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This paper focuses on the problem of state estimation for certain switched time-varying systems with time-varying delay and
nonlinear disturbance. By using an integral inequality technique and amethod used in positive systems, we have established several
explicit criteria for state estimation of the system, which reduce to stability criteria for some particular cases.The involved nonlinear
disturbance of the system takes more general form including both the internal disturbance and the external disturbance. Three
numerical examples are also given to verify the validity of the obtained theoretical results.

1. Introduction

Switched system is a particular hybrid system containing a
number of subsystems and a switching signal. Each subsys-
tem is usually described by a definite differential equation
or difference equation. For switched systems, the issue of
stability plays a key role in system analysis. As a result, sta-
bility of switched systems has received considerable attention
during the past several decades owing to its extensive appli-
cations in automotive engine control system [1], chemical
process control system [2], multiagent systems [3, 4], and
so on.

Some basic problems in stability and design of switching
systems were put forward by Liberzon and Morse [5]. Later,
there are several very important monographs devoted to
the stability analysis and design of switched systems; e.g.,
see Liberzon [6] and Sun and Ge [7]. There are also many
interesting results for stability of switched systems in [8–15].
In most of the existing references, the Lyapunov-Krasovskii
functional method was most commonly used for switched
time-invariant systems. It seems to us that little attention has
been paid to the stability of switched time-varying systems.
Recently, by using a positive system method, exponential
stability of switched time-varying systems with delay and
nonlinear disturbance was investigated in [16, 17].

Integral inequality plays an important role in qualita-
tive analysis of delay systems [18–22, 22–25]. For example,
stabilization of switched systems with impulsive effects and
disturbances was studied in [18] by using the Gronwall
integral inequality. By introducing a generalized Gronwall-
Bellman inequality, the authors established stability criteria
under arbitrary switching for switched systems with general
nonlinear disturbances in [21]. Later, the main results in
[21] were extended to switched delay systems with nonlinear
disturbances in [25]. The same method was also applied to
study a class of switched delay systems in [23], where global
exponential stability criteria for the system were established.

Note that time delay has attracted much attention in the
theory analysis of switched systems due to its detrimental
effects on system performance such as oscillation [24, 26–
30] and stability [31–36]. Inspired by the work in [18, 25], we
will use a delay integral inequality technique and a method
developed in positive systems [37, 38] to study the problem of
state estimation for a class of switched time-varying systems
with time-varying delay and nonlinear disturbance.Themain
contributions of this paper are as follows: (1) unlike most
existing results in the literature, all the subsystems considered
in this paper are time-varying; (2) explicit global (local) state
estimation criteria will be established for the cases when the
nonlinear disturbance satisfies linear and nonlinear growth
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conditions, respectively; (3) the nonlinear disturbance of
the system has more general form which contains both the
internal state disturbance and the external input disturbance,
and hence it contains some cases in the literature.

The rest of this paper is organized as follows. In Section 2,
we introduce some notations and preliminaries that are
essential for deriving the main results of this paper. Section 3
then focuses on establishing explicit state estimation criteria
for the system. Simulations are given to illustrate the main
results in Section 4. Finally, conclusions are drawn in Sec-
tion 5.

2. Problem Statements and Preliminaries

In the sequel, denote by R𝑛×𝑛 the set of 𝑛 × 𝑛-dimensional
real matrices, and denote byR𝑛 the 𝑛-dimensional Euclidean
space with the vector norm ‖𝑥‖ = ∑𝑛𝑖=1 |𝑥𝑖|, where 𝑥 = (𝑥𝑖) ∈
R𝑛 for 𝑖 ∈ ⟨𝑛⟩ = {1, 2, . . . , 𝑛}. Set |𝑥| = (|𝑥𝑖|) and |𝑥|𝑝 =(|𝑥𝑖|𝑝). For two vectors 𝑥 = (𝑥𝑖) ∈ R𝑛 and 𝑦 = (𝑦𝑖) ∈ R𝑛,
we write 𝑥 ≻ (≺, ⪯)𝑦 if 𝑥𝑖 > (<, ≤)𝑦𝑖 for 𝑖 ∈ ⟨𝑛⟩. For a matrix𝐴 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛, we write 𝐴 ⪰ 0 if 𝑎𝑖𝑗 ≥ 0 for 𝑖, 𝑗 ∈ ⟨𝑛⟩.

Now, we consider the following switched time-varying
system of the form

𝑥̇ (𝑡) = 𝐴𝜎(𝑡) (𝑡) 𝑥 (𝑡) + 𝐵𝜎(𝑡) (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))
+ 𝐹𝜎(𝑡) (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) , 𝑡 ≥ 0, (1)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝜎(𝑡) : [0,∞) 󳨀→ ⟨𝑚⟩ ={1, 2, . . . , 𝑚} is the switching signal which is a piecewise
constant function, 𝐴𝑘(𝑡) = [𝑎(𝑘)𝑖𝑗 (𝑡)] ∈ R𝑛×𝑛 and 𝐵𝑘(𝑡) =
[𝑏(𝑘)𝑖𝑗 (𝑡)] ∈ R𝑛×𝑛 are continuous matrix functions for 𝑘 ∈ ⟨𝑚⟩
and 𝑖, 𝑗 ∈ ⟨𝑛⟩, 𝜏(𝑡) : [0,∞) 󳨀→ [0,∞) is the time-varying
delay satisfying 0 ≤ 𝜏(𝑡) ≤ ℎ, ℎ > 0 is a constant, 𝐹𝑘(𝑡, 𝑥, 𝑦) :[0,∞)×R𝑛×R𝑛 󳨀→ R𝑛 is a continuous vector function such
that system (1) has a unique solution for each initial condition𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0], and 𝜙(𝑡) : [−ℎ, 0] 󳨀→ R𝑛 is a
continuous vector function.

We need the following assumptions for establishing the
main results of this paper.

(𝐻1)There exist continuous functions 𝜆(𝑡) ≥ 0 and 𝜂(𝑡) ≥
0 for 𝑡 ≥ 0, constant matrices 𝐴𝑘 = [𝑎(𝑘)𝑖𝑗 ] and 𝐵𝑘 = [𝑏(𝑘)𝑖𝑗 ],𝑘 ∈ ⟨𝑚⟩, such that |𝑎(𝑘)𝑖𝑗 (𝑡)| ≤ 𝑎(𝑘)𝑖𝑗 𝜆(𝑡) if 𝑖 ̸= 𝑗, 𝑎(𝑘)𝑖𝑗 (𝑡) ≤ 𝑎(𝑘)𝑖𝑗 𝜆(𝑡)
if 𝑖 = 𝑗, and |𝑏(𝑘)𝑖𝑗 (𝑡)| ≤ 𝑏(𝑘)𝑖𝑗 𝜂(𝑡) for 𝑖, 𝑗 ∈ ⟨𝑛⟩.

(𝐻2)There exist continuous functions 𝜆̃(𝑡) ≥ 0 and 𝜂(𝑡) ≥0 for 𝑡 ≥ 0, constant matrices 𝑀𝑘 = [𝑚(𝑘)𝑖𝑗 ] ⪰ 0 and 𝑁𝑘 =[𝑛(𝑘)𝑖𝑗 ] ⪰ 0, 𝑘 ∈ ⟨𝑚⟩, an 𝑛-dimensional vector function 𝛼(𝑡) =(𝛼𝑖(𝑡)) ⪰ 0, and a constant 𝑝 > 0 such that
󵄨󵄨󵄨󵄨𝐹𝑘 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))󵄨󵄨󵄨󵄨

⪯ 𝜆̃ (𝑡)𝑀𝑘 |𝑥 (𝑡)|𝑝 + 𝜂 (𝑡)𝑁𝑘 |𝑥 (𝑡 − 𝜏 (𝑡))|𝑝 + 𝛼 (𝑡) , (2)

where the first two parts in the right-hand side of above
inequality are interpreted as the internal state disturbances,
and the third part 𝛼(𝑡) is defined as the external input
disturbance.

The following two lemmas play a crucial role in the state
estimation of system (1).

Lemma 1 (see [39]). Assume that 𝑐 ≥ 0 is a constant, 𝑢(𝑡) and𝑓(𝑡) are nonnegative continuous functions defined on [0,∞),
and 𝑢(𝑡) satisfies the following integral inequality

𝑢 (𝑡) ≤ 𝑐 + ∫𝑡
0
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (3)

	en we have

𝑢 (𝑡) ≤ 𝑐𝑒∫𝑡0 𝑓(𝑠)𝑑𝑠, 𝑡 ≥ 0. (4)

Lemma 2 (see [21]). Assume that 𝑢(𝑡), 𝑓(𝑡), and 𝑔(𝑡) are
nonnegative continuous functions defined on [0,∞), and 𝑢(𝑡)
satisfies the following integral inequality

𝑢 (𝑡) ≤ 𝑘 + ∫𝑡
0
(𝑓 (𝑠) 𝑢 (𝑠) + 𝑔 (𝑠) 𝑢𝑝 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0, (5)

where 𝑘 ≥ 0 and 𝑝 > 0 (𝑝 �=1) are constants. If
𝑘1−𝑝 − (𝑝 − 1) ∫𝑡

0
𝑔 (𝑠) 𝑒∫𝑠0 (𝑝−1)𝑓(𝜏)𝑑𝜏𝑑𝑠 > 0, 𝑡 ≥ 0 (6)

then we have

𝑢 (𝑡) ≤ 𝑒∫𝑡0 𝑓(𝑠)𝑑𝑠 [𝑘1−𝑝

− (𝑝 − 1)∫𝑡
0
𝑔 (𝑠) 𝑒∫𝑠0 (𝑝−1)𝑓(V)𝑑V𝑑𝑠]1/(1−𝑝) , 𝑡 ≥ 0.

(7)

3. Main Results

We first study the case of 𝑝 = 1 in Assumption (𝐻2).
Theorem 3. Assume that (𝐻1) and (𝐻2) with 𝑝 = 1 hold. If
there exists an 𝑛-dimensional vector 𝜉 = (𝜉𝑖) ≻ 0 such that

𝜉𝑇𝐴𝑘 ≺ 0, 𝑘 ∈ ⟨𝑚⟩ , (8)

and

∫∞
0

𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝜉𝑇𝛼 (𝑡) 𝑑𝑡 < ∞, (9)

then all solutions of system (1) satisfy

‖𝑥 (𝑡)‖ ≤ 𝑘̃1
min𝑖∈⟨𝑛⟩𝜉𝑖

⋅ 𝑒∫𝑡0 {[𝛾2𝜂(𝑠)+𝛾4𝜂(𝑠)]𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3 𝜆̃(V)]𝑑V−𝛾1𝜆(𝑠)+𝛾3𝜆̃(𝑠)}𝑑𝑠,
𝑡 ≥ 0.

(10)
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where

𝑘̃1 = 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩ℎmax
𝑖∈⟨𝑛⟩

𝜉𝑖 + ∫∞
0

𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝜉𝑇𝛼 (𝑠) 𝑑𝑠,
𝛾1 = min
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜂(𝑘)𝑖𝜉𝑖 ,
𝛾2 = max
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜃(𝑘)𝑖𝜉𝑖 ,
𝛾3 = max
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜂(𝑘)𝑖𝜉𝑖 ,
𝛾4 = max
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜃(𝑘)𝑖𝜉𝑖 ,

(11)

‖𝜙‖ℎ = max−ℎ≤𝑡≤0‖𝜙(𝑡)‖, −𝜂(𝑘)𝑖 , 𝜃(𝑘)𝑖 , 𝜂(𝑘)𝑖 , 𝜃(𝑘)𝑖 are the 𝑖th entry
of vectors 𝜉𝑇𝐴𝑘, 𝜉𝑇𝐵𝑘, 𝜉𝑇𝑀𝑘, and 𝜉𝑇𝑁𝑘, respectively.
Proof. Let

𝑉(𝑥 (𝑡)) = 𝜉𝑇 |𝑥 (𝑡)| . (12)

Without loss of generality, assume that 𝜎(𝑡) = 𝑘. Denote by𝐷+𝑉(𝑥(𝑡)) the right derivative of𝑉(𝑥(𝑡)) along the trajectory
of system (1). We get from assumptions (𝐻1) and (𝐻2) that
𝐷+ 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑥̇𝑖 (𝑡) sign 𝑥𝑖 (𝑡)
≤ 𝑛∑
𝑗=1

[𝜆 (𝑡) 𝑎(𝑘)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝜂 (𝑡) 𝑏(𝑘)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨󵄨]

+ 𝑛∑
𝑗=1

[𝜆̃ (𝑡) 𝑚(𝑘)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝜂 (𝑡) 𝑛(𝑘)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨󵄨]
+ 𝛼𝑖 (𝑡) , 𝑖 ∈ ⟨𝑛⟩ , 𝑡 ≥ 0.

(13)

Therefore,

𝐷+𝑉 (𝑥 (𝑡)) ≤ 𝜉𝑇 [𝜆 (𝑡) 𝐴𝑘 + 𝜆̃ (𝑡)𝑀𝑘] |𝑥 (𝑡)|
+ 𝜉𝑇 [𝜂 (𝑡) 𝐵𝑘 + 𝜂 (𝑡)𝑁𝑘] |𝑥 (𝑡 − 𝜏 (𝑡))|
+ 𝜉𝑇𝛼 (𝑡) , 𝑡 ≥ 0.

(14)

According to definitions of 𝛾𝑖 for 𝑖 = 1, 2, 3, 4, we derive from
the above inequality that

𝐷+𝑉 (𝑥 (𝑡)) ≤ [−𝛾1𝜆 (𝑡) + 𝛾3𝜆̃ (𝑡)] 𝑉 (𝑥 (𝑡))
+ [𝛾2𝜂 (𝑡) + 𝛾4𝜂 (𝑡)] 𝑉 (𝑥 (𝑡 − 𝜏 (𝑡))
+ 𝜉𝑇𝛼 (𝑡) , 𝑡 ≥ 0.

(15)

Multiply the above inequality by 𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠 and let

𝑢 (𝑡) = 𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝑉(𝑥 (𝑡)) . (16)

Then we have

𝐷+𝑢 (𝑡)
≤ [𝛾2𝜂 (𝑡) + 𝛾4𝜂 (𝑡)] 𝑒∫𝑡𝑡−𝜏(𝑡)[𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝑢 (𝑡 − 𝜏 (𝑡))

+ 𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝜉𝑇𝛼 (𝑡) , 𝑡 ≥ 0.
(17)

Integrating it from 0 to 𝑡, we obtain
𝑢 (𝑡) ≤ 𝑢 (0) + ∫∞

0
𝑒∫𝑡0 [𝛾1𝜆(𝑠)−𝛾3𝜆̃(𝑠)]𝑑𝑠𝜉𝑇𝛼 (𝑡) 𝑑𝑡

+ ∫𝑡
0
[𝛾2𝜂 (𝑠) + 𝛾4𝜂 (𝑠)]

⋅ 𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3𝜆̃(V)]𝑑V𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0.
(18)

Set

𝜔 (𝑡) = 𝑘̃1 + ∫𝑡
0
[𝛾2𝜂 (𝑠) + 𝛾4𝜂 (𝑠)]

⋅ 𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3𝜆̃(V)]𝑑V𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0,
(19)

𝜔 (𝑡) = 𝑘̃1, − ℎ ≤ 𝑡 ≤ 0, (20)

where 𝑘̃1 is defined as inTheorem 3. Since 𝜔(𝑡) is a monotone
nondecreasing function on [−ℎ,∞), we get

𝑢 (𝑡 − 𝜏 (𝑡)) ≤ 𝜔 (𝑡 − 𝜏 (𝑡)) ≤ 𝜔 (𝑡) , 𝑡 ≥ 0. (21)

Consequently,

𝑢 (𝑡) ≤ 𝜔 (𝑡)
≤ 𝑘̃1

+ ∫𝑡
0
[𝛾2𝜂 (𝑠) + 𝛾4𝜂 (𝑠)] 𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3𝜆̃(V)]𝑑V𝜔 (𝑠) 𝑑𝑠,

𝑡 ≥ 0.

(22)

Combining this and Lemma 1, it implies that

𝑢 (𝑡) ≤ 𝜔 (𝑡) ≤ 𝑘̃1𝑒∫𝑡0 [𝛾2𝜂(𝑠)+𝛾4𝜂(𝑠)]𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3 𝜆̃(V)]𝑑V𝑑𝑠,
𝑡 ≥ 0. (23)

By using the definition of 𝑢(𝑡), we have
𝑉 (𝑥 (𝑡))

≤ 𝑘̃1𝑒∫𝑡0 {[𝛾2𝜂(𝑠)+𝛾4𝜂(𝑠)]𝑒∫𝑠𝑠−ℎ[𝛾1𝜆(V)−𝛾3 𝜆̃(V)]𝑑V−𝛾1𝜆(𝑠)+𝛾3𝜆̃(𝑠)}𝑑𝑠,
𝑡 ≥ 0.

(24)

Therefore, (10) holds. This completes the proof ofTheorem 3.
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Remark 4. For the particular case when 𝜆(𝑡) ≡ 𝜆̃(𝑡) ≡ 𝜂(𝑡) ≡𝜂(𝑡) ≡ 1, we get from Theorem 3 that all solutions of system
(1) satisfy

‖𝑥 (𝑡)‖ ≤ 𝑘̃1
min𝑖∈⟨𝑛⟩𝜉𝑖 𝑒[(𝛾2+𝛾4)𝑒

(𝛾1−𝛾3)ℎ−𝛾1+𝛾3]𝑡, 𝑡 ≥ 0. (25)

It implies that system (1) is globally exponentially stable if(𝛾2 + 𝛾4)𝑒(𝛾1−𝛾3)ℎ − 𝛾1 + 𝛾3 < 0.
Next, we consider the case of 𝑝 > 1 in Assumption (𝐻2).

Theorem 5. Assume that (𝐻1) and (𝐻2) with 𝑝 > 1 hold. If
there exists an 𝑛-dimensional vector 𝜉 = (𝜉𝑖) ≻ 0 such that (8)
holds,

∫∞
0

𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠𝜉𝑇𝛼 (𝑡) 𝑑𝑡 < ∞, (26)

and

𝑘̃1−𝑝2 − (𝑝 − 1)∫𝑡
0
𝑔 (𝑠) 𝑒∫𝑠0 (𝑝−1)𝑓(V)𝑑V𝑑𝑠 > 0, 𝑡 ≥ 0, (27)

then the corresponding solutions of system (1) satisfy

‖𝑥 (𝑡)‖ ≤ 𝑒∫𝑡0 [𝑓(𝑠)−𝛾1𝜆(𝑠)]𝑑𝑠
min𝑖∈⟨𝑛⟩𝜉𝑖 [𝑘̃1−𝑝2

− (𝑝 − 1) ∫𝑡
0
𝑔 (𝑠) 𝑒∫𝑠0 (𝑝−1)𝑓(V)𝑑V𝑑𝑠]1/(1−𝑝) , 𝑡 ≥ 0,

(28)

where

𝑓 (𝑠) = 𝛾2𝜂 (𝑠) 𝑒𝛾1 ∫𝑠𝑠−ℎ 𝜆(V)𝑑V,
𝑔 (𝑠)

= 𝑒𝛾1(1−𝑝) ∫𝑠0 𝜆(V)𝑑V [𝛾5𝜆̃ (𝑠) + 𝛾6𝜂 (𝑠) 𝑒𝛾1𝑝∫𝑠𝑠−ℎ 𝜆(V)𝑑V] ,
𝑘̃2 = 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩ℎmax

𝑖∈⟨𝑛⟩
𝜉𝑖 + ∫∞
0

𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠𝜉𝑇𝛼 (𝑡) 𝑑𝑡,
𝛾5 = max
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜂(𝑘)𝑖𝜉𝑝𝑖 ,

𝛾6 = max
𝑘∈⟨𝑚⟩,𝑖∈⟨𝑛⟩

𝜃(𝑘)𝑖𝜉𝑝𝑖 ,

(29)

𝛾1, 𝛾2, 𝜂(𝑘)𝑖 , and 𝜃(𝑘)𝑖 are defined as in 	eorem 3.

Proof. Let 𝑉(𝑥(𝑡)) = 𝜉𝑇|𝑥(𝑡)|. Following the same discussion
inTheorem 3, we have

𝐷+𝑉(𝑥 (𝑡)) ≤ 𝜆 (𝑡) 𝜉𝑇𝐴𝑘 |𝑥 (𝑡)|
+ 𝜂 (𝑡) 𝜉𝑇𝐵𝑘 |𝑥 (𝑡 − 𝜏 (𝑡))|
+ 𝜆̃ (𝑡) 𝜉𝑇𝑀𝑘 |𝑥 (𝑡)|𝑝
+ 𝜂 (𝑡) 𝜉𝑇𝑁𝑘 |𝑥 (𝑡 − 𝜏 (𝑡))|𝑝 + 𝜉𝑇𝛼 (𝑡) ,

𝑡 ≥ 0.

(30)

By using the definitions of 𝛾𝑖 for 𝑖 = 5, 6, 7, 8 and the basic
inequality (𝑎 + 𝑏)𝑝 ≥ 𝑎𝑝 + 𝑏𝑝 for 𝑎, 𝑏 ≥ 0 and 𝑝 > 1, we can
derive from the above inequality that

𝐷+𝑉 (𝑥 (𝑡)) ≤ −𝛾1𝜆 (𝑡) 𝑉 (𝑥 (𝑡))
+ 𝛾2𝜂 (𝑡) 𝑉 (𝑥 (𝑡 − 𝜏 (𝑡)))
+ 𝛾5𝜆̃ (𝑡) 𝑉𝑝 (𝑥 (𝑡))
+ 𝛾6𝜂 (𝑡) 𝑉𝑝 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝜉𝑇𝛼 (𝑡) ,

𝑡 ≥ 0.

(31)

By multiplying the above inequality by 𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠 and letting
𝑢(𝑡) = 𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠𝑉(𝑥(𝑡)), we obtain
𝐷+𝑢 (𝑥 (𝑡))
≤ 𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠𝜉𝑇𝛼 (𝑡) + 𝛾2𝜂 (𝑡) 𝑒𝛾1 ∫𝑡𝑡−𝜏(𝑡) 𝜆(𝑠)𝑑𝑠𝑢 (𝑡 − 𝜏 (𝑡))

+ 𝛾5𝜆̃ (𝑡) 𝑒𝛾1(1−𝑝) ∫𝑡0 𝜆(𝑠)𝑑𝑠𝑢𝑝 (𝑡)
+ 𝛾6𝜂 (𝑡) 𝑒𝛾1(1−𝑝) ∫𝑡0 𝜆(𝑠)𝑑𝑠𝑒𝛾1𝑝∫𝑡𝑡−𝜏(𝑡) 𝜆(𝑠)𝑑𝑠𝑢𝑝 (𝑡 − 𝜏 (𝑡)) ,

𝑡 ≥ 0.

(32)

Integrating it from 0 to 𝑡, we get
𝑢 (𝑡) ≤ 𝜉𝑇 |𝑥 (0)| + ∫∞

0
𝑒𝛾1 ∫𝑡0 𝜆(𝑠)𝑑𝑠𝜉𝑇𝛼 (𝑡) 𝑑𝑡

+ ∫𝑡
0
𝛾2𝜂 (𝑠) 𝑒𝛾1 ∫𝑠𝑠−ℎ 𝜆(V)𝑑V𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ ∫𝑡
0
𝛾5𝜆̃ (𝑠) 𝑒𝛾1(1−𝑝) ∫𝑠0 𝜆(V)𝑑V𝑢𝑝 (𝑠) 𝑑𝑠 + ∫𝑡

0
𝛾6𝜂 (𝑠)

⋅ 𝑒𝛾1(1−𝑝) ∫𝑠0 𝜆(V)𝑑V𝑒𝛾1𝑝∫𝑠𝑠−ℎ 𝜆(V)𝑑V𝑢𝑝 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠,
𝑡 ≥ 0.

(33)

Set

𝜔 (𝑡) = 𝑘̃2 + ∫𝑡
0
𝛾2𝜂 (𝑠) 𝑒𝛾1 ∫𝑠𝑠−ℎ 𝜆(V)𝑑V𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ ∫𝑡
0
𝛾5𝜆̃ (𝑠) 𝑒𝛾1(1−𝑝) ∫𝑠0 𝜆(V)𝑑V𝑢𝑝 (𝑠) 𝑑𝑠 + ∫𝑡

0
𝛾6𝜂 (𝑠)

⋅ 𝑒𝛾1(1−𝑝) ∫𝑠0 𝜆(V)𝑑V𝑒𝛾1𝑝∫𝑠𝑠−ℎ 𝜆(V)𝑑V𝑢𝑝 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠,
𝑡 ≥ 0,

(34)

𝜔 (𝑡) = 𝑘̃2, − ℎ ≤ 𝑡 ≤ 0, (35)

where 𝑘̃2 is defined as in Theorem 5. It can be seen that 𝜔(𝑡)
is a monotone nondecreasing function on [−ℎ,∞) and 𝑢(𝑡 −𝜏(𝑡)) ≤ 𝜔(𝑡 − 𝜏(𝑡)) ≤ 𝜔(𝑡) for 𝑡 ≥ 0. Therefore,

𝜔 (𝑡) ≤ 𝑘̃2 + ∫𝑡
0
𝛾2𝜂 (𝑠) 𝑒𝛾1 ∫𝑠𝑠−ℎ 𝜆(V)𝑑V𝜔 (𝑠) 𝑑𝑠
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+ ∫𝑡
0
𝑒𝛾1(1−𝑝)∫𝑠0 𝜆(V)𝑑V [𝛾5𝜆̃ (𝑠)

+ 𝛾6𝜂 (𝑠) 𝑒𝛾1𝑝∫𝑠𝑠−ℎ 𝜆(V)𝑑V]𝜔𝑝 (𝑠) 𝑑𝑠, 𝑡 ≥ 0.
(36)

That is,

𝜔 (𝑡) ≤ 𝑘̃2 + ∫𝑡
0
𝑓 (𝑠) 𝜔 (𝑠) 𝑑𝑠 + ∫𝑡

0
𝑔 (𝑠) 𝜔𝑝 (𝑠) 𝑑𝑠,

𝑡 ≥ 0,
(37)

where 𝑓(𝑠) and 𝑔(𝑠) are defined as in Theorem 5. Note that
(27) holds. We conclude from Lemma 2 that

𝑢 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝑒∫𝑡0 𝑓(𝑠)𝑑𝑠 [𝑘̃1−𝑝2
− (𝑝 − 1)∫𝑡

0
𝑔 (𝑠) 𝑒∫𝑠0 (𝑝−1)𝑓(V)𝑑V𝑑𝑠]1/(1−𝑝) , 𝑡 ≥ 0.

(38)

It implies that (28) holds true. This completes the proof of
Theorem 5.

Remark 6. Note that Theorem 5 gives a local state estimation
result of system (1). That is, the state estimation (28) only
holds for the solutions of system (1) satisfying (27). Let 𝜆(𝑡) ≡𝜆̃(𝑡) ≡ 𝜂(𝑡) ≡ 𝜂(𝑡) ≡ 1. If 𝛾1 − 𝛾2𝑒𝛾1ℎ > 0 and 𝑘̃2 <((𝛾5+𝛾6𝑒𝛾1𝑝ℎ)/(𝛾1−𝛾2𝑒𝛾1ℎ))1/(1−𝑝), we have that condition (27)
holds and the corresponding solutions of system (1) satisfy

‖𝑥 (𝑡)‖ ≤ 𝑘̃1/(1−𝑝)2

min𝑖∈⟨𝑛⟩𝜉𝑖 𝑒
−(𝛾1−𝛾2𝑒

𝛾1ℎ)𝑡, 𝑡 ≥ 0. (39)

That is, system (1) is locally exponentially stable.

Finally, we introduce the following assumption on the
nonlinear disturbance

(𝐻3)There exist continuous functions 𝜆̃(𝑡) ≥ 0 and 𝜂(𝑡) ≥0 for 𝑡 ≥ 0, an 𝑛-dimensional vector function 𝛼(𝑡) ⪰ 0, and
constants 𝛾5 ≥ 0, 𝛾6 ≥ 0, 𝑝 > 0 such that

𝜉𝑇 󵄨󵄨󵄨󵄨𝐹𝑘 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))󵄨󵄨󵄨󵄨
⪯ 𝛾5𝜆̃ (𝑡) (𝜉𝑇 |𝑥 (𝑡)|)𝑝 + 𝛾6𝜂 (𝑡) (𝜉𝑇 |𝑥 (𝑡 − 𝜏 (𝑡))|)𝑝

+ 𝛼 (𝑡) ,
(40)

where 𝜉 ≻ 0 is an 𝑛-dimensional vector.
Similar to the proof of Theorem 5, the following result is

immediate. Hence, we omit its proof.

Theorem 7. Assume that (𝐻1) holds and 𝑝 > 0 (𝑝 �=1). If
there exists an 𝑛-dimensional vector 𝜉 = (𝜉𝑖) ≻ 0 such that (8),
(26), (𝐻3), and (27) hold, where 𝛾5 and 𝛾6 are replaced by 𝛾5
and 𝛾6, respectively, then the corresponding solutions of system
(1) satisfy (28).

Remark 8. Note that condition (27) is always valid for 0 < 𝑝 <1. Therefore, Theorem 7 gives a global state estimation result
for system (1). For the particular case when 𝜆(𝑡) ≡ 𝜆̃(𝑡) ≡𝜂(𝑡) ≡ 𝜂(𝑡) ≡ 1 and 0 < 𝑝 < 1, a straightforward computation
yields that all solutions of system (1) satisfy

‖𝑥 (𝑡)‖

≤ [𝑘̃1−𝑝2 𝑒−(1−𝑝)(𝛾1−𝛾2𝑒𝛾1ℎ)𝑡 + (𝛾5 + 𝛾6𝑒𝛾1𝑝ℎ) / (𝛾1 − 𝛾2𝑒𝛾1ℎ)]1/(1−𝑝)
min𝑖∈⟨𝑛⟩𝜉𝑖 ,

𝑡 ≥ 0,
(41)

where 𝑘̃2, 𝛾1, 𝛾2, 𝛾5, and 𝛾6 are defined as inTheorems 3 and 7.
Consequently, all solutions of system (1) are bounded if 𝛾1 −𝛾2𝑒𝛾1ℎ > 0.
4. Numerical Examples

In this section, three examples are given to illustrate the main
results.

Example 1. Consider system (1) with 𝑚 = 2, 𝜏(𝑡) = 0.2 +0.1 sin 𝑡,
𝐴1 (𝑡) = [0.5 cos 𝑡 − 1.5 0.2 sin 𝑡

0.2 cos 𝑡 0.5 sin 𝑡 − 1.5] ,

𝐵1 (𝑡) = [
[

0.2𝑡1 + 𝑡 0.1 sin 𝑡
0.1 cos 𝑡 0.2 sin 𝑡]]

,

𝐴2 (𝑡) = [0.5 sin 𝑡 − 2 0.7 sin 𝑡
0.7 cos 𝑡 0.5 cos 𝑡 − 2] ,

𝐵2 (𝑡) = [
[
0.1 sin 𝑡 0.1 cos 𝑡
0.1𝑡1 + 𝑡 0.1𝑡1 + 𝑡

]
]
,

𝐹1 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))
= [0.1 sin 𝑥1 (𝑡) + 0.1 sin 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡

0.2 sin 𝑥2 (𝑡) + 0.1 sin 𝑥1 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡] ,
𝐹2 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

= [0.2 sin 𝑥2 (𝑡) + 0.1 sin 𝑥1 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡
0.2 sin 𝑥1 (𝑡) + 0.2 sin 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡] .

(42)

A straightforward computation yields

𝐴1 = [−1 0.2
0.2 −1] ,

𝐵1 = [0.2 0.1
0.1 0.2] ,
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𝐴2 = [−1.5 0.7
0.7 −1.5] ,

𝐵2 = [0.1 0.1
0.1 0.1] ,

𝑀1 = [0.1 0
0 0.2] ,

𝑁1 = [ 0 0.1
0.1 0 ] ,

𝑀2 = [ 0 0.2
0.2 0 ] ,

𝑁2 = [0.1 0
0 0.2] .

(43)

Choosing 𝜉 = (1, 1)𝑇, then 𝜉𝑇𝐴𝑖 ≺ 0 for 𝑖 = 1, 2, 𝛾1 = 0.8, 𝛾2 =0.3, 𝛾3 = 𝛾4 = 0.2, ℎ = 0.3. Note that (𝛾2+𝛾4)𝑒(𝛾1−𝛾3)ℎ−𝛾1+𝛾3 <0, and∫∞0 𝑒𝛾1𝑡𝑒−𝑡𝑑𝑡 < ∞. ByTheorem3 andRemark 4, system
(1) is exponentially stable. Figure 1 shows the state trajectories
of the system, where 𝜆 = 1 and the switching signal is defined
as in Figure 2.

Example 2. Consider system (1) with 𝑚 = 2, 𝜏(𝑡) = 0.1 +0.05 sin 𝑡,
𝐴1 (𝑡) = [−3 + sin 𝑡 − cos 𝑡

sin 𝑡 −3 + cos 𝑡] ,

𝐵1 (𝑡) = [−0.3 cos 𝑡 0.2 sin 𝑡
−0.1 sin 𝑡 −0.3 cos 𝑡] ,

𝐴2 (𝑡) = [−4 + cos 𝑡 2 sin 𝑡
−2 cos 𝑡 −4 + sin 𝑡] ,

𝐵2 (𝑡) = [−0.4 sin 𝑡 −0.1 cos 𝑡
0.2 cos 𝑡 −0.3 sin 𝑡] ,

𝐹1 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))
= [
[
0.1𝑥21 (𝑡) + 0.05𝑥22 (𝑡 − 𝜏 (𝑡)) + 0.5𝑒−2𝑡
0.1𝑥22 (𝑡) + 0.05𝑥21 (𝑡 − 𝜏 (𝑡)) + 0.5𝑒−2𝑡]]

,
𝐹2 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

= [ 0.1𝑥22 (𝑡) + 0.0𝑥21 (𝑡 − 𝜏 (𝑡)) + 0.5𝑒−2𝑡
0.1𝑥21 (𝑡) + 0.05𝑥22 (𝑡 − 𝜏 (𝑡)) + 0.5𝑒−2𝑡] .

(44)

A straightforward computation yields that

𝐴1 = [−2 1
1 −2] ,

𝐵1 = [0.3 0.2
0.1 0.3] ,

𝐴2 = [−3 2
2 −3] ,

𝐵2 = [0.4 0.2
0.1 0.3] ,

𝑀1 = [0.1 0
0 0.1] ,

𝑁1 = [ 0 0.05
0.05 0 ] ,

𝑀2 = [ 0 0.1
0.1 0 ] ,

𝑁2 = [0.05 0
0 0.05] .

(45)

Choosing 𝜉 = (1, 1)𝑇, it can be seen that 𝜉𝑇𝐴𝑖 ≺ 0 for𝑖 = 1, 2, 𝛾1 = 1, 𝛾2 = 0.5, 𝛾5 = 0.1, 𝛾6 = 0.05, ℎ = 0.15.
Note that 𝛾1 > 𝛾2𝑒𝛾1ℎ and ∫∞0 𝑒𝛾1𝑡𝑒−2𝑡𝑑𝑡 < ∞. By Theorem 5
and Remark 6, system (1) is exponentially stable if ‖𝜙‖ℎ <((𝛾5 + 𝛾6𝑒2𝛾1ℎ)/(𝛾1 − 𝛾2𝑒𝛾1ℎ))1/(1−2) − 1 ≅ 0.5. Figure 3 shows
the state trajectories of the system, where the switching signal
is defined as in Figure 2.

Example 3. Consider system (1) with 𝑚 = 2, 𝜏(𝑡) = 0.5 +0.5 sin 𝑡,

𝐴1 (𝑡) = [0.5 sin 𝑡 − 2 sin 𝑡
cos 𝑡 0.5 cos 𝑡 − 2] ,

𝐵1 (𝑡) = [−0.2 sin 𝑡 0.1 cos 𝑡
0.1 cos 𝑡 −0.2 sin 𝑡] ,

𝐴2 (𝑡) = [
[
cos 𝑡 − 2 0.5𝑡1 + 𝑡0.5 sin 𝑡 sin 𝑡 − 2]]

,

𝐵2 (𝑡) = [0.1 sin 𝑡 0.1 cos 𝑡
0.2 sin 𝑡 0.1 cos 𝑡] ,

𝐹1 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))
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= [0.2𝑥1/31 (𝑡) + 0.1𝑥1/32 (𝑡) + 0.1𝑥1/32 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡
0.1𝑥1/31 (𝑡) + 0.1𝑥1/32 (𝑡) + 0.2𝑥1/31 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡] ,

𝐹2 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))
= [0.3𝑥1/31 (𝑡) + 0.2𝑥1/32 (𝑡) + 0.2𝑥1/32 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡

0.2𝑥1/31 (𝑡) + 0.3𝑥1/32 (𝑡) + 0.1𝑥1/31 (𝑡 − 𝜏 (𝑡)) + 𝑒−𝑡] .
(46)

Based on a direct computation, we get

𝐴1 = [−1.5 1
1 −1.5] ,

𝐵1 = [0.2 0.1
0.1 0.2] ,

𝐴2 = [−1 0.5
0.5 −1] ,

𝐵2 = [0.1 0.1
0.2 0.1] ,

𝑀1 = [0.2 0.1
0.1 0.1] ,

𝑁1 = [ 0 0.1
0.2 0 ] ,

𝑀2 = [0.3 0.2
0.2 0.3] ,

𝑁2 = [ 0 0.2
0.1 0 ] .

(47)

If we choose 𝜉 = (1, 1)𝑇, we have that 𝜉𝑇𝐴𝑖 ≺ 0 for 𝑖 = 1, 2,𝛾1 = 0.5, 𝛾2 = 0.3, ℎ = 1. Note that 𝛾1 > 𝛾2𝑒𝛾1ℎ, ∫∞0 𝑒𝛾1𝑡𝑒−𝑡𝑑𝑡 <∞, and (𝐻3) holds for appropriate constants 𝛾5 and 𝛾6. By
Theorem 7 and Remark 8, we conclude that each solution of
system (1) is bounded. Figure 4 shows the state trajectories
of the system, where the switching signal is defined as in
Figure 2.

5. Conclusions

The problem of state estimation for switched time-varying
systems with time-varying delay and nonlinear disturbance
has been discussed in this paper. When the nonlinear dis-
turbance satisfies linear and nonlinear growth conditions,
explicit global (local) state estimation criteria have been
established. For some particular cases, exponential stability
and boundness of the system are taken into consideration.
The method used in this paper is mainly based on the inte-
gral inequality technique. Finally, three numerical examples
demonstrate the effectiveness of our main results.
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Figure 1:The state trajectories of system (1)with 𝜏(𝑡) = 0.2+0.1 sin 𝑡.
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