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We investigated the golden rectangle and the related Fibonacci spiral and golden spiral. +e coordinates of the shrinkage points of
a golden rectangle were derived. Properties of shrinkage points were discussed. Based on these properties, we conduct a
comparison study for the Fibonacci spiral and golden spiral.+eir similarities and differences were looked into by examining their
polar coordinate equations, polar radii, arm-radius angles, and curvatures. +e golden spiral has constant arm-radius angle and
continuous curvature, while the Fibonacci spiral has cyclic varying arm-radius angle and discontinuous curvature.

1. Introduction

A golden rectangle is such one that if we cut off a square
section whose side is equal to the shortest side, the piece that
remains has the same ratio of side lengths with the original
rectangle.

Let a golden rectangle has the side lengths a and b
(b< a), then the ratio λ � b/a satisfies

λ �
b

a
�

a − b

b
�
1 − b/a

b/a
�
1 − λ
λ

, (1)

that is
λ2 � 1 − λ. (2)

Its positive root is the golden ratio:

λ �

�
5

√
− 1
2
≈ 0.618. (3)

+e golden ratio is also known as the golden section,
golden proportion, and golden mean [1]. +e golden ratio
has been found incorporated almost in all natural or organic
structures, such as the bone structure of human beings [2–4],
the seed pattern and geometry of plants [5], the spiral of a sea
shell [6], and spiral galaxy [7]. +e golden ratio was found in

art and architecture as it produces pleasing shapes [8], even
in special relativity [9]. Also, the golden ratio and the golden
section method were applied to optimal design and search
problems in different fields [10–13].

As a development of the Fibonacci numbers, Stakhov
and Rozin [1, 14] proposed new continuous functions based
on the golden ratio: the symmetric Fibonacci sine and co-
sine, symmetric Lucas sine and cosine, and quasisine
Fibonacci function. In particular, a new equation of the
three-dimensional surface, golden shofar, was presented in
[14]. +ese concepts may lead to new cosmological theories
[14]. In [15], the relation between Fibonacci sequences with
arbitrary initial numbers and the damped oscillation
equation was established.

A golden rectangle has the golden ratio of side lengths. It
has been applied to the fields of architecture, drawing,
photography, etc., as a representative of art beauty [8, 16]. In
Section 2, we consider the shrinkage points of a golden
rectangle and their properties. In Section 3, we compare the
Fibonacci spiral and golden spiral, including their equations,
polar radii, arm-radius angles, and curvatures.

We note that in some references, the value 1/λ is called
the golden ratio and denoted as φ.+roughout this paper, we
use λ to denote the golden ratio (

�
5

√
− 1)/2.
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2. Shrinkage Points of Golden Rectangle

From the golden rectangle OACB in Figure 1, the square is
cut on the right, and the remaining rectangle is also a golden
rectangle. We continue the operation as the following . +e
squares on the top, left and bottom are cut away in the
follow-up three procedures. +e cutting process in the
counterclockwise direction can be ongoing. By the theorem
of interval nest, there is a singleton (xs, ys), denoted by a dot
in Figure 1, belonging to all of the golden rectangles. We call
this singleton the shrinkage point of the original golden
rectangle.

Next, we determine the location of the shrinkage point
on the golden rectangle OACB in Figure 1. Set up the
rectangular coordinate system OAB. PointsA and B have the
coordinates a and b on axes OA and OB, respectively.
Dashed lines represent the cut lines. Successively, they cut
the axis OA at the points d1, c1, d2, c2, . . .. +e coordinate
values are calculated as

c1 � λ(1 − λ)a,

d1 − c1 � (1 − λ)
2
a,

c2 � λ(1 − λ)a + λ(1 − λ)
3
a,

d2 − c2 � (1 − λ)
4
a,

c3 � λ(1 − λ)a + λ(1 − λ)
3
a + λ(1 − λ)

5
a, . . . .

(4)

By induction, we have the general expression as follows:

cn � λ(1 − λ)a 1 +(1 − λ)
2

+(1 − λ)
4

+ · · · +(1 − λ)
2(n− 1)

􏽨 􏽩

� λ(1 − λ)a
1 − (1 − λ)2n

1 − (1 − λ)2
.

(5)

+e limitation leads to the abscissa of the shrinkage
point:

xs � lim
n⟶∞

cn �
1 − λ
2 − λ

a. (6)

Inserting the value of λ, it has the form

xs �
5 −

�
5

√

10
a ≈ 0.276a. (7)

Similarly, the vertical coordinate of the shrinkage point
is

ys �
1 − λ
2 − λ

b �
5 −

�
5

√

10
b ≈ 0.276b. (8)

About the shrinkage point, we prove the following
properties:

Property 1. In the golden rectangle OACB in Figure 2, the
points O and C are connected, and the vertical line is made
such that BS⊥OC with the foot point S; then, the point S is
just the shrinkage point.

Proof. We suppose OA � a and OB � b � λa. Set up the
rectangular coordinate system OAB. +en, the equations of
straight lines OC and BS are

y � λx,

y � −
1
λ

x + b,

(9)

respectively. Solving the equations and using the relation
λ2 � 1 − λ, we obtain

x �
1 − λ
2 − λ

a,

y �
1 − λ
2 − λ

b.

(10)

From equations (6) and (8), the proof is completed. □

Property 2. Let in Figure 3, OACB be a golden rectangle and
S be the shrinkage point, and CE � CA, SF//OA. +en,
SE⊥ SA, SE/SA � λ, and ∠FSA ≔ α � arctan(2λ − 1).

Proof. Denote OA � a. Set up the Cartesian coordinate
system OAB. +en, we have the following rectangular
coordinates:

O A(a)

B C

c1 c2 d2 d1

Figure 1: Shrinkage point of golden rectangle.

O A

B C

S

Figure 2: Geometric approach of the shrinkage point.
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A(a, 0),

E(a − aλ, aλ),

S xs, ys( 􏼁,

F a, ys( 􏼁.

(11)

Considering the vectors

SE
�→

� a − aλ − xs, aλ − ys( 􏼁,

SA
�→

� a − xs, − ys( 􏼁,
(12)

and calculating the scalar product

SE
�→

· SA
�→

� a − aλ − xs( 􏼁 a − xs( 􏼁 − ys aλ − ys( 􏼁, (13)

yields

SE
�→

· SA
�→

� 0. (14)

+is means SE
�→
⊥ SA

�→
. From

|SE
�→

| �

����������������������

a − aλ − xs( 􏼁
2

+ aλ − ys( 􏼁
2

􏽱

,

|SA
�→

| �

������������

a − xs( 􏼁
2

+ y2
s

􏽱

,

(15)

we calculate that

|SE
�→

|

|SA
�→

|
� λ. (16)

Finally, the acute angle ∠FSA satisfies

tan∠FSA �
ys

a − xs

� 2λ − 1. (17)

So, we have

∠FSA ≔ α � arctan(2λ − 1). (18)
□

In Section 3, the values of xs, ys, and α will be used. +e
length of the long side of a golden rectangle is denoted as a.

By symmetry of rectangles, there are four shrinkage
points on a golden rectangle, shown by dots in Figure 4. As a

comparison, we display the trisection lines and the golden
lines of the same golden rectangle. +e golden lines divide
the width or the height at the golden ratio. +ese dots and
lines are important references for drawing and photography.

3. Fibonacci Spirals and Golden Spirals

In this section, the shrinkage point in the lower left of a
golden rectangle is served as the pole of the polar coordinate
system and the origin of the rectangular coordinate system
whenever a coordinate system is introduced in a golden
rectangle.

3.1. Equations. +e Fibonacci spiral can be generated from a
golden rectangle PACB in Figure 5. It is made of quarter-
circles tangent to the interior of each square as follows. We
draw the quarter-circle 􏽣AE, centerD, through two corners of
the square DACE such that the sides of the square are
tangent to the arc. Succeedingly, the quarter-circle 􏽣EG with
the center F in the square GFEB, the quarter-circle 􏽣GI with
the center H in the square PIHG, the quarter-circle 􏽣IK with
the center J in the square IDKJ, and so on.

For the sake of following comparison with the golden
spiral, we derive the equation in polar coordinates for the
Fibonacci spiral.

First, for the arc 􏽣AE, we take a point on it with the polar
coordinates M(r, θ). +e ordinary rectangle coordinates are
M(r cos θ, r sin θ). +e center of the arc has the rectangle
coordinates D(a − aλ − xs, − ys). According to definition,
the distance is a constant, M D � aλ, i.e.,

r cos θ − a + aλ + xs( 􏼁
2

+ r sin θ + ys( 􏼁
2

� a
2λ2. (19)

It is rearranged in the powers of r as

r
2

+
2aλ3

2 − λ
(sin θ − λ cos θ)r −

λ2(6λ − 2)

(2 − λ)2
a
2

� 0. (20)

+e positive root of r is the equation in polar coordinates
for the arc 􏽣AE:

r � −
aλ3

2 − λ
(sin θ − λ cos θ)

+
aλ
2 − λ

�����������������������

λ4(sin θ − λ cos θ)2 + 6λ − 2
􏽱

, − α≤ θ ≤ − α +
π
2

.

(21)

Figure 4: +e shrinkage points, trisection lines (solid lines), and
golden lines (dashed lines) of a golden rectangle.O

S

A

B C

D

E

F
α

Figure 3: +e schematic diagram for Property 2.
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Polar coordinate equations for other quarter-circles can
be given by similarity. For example, for the quarter-circle
􏽣EG,

r � −
aλ4

2 − λ
sin θ −

π
2

􏼒 􏼓 − λ cos θ −
π
2

􏼒 􏼓􏼒 􏼓

+
aλ2

2 − λ

���������������������������������

λ4 sin θ −
π
2

􏼒 􏼓 − λ cos θ −
π
2

􏼒 􏼓􏼒 􏼓
2

+ 6λ − 2

􏽳

,

− α +
π
2
≤ θ ≤ − α + π,

(22)

and for the quarter-circle 􏽣GI,

r � −
aλ5

2 − λ
(sin(θ − π) − λ cos(θ − π))

+
aλ3

2 − λ

��������������������������������

λ4(sin(θ − π) − λ cos(θ − π))2 + 6λ − 2
􏽱

,

− α + π ≤ θ≤ − α +
3π
2

.

(23)
+eFibonacci spiral does not have continuous curvature,

and is an approximation for the golden spiral. +e golden
spiral is a special type of the logarithmic spiral. Using the
polar coordinates the logarithmic spiral has the equation:

r � ce
kθ

, c> 0, k< 0. (24)

+e golden spiral has the special property such that for
every increment π/2 of θ, the distance from the center of the
spiral multiplies the golden ratio λ. +at is,

e
kπ/2

� λ. (25)

It follows that
k �

2
π
ln λ. (26)

+e polar coordinate equation of the golden spiral is
derived as follows:

r � ce
((2/π)ln λ)θ

, (27)

or equivalently,

r � cλ(2/π)θ
. (28)

In the golden rectanglePACB in Figure 6, since themodulus
of the vector OA

��→
is

|OA
��→

| �

������������

a − xs( 􏼁
2

+ y2
s

􏽱

�
a

2 − λ

�����
1 + λ6

􏽰
, (29)

and the intersection angle between the polar axis and vector
OA
��→

is α � arctan(2λ − 1), we have the following property.

Property 3. In the golden rectangle PACB in Figure 6, the
golden spiral with the shrinkage pointO as the pole, through
the point A can be given by the equation:

r �
a

2 − λ

�����
1 + λ6

􏽰
λ(2/π)(θ+α)

. (30)

In Figure 6, we show the Fibonacci spiral in solid line and
golden spiral in dashed line. In order to display their dis-
tinction, the difference of polar radii of the Fibonacci spiral
and golden spiral, rf − rg, is plotted in the ordinary rectangle
coordinate system in Figure 7, where we take a � 1. In
Figure 6, the two spirals overlap at each corners
A, E, G, I, . . .. Within each of quarter-circles, the two spirals
intersect exactly once.

3.2. Arm-Radius Angles. +e arm-radius angle at a point M
on a spiral is the acute angle between the tangent line at the
point M and the polar radius OM. It is well known that for
the logarithmic spiral r � cekθ, c> 0, k< 0, the arm-radius
angle is constant, and it satisfies cot β � − k. So, the loga-
rithmic spiral is also called equiangular spiral. As a special
case of logarithmic spiral, the golden spiral r � ce((2/π)ln λ)θ

has the equiangular properity, i.e., the arm-radius angle,
independent of c and θ:

βg � arccot −
2
π
ln λ􏼒 􏼓 ≈ 1.2735 radian or 72.97∘( ), (31)

as shown in Figure 8.
For the Fibonacci spiral in Figure 5, the arm-radius angle βf

is not constant, but periodic variation such that
βf(θ + (π/2)) � βf(θ) by similarity. For the quarter-circle 􏽣AE

in Figure 5, the parameter equation is
x � r(θ)cos θ,

y � r(θ)sin θ,
􏼨 (32)

where r(θ) is given in equation (21). From the vectors

OM
���→

� (r(θ)cos θ, r(θ)sin θ),

MT
���→

� x′(θ), y′(θ)( 􏼁,
(33)

we express the arm-radius angle for the Fibonacci spiral:

βf � arccos
|OM
���→

· MT
���→

|

|OM
���→

| · |MT
���→

|
, − α≤ θ≤

π
2

− α. (34)

+e arm-radius angle βf is a complicated function of θ,
independent of a. By means of the software MATHEMA-
TICA, the curves of arm-radius angles βf and βg versus polar

P

O

A

B C

D

E

FG H

I

J K

M

T

Βf

Figure 5: +e Fibonacci spiral.
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angle θ are shown in the ordinary rectangle coordinate
system in Figure 9, where we limit − α≤ θ≤ 2π − α. +e arm-
radius angle βg is a constant, while βf oscillates continuously
around βg. At each corners, θ � − α, (π/2) − α, π − α, . . ., the
arm-radius angle βf varies unsmoothly. MATHEMATICA
code generating Figure 9 is attached in Appendix.

3.3. Curvatures. We rewrite the golden spiral in equation
(30) to the parametric equation:

x �
a

2 − λ

�����
1 + λ6

􏽰
λ(2/π)(θ+α) cos θ,

y �
a

2 − λ

�����
1 + λ6

􏽰
λ(2/π)(θ+α) sin θ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(35)

Inserting the curvature formula

Kg �
x′(θ)y″(θ) − x″(θ)y′(θ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

x′
2
(θ) + y′

2
(θ)􏼒 􏼓

3/2 ,
(36)

we obtain the curvatures of the golden spiral

Kg �
π(2 − λ)

a
������������������
1 + λ6􏼐 􏼑 π2 + 4 ln2 λ􏼐 􏼑

􏽱
λ(2/π)(θ+α)

. (37)

We take a � 1 and limit − α≤ θ≤ 2π − α. +e Fibonacci
spiral has discontinuous curvatures Kf : λ

− 1, λ− 2, λ− 3, and
λ− 4 for four quarter-circles, respectively, while the golden
spiral has the continuous curvature in eqaution (37). In
Figure 10, curvatures of the Fibonacci spiral and golden
spiral versus θ on the interval − α≤ θ ≤ 2π − α are shown in
an ordinary rectangle coordinate system.

1.20

1.25

1.30

1.35

β f
, β

g

π – α 2π – α
θ

π/2 – α 3π/2 – α–α

Figure 9: Arm-radius angles for the Fibonacci spiral (solid line)
and golden spiral (dashed line).

π/2 – α

r f 
– 

r g

π – α
2π – α

θ

–0.004

–0.002

0.002

0.004

0.006

–α 3π/2 – α

Figure 7: +e difference of polar radii of the Fibonacci spiral and
golden spiral (a � 1).

βgβg

Figure 8: Arm-radius angle of the golden spiral.
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π – α 2π – απ/2 – α 3π/2 – α
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Figure 10: Curvatures of the Fibonacci spiral (solid line) and
golden spiral (dashed line).
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Figure 6: +e Fibonacci spiral (solid line) and golden spiral
(dashed line).
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4. Conclusion

We considered the golden rectangle and the related Fibo-
nacci spiral and golden spiral. In Section 2, we gave the
coordinates of the shrinkage points of a golden rectangle.
Properties of shrinkage points were presented. In Section 3,
we compared the Fibonacci spiral and golden spiral by
examining their equations in polar coordinates, relationship
of polar radii, and differences of arm-radius angles and
curvatures. +e golden spiral has a constant arm-radius
angle and continuous curvature. As an approximation of the
golden spiral, the Fibonacci spiral has continuous and
smooth polar radius, cyclic varying arm-radius angle, and
discontinuous curvature.

Appendix

MATHEMATICA code for Figure 9:

la� (Sqrt[5] − 1)/2;
betag�ArcCot[− 2 Log[la]/Pi];
r� − a lâ 3/(2 − la) (Sin[th] − la Cos[th]) + a la/(2 − la)
Sqrt[lâ 4 (Sin[th] − la Cos[th])̂ 2 + 6 la − 2];
x� r Cos[th];
y� r Sin[th];
OM� {x, y}; MT� {D[x, th], D[y, th]};
betaf�ArcCos[Abs[OM.MT]/Norm[OM]/Norm
[MT]];
al�ArcTan[2 la − 1];
f1�Plot[{betaf, betag}, {th, − al, − al + Pi/2},
PlotStyle⟶ {{}, {Dashed}}];
betaf2� betaf/. th⟶ (th − Pi/2);
f2�Plot[{betaf2, betag}, {th, − al + Pi/2, − al + Pi},
PlotStyle⟶ {{}, {Dashed}}];
betaf3� betaf/. th⟶ (th − Pi);
f3�Plot[{betaf3, betag}, {th, − al + Pi, − al + 3 Pi/2},
PlotStyle⟶ {{}, {Dashed}}];
betaf4� betaf/. th⟶ (th − 3 Pi/2);
f4�Plot[{betaf4, betag}, {th, − al + 3 Pi/2, − al + 2 Pi},
PlotStyle⟶ {{}, {Dashed}}];
Show[f1, f2, f3, f4, AxesOrigin⟶ {0, 1.23},
PlotRange⟶ {{− al, 6.15}, {1.2, 1.37}}, Ticks⟶
{None}].
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