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This paper is concerned with the characterization of all self-adjoint domains associated with two-interval even order singular 𝐶-
symmetric differential operators in terms of boundary conditions. The previously known characterizations of Lagrange symmetric
differential operators are a special case of this one.

1. Introduction

Self-adjoint differential operators [1–3] in Hilbert space are of
interest in mathematics and physics; in Quantum Mechan-
ics they represent observables [4–7]. These operators are
generally defined by symmetric expressions and boundary
conditions. Two-interval theory of differential equations was
developed byW.N. Everitt and A. Zettl [8] in 1986. In 1988, A.
M. Krall and A. Zettl [9, 10] generalized the method given by
Coddington [11] and obtained the characterizations of self-
adjoint domains for Sturm-Liouville differential operators
with interior singular points. Afterwards, in [12] the two-
interval theory was extended to higher order equations and
any finite or infinite number of intervals. In [13] Wang et al.
give an explicit characterization of all self-adjoint domains
for Lagrange symmetric differential operators in terms of
certain solutions for real 𝜆 for the one-interval case when
one endpoint is regular and the other is singular. In analogy
with the celebrated Weyl limit-point, limit-circle theory in
the second order case, i.e., Sturm-Liouville problems [14],
they construct limit-point and limit-circle solutions and
characterize the self-adjoint domains in terms of the limit-
circle solutions. In [15], Hao et al. give a characterization
for Lagrange symmetric differential operators by dividing
one interval (𝑎1, 𝑏1) into two intervals (𝑎1, 𝑐1) and (𝑐1, 𝑏1) for
some point 𝑐1 ∈ (𝑎1, 𝑏1) when both endpoints 𝑎1 and 𝑏1 are
singular. In [16], Suo et al. extend the characterization in

[13] to two-interval case for one endpoint of each interval(𝑎1, 𝑏1), and (𝑎2, 𝑏2) is regular, and illustrate the interactions
between the regular endpoints and singular endpoints with
some examples.

As noted in survey article [17], we observe that a special
type of matrix, 𝐸𝑛 = ((−1)𝑟𝛿𝑟,𝑛+1−𝑠)𝑛𝑟,𝑠=1, plays key role in the
characterization of a self-adjoint differential operators, both
boundary conditions and symmetric differential operators.
What is more interesting is that the symbol difference of
this special type matrix is equivalent to skew-diagonal matrix( 0 𝐼
−𝐼 𝑜

), 𝐼 = (𝛿𝑟,𝑛+1−𝑠)𝑘𝑟,𝑠=1, which also generates self-adjoint
operators. Actually these matrices can be generalized as a
fixed nonsingular matrix 𝐶 and preserve their properties.
So we can enlarge the known set of these operarors by
extending the known symmetric expressions to C-symmetric
expressions and charaterize the boundary conditions which
determine self-adjoint extensions of these C-symmetric
expressions on a single interval case. Remarkably, the same
matrices C which generate the expressions also generate
their self-adjoint extensions. This paper is based on all
the above known works, and the complete characterization
of self-adjoint domains of the two-interval case for even
order 𝐶-symmetric differential operators is given when four
endpoints 𝑎1, 𝑏1, 𝑎2, 𝑏2 are singular or regular. Moreover, it has
shown that the previous results in [16, 17] are special cases
of ours. Following this introduction, some basic notations
and facts are given in Section 2, in Sections 3 and 4 we give
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our main theorems for characterization of all self-adjoint
domains and their proofs, and at last in Section 5 we give
some examples to illustrate our main results.

2. Notation and Basic Facts

In this section we summarize some basic facts about general𝐶-symmetric quasidifferential expressions of even order (𝑛 =2𝑘, 𝑘 ≥ 1) and real or complex coefficients on one-interval
and two-interval cases for the convenience of the reader.

Firstly, let 𝐽 = (𝑎, 𝑏) be an interval with −∞ ≤ 𝑎 < 𝑏 ≤∞ and𝑀𝑛(𝑆) denote the set of 𝑛 × 𝑛 complex matrices with
entries from a given set 𝑆.

Set 𝐶𝑛 = (𝑐𝑟,𝑠)1≤𝑟,𝑠≤𝑛 as a skew-diagonal constant matrix
satisfying 𝐶−1𝑛 = −𝐶𝑛 = 𝐶∗𝑛 , (1)

and let𝑍𝑛 (𝐽) fl {(𝑞𝑟,𝑠)𝑛𝑟,𝑠=1 ∈ 𝑀𝑛 (𝐿 𝑙𝑜𝑐 (𝐽)) , 𝑞𝑟,𝑟+1̸= 0 a.e. 𝐽, 𝑞−1𝑟,𝑟+1 ∈ 𝐿 𝑙𝑜𝑐 (𝐽) , 1 ≤ 𝑟 ≤ 𝑛 − 1, 𝑞𝑟,𝑠= 0 a.e. 𝐽, 2 ≤ 𝑟 + 1 < 𝑠 ≤ 𝑛; 𝑞𝑟,𝑠 ∈ 𝐿 𝑙𝑜𝑐 (𝐽) , 𝑠 ̸= 𝑟+ 1, 1 ≤ 𝑟 ≤ 𝑛 − 1} .
(2)

Let 𝑄 ∈ 𝑍𝑛(𝐽). We define𝑉0 fl {𝑦 : 𝐽 󳨀→ C, 𝑦 is measurable} (3)

and 𝑦[0] fl 𝑦 (𝑦 ∈ 𝑉0) . (4)

Inductively, for 𝑟 = 1, . . . , 𝑛, we define𝑉𝑟 = {𝑦 ∈ 𝑉𝑟−1 : 𝑦[𝑟−1] ∈ (𝐴𝐶𝑙𝑜𝑐 (𝐽))} , (5)𝑦[𝑟] = 𝑞−1𝑟,𝑟+1 {𝑦[𝑟−1]󸀠 − 𝑟∑
𝑠=1

𝑞𝑟,𝑠𝑦[𝑠−1]} (𝑦 ∈ 𝑉𝑟) , (6)

where 𝑞𝑛,𝑛+1 fl 𝑐𝑛,1, and 𝐴𝐶𝑙𝑜𝑐(𝐽) denotes the set of complex-
valued functions which are absolutely continuous on all
compact subintervals of 𝐽. Finally we set𝑀𝑦 = 𝑀𝑄𝑦 fl 𝑖𝑛𝑦[𝑛] (𝑦 ∈ 𝑉𝑛) . (7)

The expression 𝑀 = 𝑀𝑄 is called the quasidifferential
expression associated with𝑄. For𝑉𝑛 we also use the notations𝑉(𝑀) and 𝐷(𝑄).
Definition 1. Let 𝑄 ∈ 𝑍𝑛(𝐽) and let 𝑀 = 𝑀𝑄 be defined as
above. Assume that 𝑄 = −𝐶−1𝑛 𝑄∗𝐶𝑛, (8)

where 𝐶𝑛 = (0𝑘×𝑘 𝐶12𝐶21 0𝑘×𝑘) (9)

satisfying 𝐶−1𝑛 = −𝐶𝑛 = 𝐶∗𝑛 , 𝐶21, 𝐶12 ∈ 𝑀𝑘 (C) , (10)

i.e., 𝐶𝑛 = (0𝑘×𝑘 𝐶12−𝐶∗12 0𝑘×𝑘) , (11)

with 𝑐𝑟,𝑠𝑐𝑟,𝑠 = 1, 𝑟 + 𝑠 = 𝑛 + 1. (12)

Then 𝑀 = 𝑀𝑄 is called a 𝐶-symmetric differential expres-
sion.

Let 𝑤 ∈ 𝐿 𝑙𝑜𝑐(𝐽) be positive a.e. on 𝐽. We consider the
Hilbert space 𝐻 = 𝐿2 (𝐽, 𝑤) (13)

with its usual inner product(𝑦, 𝑧) fl ∫
𝐽
𝑦𝑧𝑤𝑑𝑥, 𝑦, 𝑧 ∈ 𝐻. (14)

For the 𝐶-symmetry𝑀𝑄, the Green’s formula has the form∫
𝐽
{𝑀𝑦𝑧 − 𝑦𝑀𝑧} 𝑑𝑥 = [𝑦, 𝑧] (𝑏)− [𝑦, 𝑧] (𝑎) (𝑦, 𝑧 ∈ 𝐷 (𝑄)) , (15)

where [𝑦, 𝑧](𝑏) = lim𝑡󳨀→𝑏−[𝑦, 𝑧](𝑡), [𝑦, 𝑧](𝑎) = lim𝑡󳨀→𝑎+[𝑦,𝑧](𝑡) and the limits always exist and are finite. Here the skew-
symmetric sesquilinear form [⋅, ⋅]maps𝐷(𝑄) × 𝐷(𝑄) 󳨀→ C.

Every self-adjoint extension 𝑇 of the minimal operator𝑇𝑄,0 is between the minimal operator 𝑇𝑄,0 and maximal
operator 𝑇𝑄; i.e., we have𝑇𝑄,0 ⊂ 𝑇 = 𝑇∗ ⊂ 𝑇𝑄. (16)

Thus these self-adjoint operators 𝑇 are distinguished from
one another only by their domains.

Lemma 2 (Lagrange identity). Assume𝑄 ∈ 𝑍𝑛(𝐽) satisfies (8)
and let𝑀 = 𝑀𝑄 be the corresponding 𝐶-symmetric differential
expression. �en for any 𝑦, 𝑧 ∈ 𝐷(𝑄) we have𝑧𝑀𝑦 − 𝑦𝑀𝑧 = [𝑦, 𝑧]󸀠 , (17)

and [𝑦, 𝑧] = (−1)𝑘+1 𝑛−1∑
𝑟=0

𝑐𝑛−𝑟,𝑟+1𝑧[𝑛−𝑟−1]𝑦[𝑟] = (−1)𝑘+1
⋅ 𝑘∑
𝑟=1

{𝑐𝑟,𝑛−𝑟+1𝑧[𝑟−1]𝑦[𝑛−𝑟] − 𝑐𝑟,𝑛−𝑟+1𝑧[𝑛−𝑟]𝑦[𝑟−1]}= (−1)𝑘+1 (𝑍∗𝐶𝑛𝑌) ,
(18)
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where

𝑌 =(
(

𝑦[0]𝑦[1]...𝑦[𝑛−1]
)
)

,

𝑍 =(
(

𝑧[0]𝑧[1]...𝑧[𝑛−1]
)
)

,
(19)

and 𝐶𝑛 = (0𝑘×𝑘 𝐶12𝐶21 0𝑘×𝑘) (20)

is defined by (11).
In fact,

𝐶12 =(((
(

0 0 ⋅ ⋅ ⋅ 0 𝑐1,𝑛0 0 ⋅ ⋅ ⋅ 𝑐2,𝑛−1 0... ... c
... ...0 𝑐𝑘−1,𝑘+2 ⋅ ⋅ ⋅ 0 0𝑐𝑘,𝑘+1 0 ⋅ ⋅ ⋅ 0 0

)))
)

, (21)

and by (11) we have 𝐶21 = −𝐶∗12 and 𝑐𝑟,𝑠 = −𝑐𝑠,𝑟, 𝑟 + 𝑠 = 𝑛 + 1.
Proof. Set 𝑄 = (𝑞𝑟,𝑠)𝑛𝑟,𝑠=1, and 𝑄+ fl −𝐶−1𝑛 𝑄∗𝐶𝑛 = (𝑝𝑟,𝑠)𝑛𝑟,𝑠=1.
Then we infer that𝑝𝑟,𝑠 = 𝑛∑

𝑙=1

𝑐𝑙,𝑠( 𝑛∑
𝑗=1

𝑐𝑟,𝑗𝑞𝑙,𝑗) = 𝑐𝑟,𝑛−𝑟+1𝑞𝑛−𝑠+1,𝑛−𝑟+1𝑐𝑛−𝑠+1,𝑠,𝑟, 𝑠 = 1, 2, . . . , 𝑛. (22)

So for 1 ≤ 𝑟 ≤ 𝑛 − 1,𝑝𝑟,𝑟+1 = 𝑐𝑟,𝑛−𝑟+1𝑞𝑛−𝑟,𝑛−𝑟+1𝑐𝑛−𝑟,𝑟+1 (23)

is invertible a.e. on 𝐽.
Since for 2 ≤ 𝑟 + 1 < 𝑠 ≤ 𝑛, 𝑟 + 1 − 𝑠 = (𝑛 − 𝑠 + 1) + 1 −(𝑛 − 𝑟 + 1) < 0, 𝑞𝑛−𝑠+1,𝑛−𝑟+1 = 0, then𝑝𝑟,𝑠 = 𝑐𝑟,𝑛−𝑟+1𝑞𝑛−𝑠+1,𝑛−𝑟+1𝑐𝑛−𝑠+1,𝑠 = 0. (24)

This concludes that 𝑄+ ∈ 𝑍𝑛(𝐽).
Since 𝑄 ∈ 𝑍𝑛(𝐽) satisfies (8), i.e.,𝑄 = 𝑄+.
Now, let 𝑓 = −𝑐1,𝑛𝑦[𝑛]𝑄 , 𝑔 = −𝑐1,𝑛𝑧[𝑛]𝑄 , 𝑦, 𝑧 ∈ 𝑉𝑛; then, from

(4) and (6) we have 𝑌󸀠 = 𝑄𝑌 + 𝐹,𝑍󸀠 = 𝑄𝑍 + 𝐺, (25)

where

𝐹 =(00...𝑓),
𝐺 =(00...𝑔).

(26)

So from 𝑄∗𝐶𝑛 = −𝐶𝑛𝑄, we have(𝑍∗𝐶𝑛𝑌)󸀠 = (𝑍∗)󸀠 𝐶𝑛𝑌 + 𝑍∗𝐶󸀠𝑛𝑌 + 𝑍∗𝐶𝑛𝑌󸀠= (𝑍󸀠)∗ 𝐶𝑛𝑌 + 𝑍∗𝐶𝑛𝑌󸀠= (𝑄𝑍 + 𝐺)∗ 𝐶𝑛𝑌 + 𝑍∗𝐶𝑛 (𝑄𝑌 + 𝐹)= (𝑍∗𝑄∗ + 𝐺∗) 𝐶𝑛𝑌 + 𝑍∗𝐶𝑛 (𝑄𝑌 + 𝐹)= 𝑍∗ (𝑄∗𝐶𝑛 + 𝐶𝑛𝑄)𝑌 + 𝐺∗𝐶𝑛𝑌 + 𝑍∗𝐶𝑛𝐹= 𝑍∗𝐶𝑛𝐹 + 𝐺∗𝐶𝑛𝑌 = 𝑐1,𝑛𝑧[0]𝑓 − 𝑐1,𝑛𝑔𝑦[0]= −𝑧[0]𝑦[𝑛] + 𝑧[𝑛]𝑦[0]= − (−𝑖)𝑛 {𝑧[0]𝑀𝑦 −𝑀𝑧𝑦[0]} .
(27)

After integrating both sides of the above equation, we get∫𝑏
𝑎
𝑧𝑀𝑄𝑦𝑑𝑥 − ∫𝑏

𝑎
𝑦𝑀𝑄𝑧𝑑𝑥 = (−1)𝑘+1𝑍∗𝐶𝑛𝑌󵄨󵄨󵄨󵄨󵄨𝑏𝑎 . (28)

Hence from (15) we have𝑧𝑀𝑄𝑦 − 𝑦𝑀𝑄𝑧 = [𝑦, 𝑧]󸀠 , (29)

and [𝑦, 𝑧] = (−1)𝑘+1 𝑍∗𝐶𝑛𝑌. (30)

Together with some caculations we have𝑍∗𝐶𝑛𝑌 = 𝑛−1∑
𝑟=0

𝑐𝑛−𝑟,𝑟+1𝑧[𝑛−𝑟−1]𝑦[𝑟], (31)

and 𝐶𝑛 has the form (11) and 𝑐𝑟,𝑠 = −𝑐𝑠,𝑟, 𝑟 + 𝑠 = 𝑛 + 1.
Then we also have𝑍∗𝐶𝑛𝑌= 𝑘∑
𝑟=1

{𝑐𝑟,𝑛−𝑟+1𝑧[𝑟−1]𝑦[𝑛−𝑟] − 𝑐𝑟,𝑛−𝑟+1𝑧[𝑛−𝑟]𝑦[𝑟−1]} . (32)

This completes the proof.



4 Discrete Dynamics in Nature and Society

Following this we consider direct sum Hilbert space𝐻 = 𝐻1 ⊕ 𝐻2,𝐻𝑗 = 𝐿2 (𝐽𝑗, 𝑤𝑗) , 𝑤𝑗 > 0, (33)

where 𝐽𝑗 = (𝑎𝑗, 𝑏𝑗), −∞ ≤ 𝑎𝑗 < 𝑏𝑗 ≤ ∞, 𝑗 = 1, 2.
The inner product in space𝐻 is defined by(𝑦, 𝑧) = 2∑

𝑗=1

(𝑦𝑗, 𝑧𝑗)𝑗 , 𝑦 = {𝑦1, 𝑦2} , 𝑧 = {𝑧1, 𝑧2} , (34)

and (⋅, ⋅)𝑗 is the usual inner product in𝐻𝑗:(𝑦𝑗, 𝑧𝑗)𝑗 = ∫𝐽𝑗 𝑦𝑗𝑧𝑗𝑤𝑗𝑑𝑥, 𝑦1, 𝑧1 ∈ 𝐻1, 𝑦2, 𝑧2 ∈ 𝐻2. (35)

Define two differential expressions with complex-valued
coefficients by𝑀𝑗𝑦 = 𝑀𝑄𝑗 𝑦 fl 𝑖𝑛𝑦[𝑛]𝑄𝑗 on 𝐽𝑗. (36)

Let𝑀 = {𝑀1,𝑀2}; i.e.,𝑀𝑦 = {𝑀1𝑦1,𝑀2𝑦2}.
Definition 3 (see [1, 8, 16]). The two-interval maximal and
minimal domains and operators are simply the direct sums of
the corresponding one-interval domains and operators, i.e.,𝑇𝑄 = 𝑇𝑄1 ⊕ 𝑇𝑄2 ,𝑇𝑄,0 = 𝑇𝑄1 ,0 ⊕ 𝑇𝑄2 ,0, (37)

and 𝐷𝑄 = 𝐷 (𝑇𝑄) = 𝐷 (𝑇𝑄1) ⊕ 𝐷(𝑇𝑄2) ,𝐷𝑄,0 = 𝐷 (𝑇𝑄,0) = 𝐷 (𝑇𝑄1,0) ⊕ 𝐷(𝑇𝑄2 ,0) . (38)

We also have the following lemma.

Lemma 4 (see [8, 16]). In the direct sum spaces, we have𝑇∗𝑄,0 = 𝑇∗𝑄1,0 ⊕ 𝑇∗𝑄2 ,0 = 𝑇𝑄1 ⊕ 𝑇𝑄2 = 𝑇𝑄,𝑇∗𝑄 = 𝑇∗𝑄1 ⊕ 𝑇∗𝑄2 = 𝑇𝑄1,0 ⊕ 𝑇𝑄2 ,0 = 𝑇𝑄,0. (39)

�e minimal operator 𝑇𝑄,0 is a closed, symmetric, densely
defined operator in the Hilbert space H with deficiency index𝑑 given by 𝑑 = 𝑑1 + 𝑑2.

It is interesting to note that Lemma 2 extends to the two-
interval case:𝑧𝑀𝑦 − 𝑦𝑀𝑧 = [𝑦, 𝑧]󸀠 ,[𝑦, 𝑧] = 2∑

𝑗=1

[𝑦𝑗, 𝑧𝑗]𝑗 (𝑏𝑗) − [𝑦𝑗, 𝑧𝑗]𝑗 (𝑎𝑗) ,𝑦, 𝑧 ∈ 𝐻, (40)

where [𝑦𝑗, 𝑧𝑗]𝑗 = (−1)𝑘+1 (𝑍∗𝑗𝐶𝑛𝑌𝑗) ,
𝑌𝑗 =((

𝑦[0]𝑗𝑦[1]𝑗...𝑦[𝑛−1]𝑗
)
)

,

𝑍𝑗 =((
𝑧[0]𝑗𝑧[1]𝑗...𝑧[𝑛−1]𝑗

)
)

,
𝑗 = 1, 2,

(41)

and 𝐶𝑛 has the form (11).

Lemma 5. Let 𝑎𝑗 ≤ 𝛼𝑗 < 𝛽𝑗 ≤ 𝑏𝑗. �e number 𝑑𝑗 of linearly
independent solutions of𝑀𝑗𝑦 = 𝜆𝑗𝑤𝑗𝑦 on (𝛼𝑗, 𝛽𝑗) (42)

lying in 𝐿2((𝛼𝑗, 𝛽𝑗), 𝑤𝑗) is independent of 𝜆𝑗 ∈ C, provided
Im(𝜆𝑗) ̸= 0. If one endpoint of (𝛼𝑗, 𝛽𝑗) is regular and the other
is singular, then the inequalities𝑘 ≤ 𝑑𝑗 ≤ 2𝑘 = 𝑛 (43)
hold. For 𝜆 = 𝜆𝑗 ∈ R, the number of linearly independent
solutions of (42)𝑗=1 lying in 𝐿2((𝛼1, 𝛽1), 𝑤1) is less than or equal
to𝑑1 and of (42)𝑗=2 lying in𝐿2((𝛼2, 𝛽2), 𝑤2) is less than or equal
to 𝑑2.

Let 𝑐𝑗 ∈ 𝐽𝑗 = (𝑎𝑗, 𝑏𝑗). If𝑑𝑗1 is the deficiency index on (𝑎𝑗 , 𝑐𝑗),𝑑𝑗2 is the deficiency index on (𝑐𝑗, 𝑏𝑗) and 𝑑𝑗 is the deficiency
index on (𝑎𝑗, 𝑏𝑗), then𝑑𝑗 = 𝑑𝑗1 + 𝑑𝑗2 − 𝑛, 𝑗 = 1, 2. (44)
Proof. See [15, 16].

W. N. Everitt and A. Zettl extend the well-known single
interval GKN characterization of all self-adjoint extensions
to the two-interval case for Lagrange symmetric differential
expressions in [12], and it is obvious that this extended
GKN theorem also can be established for two-interval 𝐶-
symmetric differential expression. It is expressed as follows.

Lemma 6 (GKN). Let 𝑇𝑄,0 be the two-interval minimal
operator in 𝐻 and let 𝑑 be the deficiency index of 𝑇𝑄,0.�en
a linear submanifold 𝐷(𝑇) of 𝐷𝑄 is the domain of a self-
adjoint extension 𝑇 of 𝑇𝑄,0 if and only if there exist vectors𝑤1, 𝑤2, ⋅ ⋅ ⋅, 𝑤𝑑 in𝐷𝑄 satisfying the following conditions:

(i) 𝑤1, 𝑤2, ⋅ ⋅ ⋅, 𝑤𝑑 are linearly independent modulo𝐷𝑄,0;
(ii) [𝑤𝑖, 𝑤𝑙] = [𝑤𝑖1, 𝑤𝑙1]1(𝑏1) − [𝑤𝑖1, 𝑤𝑙1]1(𝑎1) + [𝑤𝑖2,𝑤𝑙2]2(𝑏2) − [𝑤𝑖2, 𝑤𝑙2]2(𝑎2) = 0, 𝑖, 𝑙 = 1, ⋅ ⋅ ⋅, 𝑑;
(iii)𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 : [𝑦, 𝑤𝑙] = [𝑦1, 𝑤𝑙1]1(𝑏1)−[𝑦1, 𝑤𝑙1]1(𝑎1)+ [𝑦2, 𝑤𝑙2]2(𝑏2)− [𝑦2, 𝑤𝑙2]2(𝑎2) = 0, 𝑙 = 1, ⋅ ⋅ ⋅, 𝑑}.
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3. Characterization of All Self-Adjoint
Domains for Singular Two-Interval
Problems

In this section we assume that𝑀 = {𝑀𝑄1 ,𝑀𝑄2} are generated
by 𝑄𝑗 ∈ 𝑍𝑛(𝑗)(𝐽𝑗), 𝑗 = 1, 2 satisfying (8), 𝑛 = 2𝑘, 𝑘 ≥ 1, the
endpoints 𝑎𝑗 and 𝑏𝑗 are singular. We give the decomposition
of the maximal domain and the characterization of all self-
adjoint extensions of the two-interval minimal operator.

First we have the following theorem.

Theorem 7. Let 𝑀𝑗 be a 𝐶-symmetric differential expression
on (𝑎𝑗, 𝑏𝑗) and let 𝑐𝑗 ∈ (𝑎𝑗, 𝑏𝑗). Consider the equations𝑀𝑗𝑦 = 𝜆𝑗𝑤𝑗𝑦, 𝑗 = 1, 2. (45)

Assume that for some 𝜆 = 𝜆𝑗1 ∈ R (45) has 𝑑𝑗1 linearly
independent solutions 𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅, 𝑢𝑗𝑑𝑗1 on (𝑎𝑗, 𝑐𝑗) which lie in𝐿2((𝑎𝑗, 𝑐𝑗), 𝑤𝑗) and that for some 𝜆 = 𝜆𝑗2 ∈ R (45) has 𝑑𝑗2
linearly independent solutions V𝑗1, V𝑗2, ⋅ ⋅ ⋅, V𝑗𝑑𝑗2 on (𝑐𝑗, 𝑏𝑗)which
lie in 𝐿2((𝑐𝑗, 𝑏𝑗), 𝑤𝑗). �en, we have the following:

(1) �e solutions 𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅, 𝑢𝑗𝑑𝑗1 can be extended to 𝐽𝑗 =(𝑎𝑗, 𝑏𝑗) such that the extended functions, also denoted
by 𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅, 𝑢𝑗𝑑𝑗1 , satisfy 𝑢𝑗𝑙 ∈ 𝐷𝑄𝑗(𝑎𝑗, 𝑏𝑗) and 𝑢𝑗𝑙 is
identically zero in a le� neighborhood of 𝑏𝑗, 𝑙 = 1, ⋅ ⋅ ⋅ ,𝑑𝑗1. �e solutions V𝑗1, V𝑗2, ⋅ ⋅ ⋅, V𝑗𝑑𝑗2 can be extended to(𝑎𝑗, 𝑏𝑗) such that the extended functions, also denoted
by V𝑗1, V𝑗2, ⋅ ⋅ ⋅, V𝑗𝑑𝑗2 , satisfy V𝑗𝑙 ∈ 𝐷𝑄𝑗(𝑎𝑗, 𝑏𝑗) and V𝑗𝑙 is
identically zero in a right neighborhood of 𝑎𝑗, 𝑙 = 1, ⋅ ⋅ ⋅ ,𝑑𝑗2.

(2) For 𝑚𝑗 = 2𝑑𝑗1 − 2𝑘 the solutions 𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅, 𝑢𝑗𝑑𝑗1 on(𝑎𝑗, 𝑐𝑗) can be ordered such that the 𝑚𝑗 × 𝑚𝑗 matrix𝑈𝑗 = ([𝑢𝑗𝑙1, 𝑢𝑗𝑙2]𝑗(𝑐𝑗)), 1 ≤ 𝑙1, 𝑙2 ≤ 𝑚𝑗, is given by𝑈𝑗 = (−1)𝑘+1 𝐶𝑇𝑚𝑗 , 𝑗 = 1, 2. (46)

For 𝑛𝑗 = 2𝑑𝑗2 − 2𝑘 the solutions V𝑗1, V𝑗2, ⋅ ⋅ ⋅, V𝑗𝑑𝑗2 on(𝑐𝑗, 𝑏𝑗) can be ordered such that the 𝑛𝑗 ×𝑛𝑗 matrix 𝑉𝑗 =([V𝑗𝑙1 , V𝑗𝑙2]𝑗(𝑐𝑗)), 1 ≤ 𝑙1, 𝑙2 ≤ 𝑛𝑗, is given by𝑉𝑗 = (−1)𝑘+1 𝐶𝑇𝑛𝑗 , 𝑗 = 1, 2. (47)

(3) For every 𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 we have[𝑦𝑗, 𝑢𝑗𝑙]𝑗 (𝑎𝑗) = 0, for 𝑙 = 𝑚𝑗 + 1, ⋅ ⋅ ⋅, 𝑑𝑗1, (48)[𝑦𝑗, V𝑗𝑙]𝑗 (𝑏𝑗) = 0, for 𝑙 = 𝑛𝑗 + 1, ⋅ ⋅ ⋅, 𝑑𝑗2. (49)

(4) For 1 ≤ 𝑙1, 𝑙2 ≤ 𝑑𝑗1,we have[𝑢𝑗𝑙1 , 𝑢𝑗𝑙2]𝑗 (𝑎𝑗) = [𝑢𝑗𝑙1 , 𝑢𝑗𝑙2]𝑗 (𝑐𝑗) . (50)

For 1 ≤ 𝑙1, 𝑙2 ≤ 𝑑𝑗2, we have[V𝑗𝑙1 , V𝑗𝑙2]𝑗 (𝑏𝑗) = [V𝑗𝑙1 , V𝑗𝑙2]𝑗 (𝑐𝑗) . (51)

Proof. By Naimark Patching Lemma the solutions 𝑢𝑗1, 𝑢𝑗2,⋅ ⋅ ⋅ , 𝑢𝑗𝑑𝑗1 can be “patched” at 𝑐𝑗 to obtain maximal domain
functions in 𝐷𝑄𝑗(𝑎𝑗, 𝑏𝑗). By another application of Naimark
Patching Lemma these extended functions can be modified
to be identically zero in a left neighborhood of 𝑏𝑗, 𝑗 = 1, 2.
By using the similar method, we can proof the latter part of
(1). Parts (2) and (3) are established by Corollary 6 in [13] for
complex case. Part (4) follows fromCorollary 3.8 in [15].

Remark 8. We call that the solutions 𝑢𝑗𝑚𝑗+1, ⋅ ⋅ ⋅, 𝑢𝑗𝑑𝑗1 and
V𝑗𝑛𝑗+1, ⋅ ⋅ ⋅, V𝑗𝑑𝑗2 are of LP (limit-point) type at 𝑎𝑗 and 𝑏𝑗, respec-
tively, which satisfy conditions (3) of Theorem 7. The LP
solutions play an important role in studies on distribution of
continuous spectrum (see [15]). These solutions play no role
in the formulation of the self-adjoint boundary conditions.
But the LC (limit-circle) case requires boundary conditions
to determine self-adjoint extensions. For this reason we
call 𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅ , 𝑢𝑗𝑚𝑗 LC solutions at 𝑎𝑗, V𝑗1, V𝑗2, ⋅ ⋅ ⋅ , V𝑗𝑛𝑗 LC
solutions at 𝑏𝑗.

Next we give the decomposition of the maximal domain
and the characterization of all self-adjoint domains.

Theorem 9. Let the hypotheses and notations of �eorem 7
hold. �en𝐷𝑄𝑗 (𝑎𝑗, 𝑏𝑗) = 𝐷𝑄𝑗,0 (𝑎𝑗, 𝑏𝑗)⊕ 𝑠𝑝𝑎𝑛 {𝑢𝑗1, 𝑢𝑗2, ⋅ ⋅ ⋅, 𝑢𝑗𝑚𝑗}⊕ 𝑠𝑝𝑎𝑛 {V𝑗1, V𝑗2, ⋅ ⋅ ⋅, V𝑗𝑛𝑗} . (52)

Proof. Themethod of this proof is similar to the citation [16].

According to Theorems 7 and 9 we have our main result
as follows.

Theorem 10. Let the hypotheses and notations of �eorem 7
hold. �en a linear submanifold 𝐷(𝑇) ⊂ 𝐷𝑄 is the domain
of a self-adjoint extension 𝑇 of two-interval minimal operator𝑇𝑄,0 if and only if there exist complex 𝑑 × 𝑚𝑗 matrices 𝐴𝑗
and complex 𝑑 × 𝑛𝑗 matrices 𝐵𝑗 such that the following three
conditions hold:

(1) rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) = 𝑑;
(2) ∑2𝑗=1{𝐴𝑗𝐶𝑚𝑗𝐴∗𝑗 − 𝐵𝑗𝐶𝑛𝑗𝐵∗𝑗 } = 0;
(3) 𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 :

2∑
𝑗=1

{{{{{{{{{{{𝐴𝑗(
[𝑦𝑗, 𝑢𝑗1]𝑗 (𝑎𝑗)...[𝑦𝑗, 𝑢𝑗𝑚𝑗]𝑗 (𝑎𝑗))

+ 𝐵𝑗([𝑦𝑗, V𝑗1]𝑗 (𝑏𝑗)...[𝑦𝑗, V𝑗𝑛𝑗]𝑗 (𝑏𝑗))
}}}}}}}}}}} = (0...0)

}}}}}}}}} ,
(53)
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where (𝐴1, 𝐵1, 𝐴2, 𝐵2) denotes the 𝑑 by 4𝑑 matrix whose first𝑑 columns are those of 𝐴1, the second 𝑑 columns are those of𝐵1, etc. And 𝐶𝑚𝑗 , 𝐶𝑛𝑗 are complex matrices of the form (11).

Proof (necessity). Let 𝐷(𝑇) be the domain of a self-adjoint
extension 𝑇 of 𝑇𝑄,0. By Lemma 6 there exist 𝑤1 ={𝑤11, 𝑤12}, ⋅ ⋅ ⋅ , 𝑤𝑑 = {𝑤𝑑1, 𝑤𝑑2} ∈ 𝐷𝑄 satisfying conditions
(i), (ii), (iii) of Lemma 6. ByTheorem 9, each 𝑤𝑖1 and 𝑤𝑖2 can
be uniquely written as

𝑤𝑖1 = 𝑦𝑖1 + 𝑚1∑
𝑙=1

𝑎𝑖𝑙𝑢1𝑙 + 𝑛1∑
𝑙=1

𝑏𝑖𝑙V1𝑙,
𝑤𝑖2 = 𝑦𝑖2 + 𝑚2∑

𝑙=1

𝑐𝑖𝑙𝑢2𝑙 + 𝑛2∑
𝑙=1

𝑑𝑖𝑙V2𝑙, (54)

where 𝑦𝑖1 ∈ 𝐷𝑄1,0, 𝑦𝑖2 ∈ 𝐷𝑄2,0, 𝑎𝑖𝑙, 𝑏𝑖𝑙, 𝑐𝑖𝑙, 𝑑𝑖𝑙 ∈ C, 𝑖 =1, 2, . . . , 𝑑.
Let 𝐴1 = − (𝑎𝑖𝑙)𝑑×𝑚1 ,𝐵1 = (𝑏𝑖𝑙)𝑑×𝑛1 ,𝐴2 = − (𝑐𝑖𝑙)𝑑×𝑚2 ,𝐵2 = (𝑑𝑖𝑙)𝑑×𝑛2 ,

(55)

Then

([𝑦1, 𝑤11]1 (𝑎1)...[𝑦1, 𝑤𝑑1]1 (𝑎1)) =(((
(

[𝑦1, 𝑚1∑
𝑙=1

𝑎1𝑙𝑢1𝑙]
1

(𝑎1)...[𝑦1, 𝑚1∑
𝑙=1

𝑎𝑑𝑙𝑢1𝑙]
1

(𝑎1)
)))
)

= −𝐴1( [𝑦1, 𝑢11]1 (𝑎1)...[𝑦1, 𝑢1𝑚1]1 (𝑎1)) ,
([𝑦1, 𝑤11]1 (𝑏1)...[𝑦1, 𝑤𝑑1]1 (𝑏1)) =(((

(
[𝑦1, 𝑛1∑
𝑙=1

𝑏1𝑙V1𝑙]
1

(𝑏1)...[𝑦1, 𝑛1∑
𝑙=1

𝑏𝑑𝑙V1𝑙]
1

(𝑏1)
)))
)

= 𝐵1([𝑦1, V11]1 (𝑏1)...[𝑦1, V1𝑛1]1 (𝑏1)) .

(56)

Similarly,

([𝑦2, 𝑤12]2 (𝑎2)...[𝑦2, 𝑤𝑑2]2 (𝑎2)) = −𝐴2( [𝑦2, 𝑢21]2 (𝑎2)...[𝑦2, 𝑢2𝑚2]2 (𝑎2)) ,
([𝑦2, 𝑤12]2 (𝑏2)...[𝑦2, 𝑤𝑑2]2 (𝑏2)) = 𝐵2([𝑦2, V21]2 (𝑏2)...[𝑦2, V2𝑛2]2 (𝑏2)) . (57)

Hence the boundary condition (iii) of Lemma 6 is equivalent
to part (3) of Theorem 10.

Next we prove that 𝐴1, 𝐵1, 𝐴2, and 𝐵2 satisfy conditions
(1) and (2) of Theorem 10.

Clearly rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) ≤ 𝑑. If rank(𝐴1 , 𝐵1, 𝐴2,𝐵2) < 𝑑, then there exist constants ℎ1, ⋅ ⋅ ⋅ , ℎ𝑑, not all zero,
such that (ℎ1, . . . , ℎ𝑑) (𝐴1, 𝐵1, 𝐴2, 𝐵2) = 0. (58)

Let 𝑓 = {𝑓1, 𝑓2} = ∑𝑑𝑖=1 ℎ𝑖𝑤𝑖, so 𝑓1 = ∑𝑑𝑖=1 ℎ𝑖𝑤𝑖1, 𝑓2 =∑𝑑𝑖=1 ℎ𝑖𝑤𝑖2; from (54), we obtain𝑓1 = 𝑑∑
𝑖=1

ℎ𝑖𝑦𝑖1 + 𝑑∑
𝑖=1

𝑚1∑
𝑙=1

ℎ𝑖𝑎𝑖𝑙𝑢1𝑙 + 𝑑∑
𝑖=1

𝑛1∑
𝑙=1

ℎ𝑖𝑏𝑖𝑙V1𝑙,
𝑓2 = 𝑑∑
𝑖=1

ℎ𝑖𝑦𝑖2 + 𝑑∑
𝑖=1

𝑚2∑
𝑙=1

ℎ𝑖𝑐𝑖𝑙𝑢2𝑙 + 𝑑∑
𝑖=1

𝑛2∑
𝑙=1

ℎ𝑖𝑑𝑖𝑙V2𝑙. (59)

By (58), we have (ℎ1 ⋅ ⋅ ⋅ ℎ𝑑)𝐴1 = (ℎ1 ⋅ ⋅ ⋅ ℎ𝑑)𝐵1 = (ℎ1 ⋅ ⋅ ⋅ℎ𝑑)𝐴2 = (ℎ1 ⋅ ⋅ ⋅ ℎ𝑑)𝐵2 = 0. Hence𝑓1 = 𝑑∑
𝑖=1

ℎ𝑖𝑦𝑖1,
𝑓2 = 𝑑∑
𝑖=1

ℎ𝑖𝑦i2. (60)

So we have 𝑓1 ∈ 𝐷𝑄1,0 and 𝑓2 ∈ 𝐷𝑄2,0; thus, 𝑓 = {𝑓1,𝑓2} ∈ 𝐷𝑄,0. This contradicts the fact that the functions 𝑤1,𝑤2, . . . , 𝑤𝑑 are linearly independent modulo 𝐷𝑄,0. Therefore
rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) = 𝑑.

Now we verify part (2). By (54), we have[𝑤𝑖1, 𝑤𝑙1]1 (𝑎1) = [𝑚1∑
𝑘=1

𝑎𝑖𝑘𝑢1𝑘, 𝑚1∑
𝑠=1

𝑎𝑙𝑠𝑢1𝑠]
1

(𝑎1)
= 𝑚1∑
𝑘=1

𝑚1∑
𝑠=1

𝑎𝑖𝑘𝑎𝑙𝑠 [𝑢1𝑘, 𝑢1𝑠]1 (𝑎1) ,(𝑖, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑑) .
(61)

So ([𝑤𝑖1, 𝑤𝑙1]1 (𝑎1))𝑇𝑑×𝑑 = 𝐴1𝑈𝑇1 𝐴∗1= (−1)𝑘+1 𝐴1𝐶𝑚1𝐴∗1, (62)

where the matrix 𝑈1 is defined inTheorem 7.
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Similarly, we have([𝑤𝑖1, 𝑤𝑙1]1 (𝑏1))𝑇𝑑×𝑑 = 𝐵1𝑉𝑇1 𝐵∗1 = (−1)𝑘+1 𝐵1𝐶𝑛1𝐵∗1 ,([𝑤𝑖2, 𝑤𝑙2]2 (𝑎2))𝑇𝑑×𝑑 = 𝐴2𝑈𝑇2 𝐴∗2= (−1)𝑘+1𝐴2𝐶𝑚2𝐴∗2,([𝑤𝑖2, 𝑤𝑙2]2 (𝑏2))𝑇𝑑×𝑑 = 𝐵2𝑉𝑇2 𝐵∗2 = (−1)𝑘+1 𝐵2𝐶𝑛2𝐵∗2 .
(63)

Hence condition (ii) of Lemma 6 becomes𝐴1𝐶𝑚1𝐴∗1 − 𝐵1𝐶𝑛1𝐵∗1 + 𝐴2𝐶𝑚2𝐴∗2 − 𝐵2𝐶𝑛2𝐵∗2 = 0. (64)

(sufficiency). Let the matrices 𝐴1, 𝐵1, 𝐴2, and 𝐵2 satisfy
conditions (1) and (2) of Theorem 10. We need to prove that𝐷(𝑇) defined by (3) is the domain of a self-adjoint extension𝑇 of 𝑇𝑄,0.

Let 𝐴1 = − (𝑎𝑖𝑙)𝑑×𝑚1 ,𝐵1 = (𝑏𝑖𝑙)𝑑×𝑛1 ,𝐴2 = − (𝑐𝑖𝑙)𝑑×𝑚2 ,𝐵2 = (𝑑𝑖𝑙)𝑑×𝑛2 ,𝑤𝑖1 = 𝑚1∑
𝑙=1

𝑎𝑖𝑙𝑢1𝑙 + 𝑛1∑
𝑙=1

𝑏𝑖𝑙V1𝑙,
𝑤𝑖2 = 𝑚2∑

𝑙=1

𝑐𝑖𝑙𝑢2𝑙 + 𝑛2∑
𝑙=1

𝑑𝑖𝑙V2𝑙.
(65)

Then for 𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 we have
− 𝐴1( [𝑦1, 𝑢11]1 (𝑎1)...[𝑦1, 𝑢1𝑚1]1 (𝑎1))
=(((
(

[𝑦1, 𝑚1∑
𝑙=1

𝑎1𝑙𝑢1𝑙]
1

(𝑎1)...[𝑦1, 𝑚1∑
𝑙=1

𝑎𝑑𝑙𝑢1𝑙]
1

(𝑎1)
)))
)

=([𝑦1, 𝑤11]1 (𝑎1)...[𝑦1, 𝑤𝑑1]1 (𝑎1)) ,
𝐵1([𝑦1, V11]1 (𝑏1)...[𝑦1, V1𝑛1]1 (𝑏1))

=(((
(

[𝑦1, 𝑛1∑
𝑙=1

𝑏1𝑙V1𝑙]
1

(𝑏1)...[𝑦1, 𝑛1∑
𝑙=1

𝑏𝑑𝑙V1𝑙]
1

(𝑏1)
)))
)

=([𝑦1, 𝑤11]1 (𝑏1)...[𝑦1, 𝑤𝑑1]1 (𝑏1)) .
(66)

Similarly, we have

−𝐴2( [𝑦2, 𝑢21]2 (𝑎2)...[𝑦2, 𝑢2𝑚2]2 (𝑎2)) =([𝑦2, 𝑤12]2 (𝑎2)...[𝑦2, 𝑤𝑑2]2 (𝑎2)) ,
𝐵2([𝑦2, V21]2 (𝑏2)...[𝑦2, 𝑧2𝑛2]2 (𝑏2)) =([𝑦2, 𝑤12]2 (𝑏2)...[𝑦2, 𝑤𝑑2]2 (𝑏2)) . (67)

Therefore the boundary condition (3) inTheorem 10 becomes
the boundary condition (iii) in Lemma 6; i.e.,[𝑦1, 𝑤𝑖1]1 (𝑏1) − [𝑦1, 𝑤𝑖1]1 (𝑎1) + [𝑦2, 𝑤𝑖2]2 (𝑏2)− [𝑦2, 𝑤𝑖2]2 (𝑎2) = 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑑. (68)

It remains to show that 𝑤𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑑 satisfy conditions
(i) and (ii) of Lemma 6.

Condition (i) holds. If not, then there exist constants𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑑, not all zero, such that𝛾 = 𝑑∑
𝑖=1

𝑐𝑖𝑤𝑖 ∈ 𝐷𝑄,0, (69)

i.e., 𝛾1 = 𝑑∑
𝑖=1

𝑐𝑖𝑤𝑖1 ∈ 𝐷𝑄1,0,
𝛾2 = 𝑑∑
𝑖=1

𝑐𝑖𝑤𝑖2 ∈ 𝐷𝑄2,0. (70)

Hence we have [𝛾1, 𝑦1]1(𝑎1) = [𝛾1, 𝑦1]1(𝑏1) = [𝛾2, 𝑦2]2(𝑎2) =[𝛾2, 𝑦2]2(𝑏2) = 0, for any 𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄. Using the
notation 𝑈1 fromTheorem 7,(0 ⋅ ⋅ ⋅ 0)= ([ 𝑑∑

𝑙=1

𝑐𝑙𝑤𝑙1, 𝑢11]
1

(𝑎1) ⋅ ⋅ ⋅ [ 𝑑∑
𝑙=1

𝑐𝑙𝑤𝑙1, 𝑢1𝑚1]
1

(𝑎1))= (𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑) (𝑎𝑖𝑙)𝑑×𝑚1 𝑈1.
(71)

Since 𝑈1 is nonsingular, we have (𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑)𝐴1 = 0.
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Similarly, we have (𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑)𝐵1 = 0, (𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑)𝐴2 = 0, and(𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑)𝐵2 = 0. Hence(𝑐1 ⋅ ⋅ ⋅ 𝑐𝑑) (A1, 𝐵1, 𝐴2, 𝐵2) = 0. (72)

This contradicts the fact that rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) = 𝑑.
Next we show that (ii) holds. We have[𝑤𝑖1, 𝑤𝑙1]1 (𝑎1) = [𝑚1∑

𝑠=1

𝑎𝑖𝑠𝑢1𝑠, 𝑚1∑
𝑘=1

𝑎𝑙𝑘𝑢1𝑘]
1

(𝑎1)
= 𝑚1∑
𝑠=1

𝑚1∑
𝑘=1

𝑎𝑖𝑠𝑎𝑙𝑘 [𝑢1𝑠, 𝑢1𝑘]1 (𝑎1) . (73)

FromTheorem 7 we get([𝑤𝑖1, 𝑤𝑙1]1 (𝑎1))𝑇𝑑×𝑑 = 𝐴1𝑈𝑇1 𝐴∗1= (−1)𝑘+1𝐴1𝐶𝑚1𝐴∗1. (74)

Similarly,([𝑤𝑖1, 𝑤𝑙1]1 (𝑏1))𝑇𝑑×𝑑 = (−1)𝑘+1 𝐵1𝐶𝑛1𝐵∗1 ,([𝑤𝑖2, 𝑤𝑙2]2 (𝑎2))𝑇𝑑×𝑑 = (−1)𝑘+1𝐴2𝐶𝑚2𝐴∗2,([𝑤𝑖2, 𝑤𝑙2]2 (𝑏2))𝑇𝑑×𝑑 = (−1)𝑘+1 𝐵2𝐶𝑛2𝐵∗2 . (75)

Therefore[𝑤𝑖, 𝑤𝑙]𝑇𝑑×𝑑 = ([𝑤𝑖1, 𝑤𝑙1]1 (𝑏1) − [𝑤𝑖1, 𝑤𝑙1]1 (𝑎1)+ [𝑤𝑖2, 𝑤𝑙2]2 (𝑏2) − [𝑤𝑖2, 𝑤𝑙2]2 (𝑎2))𝑇 = (−1)𝑘+1⋅ 𝐵1𝐶𝑛1𝐵∗1 − (−1)𝑘+1 𝐴1𝐶𝑚1𝐴∗1 + (−1)𝑘+1 𝐵2𝐶𝑛2𝐵∗2− (−1)𝑘+1𝐴2𝐶𝑚2𝐴∗2 = 0.
(76)

By Lemma 6, we conclude that 𝐷(𝑇) is a self-adjoint
domain.

4. Special Case

InTheorem 10 it is assumed that all four endpoints𝑎1 , 𝑏1, 𝑎2, 𝑏2
are singular. It can be specialized to the results when at least
one endpoint is regular. We state several cases here for the
convenience of the reader.

Theorem 11. Let the hypotheses and notations of �eorem 7
hold and assume that the endpoints 𝑏1 and 𝑏2 are regular. �en𝑛1 = 𝑛2 = 𝑛 and 𝑑 = 𝑑11 + 𝑑21. �en a linear submanifold𝐷(𝑇) ⊂ 𝐷𝑄 is the domain of a self-adjoint extension 𝑇 of 𝑇𝑄,0
if and only if there exist a complex 𝑑 × 𝑚1 matrix 𝐴1 and a
complex 𝑑 × 𝑛 matrix 𝐵1 and a complex 𝑑 × 𝑚2 matrix 𝐴2
and a complex 𝑑 × 𝑛 matrix 𝐵2 such that the following three
conditions hold:

(1) rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) = 𝑑;
(2) 𝐴1𝐶𝑚1𝐴∗1 + 𝐴2𝐶𝑚2𝐴∗2 = 𝐵1𝐶𝑛𝐵∗1 + 𝐵2𝐶𝑛𝐵∗2 ;

(3) 𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄:
𝐴1( [𝑦1, 𝑢11]1 (𝑎1)...[𝑦1, 𝑢1𝑚1]1 (𝑎1)) + 𝐵1( 𝑦1 (𝑏1)...𝑦[𝑛−1]1 (𝑏1))

+ 𝐴2( [𝑦2, 𝑢21]2 (𝑎2)...[𝑦2, 𝑢2𝑚2]2 (𝑎2))
+ 𝐵2( 𝑦2 (𝑏2)...𝑦[𝑛−1]2 (𝑏2)) = (0...0)

}}}}}}}}} .
(77)

Proof. Since𝑀𝑗 are regular at 𝑏𝑗, for any 𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄
the limits 𝑦[𝑠]𝑗 (𝑏𝑗) = lim

𝑡󳨀→𝑏−𝑗

𝑦[𝑠]𝑗 (𝑡) , 𝑗 = 1, 2, (78)

exist and are finite for 𝑠 = 0, 1, . . . , 𝑛 − 1.
When 𝑑12 = 𝑑22 = 𝑛, for matrices 𝐵1, 𝐵2 determined by

Theorem 10, we let 𝐵1 = (−1)𝑘 𝑅∗1𝐶𝑛,𝐵2 = (−1)𝑘 𝑅∗2𝐶𝑛, (79)

where

𝑅∗𝑗 = (𝑤1𝑗 ⋅ ⋅ ⋅ 𝑤[𝑛−1]1𝑗⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑤𝑑𝑗 ⋅ ⋅ ⋅ 𝑤[𝑛−1]𝑑𝑗 ), 𝑗 = 1, 2. (80)

Then we have

([𝑦𝑗, 𝑤𝑙𝑗]𝑗 (𝑏𝑗))𝑑×1 = (−1)𝑘+1 𝑅∗1𝐶𝑛( 𝑦𝑗 (𝑏𝑗)...𝑦[𝑛−1]𝑗 (𝑏𝑗)) ,
𝑗 = 1, 2,([𝑤𝑖1, 𝑤𝑙1]1 (𝑏1))𝑇𝑑×𝑑 = (−1)𝑘+1 𝑅∗1𝐶𝑛𝑅1= (−1)𝑘+1 𝑅∗1𝐶𝑛𝐶−1𝑛 𝐶𝑛𝑅1= (−1)𝑘+1 (𝑅∗1𝐶𝑛) (−𝐶𝑛)𝐶𝑛𝑅1 = (−1)𝑘+1 𝐵1𝐶𝑛𝐵∗1 ,

(81)

and ([𝑤𝑖2, 𝑤𝑙2]2 (𝑏2))𝑇𝑑×𝑑 = (−1)𝑘+1 𝐵2𝐶𝑛𝐵∗2 . (82)

So byTheorem 10, we may complete the proof.
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Remark 12. In the minimal deficiency case 𝑑11 = 𝑘,𝑚1 =0, 𝑑21 = 𝑘,𝑚2 = 0 the terms involving 𝐴1 and 𝐴2 in (77)
drop out andTheorem 11 reduces to the self-adjoint boundary
conditions at the regular endpoints 𝑏1 and 𝑏2:
𝐵1( 𝑦1 (𝑏1)...𝑦[𝑛−1]1 (𝑏1)) + 𝐵2( 𝑦2 (𝑏2)...𝑦[𝑛−1]2 (𝑏2)) = (0...0) , (83)

where the 𝑛 × 𝑛 complex matrices 𝐵1 and 𝐵2 satisfy
rank(𝐵1, 𝐵2) = 𝑛 and 𝐵1𝐶𝑛𝐵∗1 + 𝐵2𝐶𝑛𝐵∗2 = 0. In this case
there are no conditions required or allowed at the endpoints𝑎1 and 𝑎2.
Theorem 13. Let 𝑀𝑗 be two 𝐶-symmetric differential expres-
sions of order 𝑛 = 2𝑘 on (𝑎𝑗, 𝑏𝑗), 𝑗 = 1, 2 and 𝑤𝑗 a positive
function in 𝐿(𝑎𝑗, 𝑏𝑗) and assume that each endpoint is regular.
�en a linear submanifold 𝐷(𝑇) of 𝐷𝑄 is the domain of a self-
adjoint extension 𝑇 of 𝑇𝑄,0 if and only if there exist a complex2𝑛×𝑛matrix𝐴1 and a complex 2𝑛×𝑛matrix 𝐵1 and a complex2𝑛×𝑛matrix 𝐴2 and a complex 2𝑛×𝑛matrix 𝐵2 such that the
following three conditions hold:

(1) rank(𝐴1 , 𝐵1, 𝐴2, 𝐵2) = 2𝑛;
(2) 𝐴1𝐶𝑛𝐴∗1 − 𝐵1𝐶𝑛𝐵∗1 + 𝐴2𝐶𝑛𝐴∗2 − 𝐵2𝐶𝑛𝐵∗2 = 0;
(3) 𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄:
𝐴1( 𝑦1 (𝑎1)...𝑦[𝑛−1]1 (𝑎1)) + 𝐵1( 𝑦1 (𝑏1)...𝑦[𝑛−1]1 (𝑏1))

+ 𝐴2( 𝑦2 (𝑎2)...𝑦[𝑛−1]2 (𝑎2)) + 𝐵2( 𝑦2 (𝑏2)...𝑦[𝑛−1]2 (𝑏2))
= (0...0)

}}}}}}}}} .
(84)

Proof. In this case 𝑑 = 𝑑1+𝑑2 = 𝑑11 +𝑑12−𝑛+𝑑21+𝑑22−𝑛 =𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 = 2𝑛. And for any 𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 the
limits 𝑦[𝑠]𝑗 (𝑎𝑗) = lim

𝑡󳨀→𝑎+
𝑗

𝑦[𝑠]𝑗 (𝑡) ;𝑦[𝑠]𝑗 (𝑏𝑗) = lim
𝑡󳨀→𝑏−
𝑗

𝑦[𝑠]𝑗 (𝑡) ,𝑗 = 1, 2, (85)

exist and are finite for 𝑠 = 0, 1, . . . , 𝑛 − 1.
From Lagrange identity in two-interval case (40) we have∫𝑏

𝑎
𝑧𝑀𝑦𝑑𝑥 − ∫𝑏

𝑎
𝑀𝑧𝑦𝑑𝑥 = [𝑦, 𝑧]𝑏𝑎 = 0, (86)

where[𝑦, 𝑧]𝑏𝑎 = 2∑
𝑗=1

[𝑦𝑗, 𝑧𝑗]𝑗 (𝑏𝑗) − [𝑦𝑗, 𝑧𝑗]𝑗 (𝑎𝑗)
= 2∑
𝑗=1

{𝑍∗𝑗 (𝑏𝑗)𝐶𝑛𝑌𝑗 (𝑏𝑗) − 𝑍∗𝑗 (𝑎𝑗) 𝐶𝑛𝑌𝑗 (𝑎𝑗)} . (87)

Then𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄 : 𝐴1𝑌1 (𝑎1) + 𝐵1𝑌1 (𝑏1)+ 𝐴2𝑌2 (𝑎2) + 𝐵2𝑌2 (𝑏2) = 0} (88)

is a self-adjoint domain if and only if𝐴1𝐶𝑛𝐴∗1 + 𝐴2𝐶𝑛𝐴∗2 = 𝐵1𝐶𝑛𝐵∗1 + 𝐵2𝐶𝑛𝐵∗2 . (89)

It is worthy noting that if we set 𝐶𝑛 = 𝐸𝑛, where𝐸𝑛 = ((−1)𝑟 𝛿𝑟,𝑛+1−𝑠)𝑛𝑟,𝑠=1 , (90)

then our 𝐶-symmetric condition can be reduced to Lagrange
symmetric case; therefore, we have the following well-known
chracterization.

Corollary 14 (see [16]). Let 𝑀𝑗 be two Lagrange symmetric
differential expressions of order 𝑛 = 2𝑘 on (𝑎𝑗, 𝑏𝑗), 𝑗 = 1, 2, and
assume that each endpoint is regular.�en a linear submanifold𝐷(𝑇) of 𝐷𝑄 is the domain of a self-adjoint extension 𝑇 of 𝑇𝑄,0
if and only if there exist a complex 2𝑛 × 𝑛 matrix 𝐴1 and a
complex 2𝑛 × 𝑛 matrix 𝐴2 and a complex 2𝑛 × 𝑛 matrix 𝐴3
and a complex 2𝑛 × 𝑛 matrix 𝐴4 such that the following three
conditions hold:

(1) rank(𝐴1 , 𝐴2, 𝐴3, 𝐴4) = 2𝑛;
(2) ∑4𝑘=1(−1)𝑘+1𝐴𝑘𝐸𝑛𝐴∗𝑘 = 0;
(3) 𝐷(𝑇) = {𝑦 = {𝑦1, 𝑦2} ∈ 𝐷𝑄:
𝐴1( 𝑦1 (𝑎1)...𝑦[𝑛−1]1 (𝑎1)) + 𝐴2( 𝑦1 (𝑏1)...𝑦[𝑛−1]1 (𝑏1))

+ 𝐴3( 𝑦2 (𝑎2)...𝑦[𝑛−1]2 (𝑎2)) + 𝐴4( 𝑦2 (𝑏2)...𝑦[𝑛−1]2 (𝑏2))
= (0...0)

}}}}}}}}} .
(91)

This corollary is the part IV of theorem 4.12 in paper [16].
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5. Examples

A number of examples are given here to account for the main
theorems. These examples include the interactions between
the singular endpoints: interactions which generate self-
adjoint operators. The self-adjoint interactions involve jump
discontinuous of the Lagrange bracket of solutions at singular
interior points. Here, let us take the case of 𝑛 = 4 as an
example. Since the conditions when 0 ≤ 𝑑 ≤ 2 are the same
as in the one-interval case, we give examples for 3 ≤ 𝑑 ≤8 in the following.

Example 1. Assume 𝑑11 = 𝑑12 = 3, 𝑑21 = 2, 𝑑22 = 3. Then𝑑1 = 𝑑11 +𝑑12 −4 = 2, 𝑑2 = 𝑑21 + 𝑑22 −4 = 1, 𝑑 = 𝑑1 +𝑑2 = 3
and 𝑚1 = 2𝑑11 − 4 = 2,𝑚2 = 2𝑑21 − 4 = 0, 𝑛1 = 2𝑑12 − 4 =2, 𝑛2 = 2𝑑22 − 4 = 2. If 𝐶2 = ( 0 𝑐−𝑐 0 ) satisfy 𝐶−12 = −𝐶2 = 𝐶∗2 ,
i.e., 𝑐𝑐 = 1, let

𝐴1 = (1 00 10 0) ,
𝐵1 = (0 00 01 𝑐) ,
𝐴2 = 𝑂,
𝐵2 = (1 0𝑐 10 0) ,
𝑐 ∈ C.

(92)

Then[𝑦1, 𝑢11]1 (𝑎1) + [𝑦2, V21]2 (𝑏2) = 0,[𝑦1, 𝑢12]1 (𝑎1) + [𝑦2, V22]2 (𝑏2) = −𝑐 [𝑦2, V21]2 (𝑏2) ,[𝑦1, V11]1 (𝑏1) + 𝑐 [𝑦1, V12]1 (𝑏1) = 0, (93)

and (93) is a self-adjoint boundary condition. Furthermore
we notice that there is one separated singular boundary
condition at 𝑏1, one singular ‘continuity’ boundary condition
and one singular jump boundary condition; these singular
conditions involve the Lagrange bracket.

Example 2. Set 𝑑11 = 𝑑12 = 𝑑21 = 𝑑22 = 3. Then 𝑑1 = 𝑑2 = 2,𝑑 = 4 and 𝑚1 = 𝑚2 = 𝑛1 = 𝑛2 = 2. Let
(𝐴1, 𝐵1, 𝐴2, 𝐵2) = (1 0 0 0 0 0 −1 00 1 0 0 0 0 𝑐 −10 0 1 0 −1 0 0 00 0 0 1 𝑐 −1 0 0 ), (94)

then (94) satisfies condition (1) and (2) in Theorem 10.
Therefore the following conditions are self-adjoint boundary

conditions and all of them involve interactions between sin-
gular endpoints, i.e., interactions between Lagrange brackets.[𝑦1, 𝑢11]1 (𝑎1) = [𝑦2, V21]2 (𝑏2) ,[𝑦1, 𝑢12]1 (𝑎1) − [𝑦2, V22]2 (𝑏2) = −𝑐 [𝑦2, V21]2 (𝑏2) ,[𝑦1, V11]1 (𝑏1) = [𝑦2, 𝑢21]2 (𝑎2) ,[𝑦1, V12]1 (𝑏1) − [𝑦2, 𝑢22]2 (𝑎2) = −𝑐 [𝑦2, 𝑢21]2 (𝑎2) ,

(95)

𝑐 ∈ C. (96)

Here 𝐶2 has the form as Example 1.

Example 3. Assume 𝑑11 = 2, 𝑑12 = 4, 𝑑21 = 4, 𝑑22 = 3.Then𝑑1 = 2, 𝑑2 = 3, 𝑑 = 5 and 𝑚1 = 0,𝑚2 = 4, 𝑛1 = 4, 𝑛2 = 2.
Let 𝐶2, 𝐶4 satisfy 𝐶−1 = −𝐶 = 𝐶∗; i.e., 𝐶2 has the form as
Example 2 and

𝐶4 =( 0 0 0 𝑐10 0 𝑐2 00 −𝑐2 0 0−𝑐1 0 0 0),
𝑐𝑐 = 1,𝑐1𝑐1 = 𝑐2𝑐2 = 1.

(97)

Then[𝑦2, V21]2 (𝑏2) + 𝑐 [𝑦2, V22]2 (𝑏2) = 0,[𝑦1, V11]1 (𝑏1) = [𝑦2, 𝑢21]2 (𝑎2) ,[𝑦1, V12]1 (𝑏1) − [𝑦2, 𝑢22]2 (𝑎2) = 𝑐1 [𝑦2, 𝑢21]2 (𝑎2) ,[𝑦1, V13]1 (𝑏1) = [𝑦2, 𝑢23]2 (𝑎2) ,[𝑦1, V14]1 (𝑏1) − [𝑦2, 𝑢24]2 (𝑎2) = −𝑐2 [𝑦2, 𝑢23]2 (𝑎2) .
(98)

are self-adjoint boundary conditions and there are two singu-
lar “continuity” conditions, one separated singular boundary
condition at 𝑏2 and two interior coupled singular jump
conditions.

Example 4. Assume 𝑑11 = 𝑑22 = 3, 𝑑12 = 𝑑21 = 4. Then𝑑1 = 𝑑2 = 3, 𝑑 = 6 and 𝑚1 = 2,𝑚2 = 4, 𝑛1 = 4, 𝑛2 = 2.
Then we have two-interval self-adjoint boundary conditions
below:[𝑦2, 𝑢21]2 (𝑎2) − [𝑦2, 𝑢22]2 (𝑎2) = 0,𝑐2 [𝑦2, 𝑢23]2 (𝑎2) + 𝑐1 [𝑦2, 𝑢24]2 (𝑎2) = 0,[𝑦1, V11]1 (𝑏1) − [𝑦1, V12]1 (𝑏1) = 0,𝑐2 [𝑦1, V13]1 (𝑏1) + 𝑐1 [𝑦1, V14]1 (𝑏1) = 0,[𝑦1, 𝑢11]1 (𝑎1) = [𝑦2, V21]2 (𝑏2) ,[𝑦1, 𝑢12]1 (𝑎1) − [𝑦2, V22]2 (𝑏2) = −𝑐 [𝑦2, V21]2 (𝑏2) .

(99)

Here the complex numbers 𝑐, 𝑐1, 𝑐2 are shown as Example 3.
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Example 5. In this example we consider the case: 𝑑 = 7.
Assume 𝑑11 = 3, 𝑑12 = 5, 𝑑21 = 5, 𝑑22 = 2. Then 𝑑1 =4, 𝑑2 = 3, 𝑑 = 7 and 𝑚1 = 2,𝑚2 = 6, 𝑛1 = 6, 𝑛2 =0. Let 𝐶2, 𝐶4, 𝐶6 satisfy 𝐶−1 = −𝐶 = 𝐶∗; i.e., 𝐶2, 𝐶4 has
the form as Example 3 and set 𝐶6 = ( 0 0 0 0 0 𝑐10 0 0 0 𝑐2 0

0 0 0 𝑐3 0 0
0 0 −𝑐3 0 0 0
0 −𝑐2 0 0 0 0
−𝑐1 0 0 0 0 0

).

The following self-adjoint boundary conditions consist of one
separated singular condition at 𝑎1, three singular “continuity”
conditions, and three singular jump conditions.𝑐 [𝑦1, 𝑢11]1 (𝑎1) + [𝑦1, 𝑢12]1 (𝑎1) = 0,[𝑦2, 𝑢21]2 (𝑎2) = [𝑦1, V11]1 (𝑏1) ,[𝑦1, V12]1 (𝑏1) − [𝑦2, 𝑢22]2 (𝑎2) = 𝑐1 [𝑦2, 𝑢21]2 (𝑎2) ,[𝑦2, 𝑢23]2 (𝑎2) = [𝑦1, V13]1 (𝑏1) ,[𝑦1, V14]1 (𝑏1) − [𝑦2, 𝑢24]2 (𝑎2) = −𝑐3 [𝑦2, 𝑢23]2 (𝑎2) ,[𝑦2, 𝑢25]2 (𝑎2) = [𝑦1, V15]1 (𝑏1) ,[𝑦1, V16]1 (𝑏1) − [𝑦2, 𝑢26]2 (𝑎2) = −𝑐2 [𝑦2, 𝑢25]2 (𝑎2) .

(100)

Example 6. In this example we set 𝐶4 = ( 0 0 0 −𝑖0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

) . Assume𝑑11 = 𝑑12 = 4, 𝑑21 = 𝑑22 = 4. Then 𝑑1 = 𝑑2 =4, 𝑑 = 8 and 𝑚1 = 𝑚2 = 4, 𝑛1 = 𝑛2 = 4. The following
boundary conditions feature separated self-adjoint boundary
conditions at all four endpoints:[𝑦1, 𝑢11]1 (𝑎1) − 𝑖 [𝑦1, 𝑢12]1 (𝑎1) = 0,𝑖 [𝑦1, 𝑢13]1 (𝑎1) − [𝑦1, 𝑢14]1 (𝑎1) = 0,[𝑦1, V11]1 (𝑏1) − 𝑖 [𝑦1, V12]1 (𝑏1) = 0,𝑖 [𝑦1, V13]1 (𝑏1) − [𝑦1, V14]1 (𝑏1) = 0,[𝑦2, 𝑢21]2 (𝑎2) − 𝑖 [𝑦2, 𝑢22]2 (𝑎2) = 0,𝑖 [𝑦2, 𝑢23]2 (𝑎2) − [𝑦2, 𝑢24]2 (𝑎2) = 0,[𝑦2, V21]2 (𝑏2) − 𝑖 [𝑦2, V22]2 (𝑏2) = 0,𝑖 [𝑦2, V23]2 (𝑏2) − [𝑦2, V24]2 (𝑏2) = 0.

(101)

6. Conclusion

This paper characterize all self-adjoint domains for two-
interval even order 𝐶-symmetric differential operators in
direct sum spaces, where both endpoints in each interval are
singular, and there is not any singular point in each interval.
And this characterization can be reduced to the regular case.
Moreover the characterization in this paper is generalization
of previous results for Lagrange symmetric case. So our work
is valued.
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