛼 (𝑡) (9)

for all ‖𝑥‖ ≤ 𝛼 for 𝑎.𝑒. 𝑡 ∈ [0, 1].
For each 𝑦 ∈ 𝐶(𝐽, 𝑅), define that the set of selections for𝐹 by

𝑆𝐹,𝑦 = {V ∈ 𝐿1 (𝐽, 𝑅) : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) 𝑎.𝑒. 𝑡 ∈ 𝐽} (10)

is nonempty.

Lemma2 (see [13]). Let 𝑋 be a Banach space. Let 𝐹 : 𝐽×𝑅 →
P𝑐𝑝,𝑐(𝑋) be an 𝐿1− Carathéodory multivalued map, and let Θ
be a linear continuous mapping from 𝐿1(𝐽, 𝑋) to 𝐶(𝐽, 𝑋).Then
the operator

Θ ∘ 𝑆𝐹 : 𝐶 (𝐽, 𝑋) → P𝑐𝑝,𝑐 (𝑋) (𝐶 (𝐽, 𝑋)) (11)

and

𝑥 → (Θ ∘ 𝑆𝐹) (𝑥) = Θ (𝑆𝐹,𝑥,𝑦) (12)

is a closed graph operator in 𝐶(𝐽, 𝑋) × 𝐶(𝐽, 𝑋).
For more details, please refer to [13–15].

Definition 3. A function 𝑢(𝑡) ∈ 𝑃𝐶(𝐽, 𝑅) is called a solution
of (1) if there exists a function 𝑓 ∈ 𝐿1(𝐽, 𝑅) with 𝑓(𝑡) ∈𝐹(𝑡, 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ 𝐽 such that 𝑐D𝛼

0,𝑡( 𝑐D𝛽
0,𝑡𝑢(𝑡)) + 𝜆𝑢(𝑡) =𝑓(𝑡, 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ 𝐽, Δ𝑢(𝑡𝑘) = 𝑢(𝑡+𝑘 ) − 𝑢(𝑡−𝑘 ) = 𝐼𝑘(𝑢(𝑡𝑘)), 𝑡 =

𝑡𝑘, 𝑘 = 1, 2, . . . 𝑛, and 𝑎𝑢(0) + 𝑏𝑢(1) = ∫1

0
𝑔(𝑠, 𝑢(𝑠))𝑑𝑠,

[ 𝑐D𝛽
0,𝑡𝑢(𝑡)]𝑡=𝑡𝑘 = 𝑐𝑘, 𝑘 = 0, 1, . . . , 𝑛.
Next, we present the following necessary basic knowledge

of fractional calculus theory which is used in the later paper.

Definition 4 (see [4]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑓 : [0, +∞) → 𝑅 is given
by

𝐼𝛼
𝑡 𝑓 (𝑡) = 1Γ (𝛼) ∫𝑡

𝑎
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠, 𝑎 > 0, (13)

provided that the right-hand side is pointwise defined on[0, +∞), where Γ(⋅) is the gamma function.

Definition 5 (see [4]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑓 : [0, +∞) → 𝑅
is given by

𝑙D𝛼
𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) 𝑑𝑛

𝑑𝑡𝑛 ∫𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝛼−1 𝑓 (𝑠) 𝑑𝑠,

𝑡 > 0,
(14)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, provided that the right-hand side is
pointwise defined on [0, +∞).
Definition 6 (see [4]). The Caputo fractional derivative of
order 𝛼 > 0 of a function 𝑓 : [0, +∞) → 𝑅 is given by

𝑐D𝛼
𝑡 𝑓 (𝑡) = 𝑙D𝛼

𝑡 [𝑓 (𝑡) − 𝑛−1∑
𝑘=0

𝑡𝑘𝑘! 𝑓(𝑘) (0)] , 𝑡 > 0, (15)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, provided that the right-hand side is
pointwise defined on [0, +∞).
Definition 7 (see [10]). Functions 𝐸𝛼(𝑧) and 𝐸𝛼,𝛽(𝑧) are called
classical and generalized Mittag-Leffler functions, respec-
tively, given by

𝐸𝛼 (𝑧) = ∞∑
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 1) ,

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 𝛽) .
(16)

Lemma 8 (see [10]). Let 0 < 𝛼, 𝛽 < 1, and then functions𝐸𝛼(𝑧), 𝐸𝛼,𝛼(𝑧), and 𝐸𝛼,𝛼+𝛽 are nonnegative and have the
following properties.

(i) For any 𝜆 > 0 and 𝑡 ∈ 𝐽,
𝐸𝛼 (−𝑡𝛼𝜆) ≤ 1,

𝐸𝛼,𝛼 (−𝑡𝛼𝜆) ≤ 1Γ (𝛼) ,
𝐸𝛼,𝛼+𝛽 (−𝑡𝛼𝜆) ≤ 1Γ (𝛼 + 𝛽) .

(17)

Moreover,

𝐸𝛼 (0) = 1,
𝐸𝛼,𝛼 (0) = 1Γ (𝛼) ,

𝐸𝛼,𝛼+𝛽 (0) = 1Γ (𝛼 + 𝛽) .
(18)

(ii) For any 𝜆 > 0 and 𝑡1, 𝑡2 ∈ 𝐽, when 𝑡2 → 𝑡1, we have
𝐸𝛼 (−𝑡𝛼2𝜆) → 𝐸𝛼 (−𝑡𝛼1𝜆) ,

𝐸𝛼,𝛼 (−𝑡𝛼2𝜆) → 𝐸𝛼,𝛼 (−𝑡𝛼1𝜆) ,
𝐸𝛼,𝛼+𝛽 (−𝑡𝛼2𝜆) → 𝐸𝛼,𝛼+𝛽 (−𝑡𝛼1𝜆) .

(19)

(iii) For any 𝜆 > 0 and 𝑡1, 𝑡2 ∈ 𝐽 and 𝑡1 ≤ 𝑡2, we have
𝐸𝛼 (−𝑡𝛼1𝜆) ≥ 𝐸𝛼 (−𝑡𝛼2𝜆) ,

𝐸𝛼,𝛼 (−𝑡𝛼1𝜆) ≥ 𝐸𝛼,𝛼 (−𝑡𝛼2𝜆) ,
𝐸𝛼,𝛼+𝛽 (−𝑡𝛼1𝜆) ≥ 𝐸𝛼,𝛼+𝛽 (−𝑡𝛼2𝜆) .

(20)
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Lemma 9 (see [16]). Let 𝑎 + 𝑏𝐸𝛼+𝛽(−𝜆) ̸= 0. For a given 𝑓 ∈𝐿1(𝐽, 𝑅) with 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ 𝐽, then the boundary
value problem (1) has a unique solution 𝑢(𝑡) ∈ 𝑃𝐶(𝐽, 𝑅) which
is defined by the following form:

𝑢 (𝑡)
= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [
[

𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 0, 1, . . . , 𝑛.

(21)

Finally, we give the following lemma which is greatly
important in the proof of our main results.

Lemma 10 (see [17, Bohnenblust-Karlin]). Let 𝑋 be a Banach
space,𝐷 a nonempty subset of𝑋, which is bounded, closed, and
convex. Suppose 𝐺 : 𝐷 → 2𝑋 \ {0} is 𝑢.𝑠.𝑐. with closed, convex
values, and such that 𝐺(𝐷) ⊂ 𝐷 and 𝐺(𝐷) are compact. Then𝐺 has a fixed point.

3. Main Results

In order to begin our main results, we also need the following
conditions:

(H1) There exists 0 < 𝑞 < 𝛼 + 𝛽 < 1, and a real function𝑚𝑟(𝑡) ∈ 𝐿1/𝑞(𝐽, 𝑅+) such that

‖𝐹 (𝑡, 𝑢)‖ = sup {𝑓 : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑢)} ≤ 𝑚𝑟 (𝑡) ,
∀ ‖𝑢‖ ≤ 𝑟 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ 𝐽, (22)

for each 𝑟 > 0.
(H2) 𝑔(𝑡, 0) = 0 and there exists 𝐿 > 0 such that

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V) ≤ 𝐿 |𝑢 − V| (23)

for 𝑢, V ∈ 𝑅 and 𝑡 ∈ [0, 1], where 𝐿 satisfies 𝐿 < 𝑎 in
which 𝑎 is defined in (1).

For convenience, we denote

Ω = 𝑛∑
𝑖=1

𝐼𝑖 + 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 ) . (24)

Theorem 11. Suppose that (H1) and (H2) hold; then system (1)
has at least one solution on 𝐽.

Proof. We transform problem (1) into a fixed point problem.
Consider the operator 𝑁 : 𝐶(𝐽, 𝑅) → 𝑃𝐶(𝐽, 𝑅) defined by

𝑁 (𝑢) = {{{
ℎ (𝑡) ∈ 𝑃𝐶 (𝐽, 𝑅) : ℎ (𝑡)

= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)
𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [

[
𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 0, 1, . . . , 𝑛.}}}

(25)

for 𝑓 ∈ 𝑆𝐹,𝑢.
Next we shall show that 𝑁 satisfies all the assumptions

of Lemma 10; that is to say, 𝑁 has a fixed point which is
a solution of problem (1). For the sake of convenience, we
subdivide the proof into several steps.

Step 1 (𝑁(𝑢) is convex for each 𝑢 ∈ 𝑃𝐶(𝐽, 𝑅)). In fact, assumeℎ1, ℎ2 ∈ 𝑁(𝑢), then there exist 𝑓1, 𝑓2 ∈ 𝑆𝐹,𝑢 such that, for each𝑡 ∈ 𝐽, we have
ℎ𝑖 (𝑡)

= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)
𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [

[
𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓𝑖 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓𝑖 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) , 𝑖 = 1, 2.

(26)

Let 0 ≤ 𝜒 ≤ 1. Then, for each 𝑡 ∈ 𝐽, we have
[𝜒ℎ1 + (1 − 𝜒) ℎ2] (𝑡)

= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)
𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [

[
𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽)
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⋅ [𝜒𝑓1 (𝑠) + (1 − 𝜒) 𝑓2 (𝑠)] 𝑑𝑠 − 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆)
+ ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 ) + ∫𝑡

0
(𝑡

− 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) [𝜒𝑓1 (𝑠) + (1 − 𝜒)
⋅ 𝑓2 (𝑠)] 𝑑𝑠 + 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) .

(27)

Since 𝑆𝐹,𝑢 is convex (𝐹 has convex values), so it follows that𝜒ℎ1 + (1 − 𝜒)ℎ2 ∈ 𝑁(𝑢).
Step 2. Let 𝐵𝑟 = {𝑢 ∈ 𝑃𝐶(𝐽, 𝑅) : ‖𝑢‖ ≤ 𝑟}, where

𝑎𝑎 − 𝐿 ( (𝑎 + 𝑏) Ω𝑎 + 𝑏𝑐𝑎Γ (1 + 𝛽) + 𝑐Γ (1 + 𝛽)
+ (𝑎 + 𝑏) 𝑚𝑟

𝐿1/𝑞𝑎Γ (𝛼 + 𝛽) ( 1 − 𝑞𝛼 + 𝛽 − 𝑞)1−𝑞) ≤ 𝑟.
(28)

Then 𝐵𝑟 is a bounded closed convex set in 𝑃𝐶(𝐽, 𝑅). Thus we
need to verify 𝑁(𝐵𝑟) ⊆ 𝐵𝑟. In fact, from Lemma 8, (H1), and
(H2), for each 𝑢 ∈ 𝐵𝑟, 𝑡 ∈ 𝐽𝑘, 𝑘 = 0, 1, . . . , 𝑛, we have
|𝑁 (𝑢)| ≤ 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

⋅


1𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [
[

𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝑛∑

𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )


+ ∫

𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) ≤


1𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆)

⋅ [
[

𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
[𝑔 (𝑠, 𝑢 (𝑠)) − 𝑔 (𝑠, 0)] 𝑑𝑠

− (𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆))
⋅ 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 ) ]

]


+ ∫
𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)
≤


1𝑎 [

[
𝑎 𝑘∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑚𝑟 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + 𝐿 ∫1

0
𝑢 (𝑠) 𝑑𝑠 − 𝑏𝐸𝛼+𝛽 (−𝜆)

⋅ 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 ) ]

]


+ ∫
𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑚𝑟 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)
≤ 𝑘∑

𝑖=1

𝐼𝑖 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 ) + 𝑏𝑐𝑎Γ (1 + 𝛽)
+ 𝑏𝑎Γ (𝛼 + 𝛽) ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝑚𝑟 (𝑠) 𝑑𝑠 + 𝐿𝑎 ∫1

0
|𝑢 (𝑠)| 𝑑𝑠

+ 𝑏𝑎
𝑛∑

𝑗=𝑘+1

𝐼𝑗 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 ) + 1Γ (𝛼 + 𝛽)
⋅ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝑚𝑟 (𝑠) 𝑑𝑠 + 𝑐Γ (1 + 𝛽) = (𝑎 + 𝑏) Ω𝑎

+ 𝑏𝑐𝑎Γ (1 + 𝛽) + 𝑐Γ (1 + 𝛽) + 𝐿𝑎 ∫1

0
|𝑢 (𝑠)| 𝑑𝑠 + 𝑏𝑎Γ (𝛼 + 𝛽)

⋅ ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝑚𝑟 (𝑠) 𝑑𝑠 + 1Γ (𝛼 + 𝛽) ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1

⋅ 𝑚𝑟 (𝑠) 𝑑𝑠 ≤ (𝑎 + 𝑏) Ω𝑎 + 𝑏𝑐𝑎Γ (1 + 𝛽) + 𝑐Γ (1 + 𝛽)
+ 𝐿 ‖𝑢‖𝐿1𝑎 + 𝑏𝑎Γ (𝛼 + 𝛽) (∫1

0
[(1 − 𝑠)𝛼+𝛽−1]1/(1−𝑞) 𝑑𝑠)1−𝑞



6 Discrete Dynamics in Nature and Society

⋅ (∫1

0

𝑚𝑟 (𝑠)1/𝑞 𝑑𝑠)𝑞

+ 1Γ (𝛼 + 𝛽) (∫𝑡

0
[(𝑡 − 𝑠)𝛼+𝛽−1]1/(1−𝑞) 𝑑𝑠)1−𝑞

⋅ (∫𝑡

0

𝑚𝑟 (𝑠)1/𝑞 𝑑𝑠)𝑞 ≤ (𝑎 + 𝑏) Ω𝑎 + 𝑏𝑐𝑎Γ (1 + 𝛽)
+ 𝑐Γ (1 + 𝛽) + 𝐿𝑟𝑎 + 𝑏𝑎Γ (𝛼 + 𝛽) ( 1 − 𝑞𝛼 + 𝛽 − 𝑞 )1−𝑞

+ 1Γ (𝛼 + 𝛽) ( 1 − 𝑞𝛼 + 𝛽 − 𝑞)1−𝑞 ⋅ 𝑡𝛼+𝛽−𝑞 ≤ (𝑎 + 𝑏) Ω𝑎
+ 𝑏𝑐𝑎Γ (1 + 𝛽) + 𝑐Γ (1 + 𝛽) + 𝐿𝑟𝑎
+ (𝑎 + 𝑏) 𝑚𝑟

𝐿1/𝑞𝑎Γ (𝛼 + 𝛽) ( 1 − 𝑞𝛼 + 𝛽 − 𝑞)1−𝑞 .
(29)

From (28), we have 𝑁(𝐵𝑟) ⊆ 𝐵𝑟.
Step 3 (𝑁(𝐵𝑟) is equicontinuous). Let Δ = 𝐽 × 𝐵𝑟, 𝛿1, 𝛿2 ∈𝐽, 𝛿1 < 𝛿2.For convenience, we also let sup(𝑡,𝑢)∈Δ|𝑓(𝑡, 𝑢)| fl Υ,

Φ = 1𝑎 + 𝑏𝐸𝛼+𝛽

[
[

𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]

(30)

and

Ψ = 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 ) , (31)

and then we have

(𝑁𝑢) (𝛿1) − (𝑁𝑢) (𝛿2) = [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
1 )

− 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
2 )] Φ − [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽

1 )
− 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽

2 )] Ψ + ∫𝛿1

0
(𝛿1 − 𝑠)𝛼+𝛽−1

⋅ 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠 − ∫𝛿2

0
(𝛿2

− 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠
+ 𝑐𝑘𝛿𝛽

1 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽
1 )

− 𝑐𝑘𝛿𝛽
2 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

2 ) ≤ [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
1 )

− 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
2 )] (Φ − Ψ)

+ ∫𝛿1

0
[(𝛿1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽)

− (𝛿2 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽)]
⋅ 𝑓 (𝑠) 𝑑𝑠 − ∫𝛿2

𝛿1

(𝛿2 − 𝑠)𝛼+𝛽−1
⋅ 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠
+ 𝑐𝑘𝛿𝛽

1 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽
1 )

− 𝑐𝑘𝛿𝛽
2 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

2 ) ≤ [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
1 )

− 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
2 )] (Φ − Ψ) + ∫

𝛿1

0
[(𝛿1 − 𝑠)𝛼+𝛽−1

− (𝛿2 − 𝑠)𝛼+𝛽−1] 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽)
⋅ 𝑓 (𝑠) 𝑑𝑠 + ∫

𝛿1

0
[(𝛿2 − 𝑠)𝛼+𝛽−1]

⋅ [𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽)
− 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽)] 𝑓 (𝑠) 𝑑𝑠 + ∫

𝛿2

𝛿1

(𝛿2

− 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠
+ 𝑐𝑘 (𝛿𝛽

1 − 𝛿𝛽
2 ) 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

1 )
+ 𝑐𝑘𝛿𝛽

2 (𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽
1 ) − 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

2 )  ,
≤ [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽

1 ) − 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
2 )] (Φ − Ψ)

+ ΥΓ (𝛼 + 𝛽)
∫

𝛿1

0
[(𝛿1 − 𝑠)𝛼+𝛽−1

− (𝛿2 − 𝑠)𝛼+𝛽−1] 𝑑𝑠 + ∫
𝛿1

0
[(𝛿2 − 𝑠)𝛼+𝛽−1]

⋅ [𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽)
− 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽)] 𝑓 (𝑠) 𝑑𝑠
+ ΥΓ (𝛼 + 𝛽)

∫
𝛿2

𝛿1

(𝛿2 − 𝑠)𝛼+𝛽−1 𝑑𝑠 + 𝑐𝑘 (𝛿𝛽
1 − 𝛿𝛽

2 )
⋅ 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

1 ) + 𝑐𝑘𝛿𝛽
2 (𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

1 )
− 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

2 )  ≤ [𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
1 )
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− 𝐸𝛼+𝛽 (−𝜆𝛿𝛼+𝛽
2 )] (Φ − Ψ)

+ Υ [(𝛿2 − 𝛿1)𝛼+𝛽 + 𝛿𝛼+𝛽
2 − 𝛿𝛼+𝛽

1 ]
(𝛼 + 𝛽) Γ (𝛼 + 𝛽)

+ Υ (𝛿2 − 𝛿1)𝛼+𝛽
(𝛼 + 𝛽) Γ (𝛼 + 𝛽) + ∫

𝛿1

0
[(𝛿2 − 𝑠)𝛼+𝛽−1]

⋅ [𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿1 − 𝑠)𝛼+𝛽)
− 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝛿2 − 𝑠)𝛼+𝛽)] 𝑓 (𝑠) 𝑑𝑠 + 𝑐𝑘 (𝛿𝛽

1

− 𝛿𝛽
2 ) 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

1 )
+ 𝑐𝑘𝛿𝛽

2 (𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽
1 ) − 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝛿𝛼+𝛽

2 )  ,
(32)

and from Lemma 8, we clearly see the right hand side of the
above inequality tends to zero as 𝛿1 → 𝛿2. This implies
that 𝑁 is equicontinuous on 𝐽. As a consequence of Steps
1–3 togetherwith theAscoli-Arzela theorem,we can conclude
that 𝑁 is a compact valued map.

Step 4 (𝑁 has a closed graph). Let 𝑢𝑛 → 𝑢∗, ℎ𝑛 ∈ 𝑁(𝑢𝑛) andℎ𝑛 → ℎ∗. Then we need to verify ℎ∗ ∈ 𝑁(𝑢∗). ℎ𝑛 ∈ 𝑁(𝑢𝑛)
implies that there exists 𝑓𝑛 ∈ 𝑆𝐹,𝑢𝑛

such that for each 𝑡 ∈ 𝐽 we
have

ℎ𝑛 (𝑡)
= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [
[

𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓𝑛 (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓𝑛 (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)} ,

(33)

and thus we must verify that there exists 𝑓∗ ∈ 𝑆𝐹,𝑢∗
such that

for each 𝑡 ∈ 𝐽 we have
ℎ∗ (𝑡)

= 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)
𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) [

[
𝑎 𝑛∑
𝑖=1

𝐼𝑖 − 𝑡𝛽𝑖 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑖 ) (𝑐𝑖 − 𝑐𝑖−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑖 )

− 𝑏 ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓∗ (𝑠) 𝑑𝑠

− 𝑏𝑐𝑛𝐸𝛼+𝛽,𝛽+1 (−𝜆) + ∫1

0
𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠]

]
− 𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

× 𝑛∑
𝑗=𝑘+1

𝐼𝑗 − 𝑡𝛽𝑗 𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽𝑗 ) (𝑐𝑗 − 𝑐𝑗−1)
𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽𝑗 )

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓∗ (𝑠) 𝑑𝑠

+ 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)} .
(34)

Consider the continuous linear operator

Θ : 𝐿1 (𝐽, 𝑅) → 𝐶 (𝐽, 𝑅) , (35)

𝑓 → Θ (𝑓) (𝑡) = ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1

⋅ 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠
− 𝑏𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)

𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆) ∫1

0
(1 − 𝑠)𝛼+𝛽−1

⋅ 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓 (𝑠) 𝑑𝑠;

(36)

then,{ℎ𝑛 (𝑡) − [𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽) (Φ − Ψ)]
− 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)} − {ℎ∗ (𝑡)
− [𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽) (Φ − Ψ)]
− 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)} → 0 𝑎𝑠 𝑛 → ∞.

(37)

By Lemma 2, we know Θ ∘ 𝑆𝐹 is a closed graph operator.
Also from the definition of Θ we have

ℎ𝑛 (𝑡) − [𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽) (Φ − Ψ)]
− 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽) ∈ Θ (𝑆𝐹,𝑢𝑛

) . (38)

Since 𝑢𝑛 → 𝑢∗, Lemma 2 implies that

ℎ∗ (𝑡) − [𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽) (Φ − Ψ)]
− 𝑐𝑘𝑡𝛽𝐸𝛼+𝛽,𝛽+1 (−𝜆𝑡𝛼+𝛽)
= ∫𝑡

0
(𝑡 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (𝑡 − 𝑠)𝛼+𝛽) 𝑓∗ (𝑠) 𝑑𝑠

− 𝑏𝐸𝛼+𝛽 (−𝜆𝑡𝛼+𝛽)
𝑎 + 𝑏𝐸𝛼+𝛽 (−𝜆)

⋅ ∫1

0
(1 − 𝑠)𝛼+𝛽−1 𝐸𝛼+𝛽,𝛼+𝛽 (−𝜆 (1 − 𝑠)𝛼+𝛽) 𝑓∗ (𝑠) 𝑑𝑠

(39)

for some 𝑓∗ ∈ 𝑆𝐹,𝑢∗
.

Therefore, 𝑁 is a compact multivalued map, 𝑢.𝑠.𝑐. with
convex closed values. By Lemma 10, we have that𝑁 has a fixed
point 𝑢(𝑡) which is a solution of problem (1).
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Corollary 12. Assume that (H2) and (H3) hold.
(H3) There exist continuous and bounded functions𝜏1(𝑡), 𝜏2(𝑡) ∈ 𝐿1(𝐽, 𝑅+), 𝜎 ∈ [0, 1] such that

|𝐹 (𝑡, 𝑢)| ≤ 𝜏1 (𝑡) + 𝜏2 (𝑡) |𝑢|𝜎 ; (40)

then problem (1) has at least a solution on 𝐽.
Proof. Theproof is the same asTheorem 11 which we can take
as 𝑚(𝑡) = 𝜏1(𝑡) + 𝜏2(𝑡)|𝑢|𝜎.
Remark 13. If we let 𝑓(𝑡, 𝑢) ∈ {𝐹(𝑡, 𝑢)} and 𝑔(𝑡, 𝑢) be a
constant function, then the above Corollary 12 improves
Theorem 3.1 in [12].

Remark 14. Note that if 𝛾 = 0 and 𝛾 = 1, we have 𝑐
0D

𝛾

𝑡
𝑢(𝑡) =𝑢(𝑡) and 𝑐

0D
𝛾

𝑡
𝑢(𝑡) = 𝑢(𝑡), respectively. Thus, in this paper, let𝛼 = 1, 𝛽 = 0, 𝜆 = 0, 𝑐𝑘 = 0; our system (1) reduces to [18],

so our problem (1) gives generalization of [18].

Remark 15. If 𝛽 = 0, 𝜆 = 0, the boundary value condition
becomes 𝑢(0) = 𝑢0, and our system (1) reduces to [16, 19].
If 𝛼 = 1, 𝛽 = 0, the boundary value condition becomes𝑢(0) − 𝑢(𝑇) = 𝜇, and our system (1) reduces to [20]. Thus,
our problem (1) gives generalizations of [16, 19, 20].

4. An Example

In this part, we will give corresponding example to illustrate
the main results in our paper.

Example 1. Consider the following system:

𝑐D𝛼
0,𝑡 ( 𝑐D𝛽

0,𝑡𝑢 (𝑡)) + 𝜆𝑢 (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡)) ,
𝑎.𝑒. 𝑡 ∈ 𝐽 = [0, 1] \ {15 }

Δ𝑢 ( 15) = 𝐼1 (𝑢 ( 15 ))
𝑎𝑢 (0) + 𝑏𝑢 (1) = ∫1

0
𝑔 (𝑠, 𝑢) 𝑑𝑠,

[ 𝑐D𝛽
0,𝑡𝑢 (𝑡)]

𝑡=0
= 𝑐0,

[ 𝑐D𝛽
0,𝑡𝑢 (𝑡)]

𝑡=1/5
= 𝑐1,

(41)

where 0 < 𝛼 + 𝛽 < 1, 𝜆 > 0, 𝑎 = 4, 𝑏 = 1, and let𝐹(𝑡, 𝑢(𝑡)) = [(sin 𝑡/𝑒𝑡)(cos 𝑢(𝑡) + 1), ((sin 𝑡)/𝑒𝑡)(cos 𝑢(𝑡) + 3)]
and 𝑔(𝑡, 𝑢(𝑡)) = (cos 𝑡/𝑒𝑡)𝑢(𝑡)/(1 + 𝑢(𝑡)), (𝑡, 𝑢) ∈ [0, 1] ×[0, +∞). Then we let 𝑚𝑟(𝑡) = 4 sin 𝑡/𝑒𝑡 and 𝐿 = 1, and we
have

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V) ≤ |𝑢 − V| ; (42)

then (H1) and (H2) ofTheorem 11 all hold. Hence, system (41)
has at least one solution on 𝐽.
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