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Traditional derivative pricing theories usually focus on the risk-neutral price or the equilibrium price. However, in highly
competitive financial markets, we observed two prices which are called bid and ask prices; then the unique risk-neutral price
fails to hold. In this paper, within the framework of conic finance, we provide a useful approach to evaluate the ask and bid prices
of geometric Asian options and obtain the explicit formulas for the ask and bid prices. Finally, numerical examples show that the
higher the market liquidity parameter 𝛾, the wider the spread and hence the less the liquidity.

1. Introduction

Asian options give the holder a payoff that depends on
the average price of the underlying over some prescribed
period. This averaging of the underlying can bring about
two significant advantages: one is to reduce the risk of
manipulating the underlying asset and the other is that it costs
less than standard American options and European options
(see Wilmott [1], chap. 25). Asian options are actively traded
in both exchanges and over-the-counter markets. In Black-
Scholes framework, the study of exotic options has attracted
the attention of many scholars.

Although there are many methods, such as the PDE
method, Martingale method, Monte Carlo simulation, and
the binomial tree, to solve option price, an efficient method
has not been found yet. The most important factor is that
the real market has many uncertain factors. As we all know,
in traditional financial mathematics, the foundations of the
option pricing theory are built on the paradigm of frictionless
and competitive markets. However, in the real market, the
risk elimination is typically unattainable and not available.
Furthermore, we observe two prices, one for buying from
the market called the ask price and another for selling to the
market called the bid price. Hence, in the real market, we can
no longer depend on the unique risk-neutral price (or the law
of one price or equilibrium price).

There are diversity of theoretical approaches to estimating
ask and bid prices. Barles and Soner [2], Cvitanić and

Karatzas [3], Constantinides [4], Lo et al. [5], and Jouini
and Kallal [6] attempted to study spreads which included
transaction costs of trading in liquid markets. Easley and
O’Hara [7] and Han and Shino [8] study price formation in
securities markets. Copeland and Galai [9] discuss the effects
of information on the bid-ask spread. Glosten and Milgrom
[10] focus on the effects of heterogeneously informed traders
on market makers. In [11–14] the researcher have carried out
inventory costs and order processing of liquidity providers. In
[15–18], statistical studies are used to model bid-ask spread.
However, these models are not effective enough to explain
the magnitude of the spreads observed in the markets. A new
theory is built up by Cherny and Madan [19, 20], referred to
as the conic finance theory. In the conic finance framework,
the market acts as a passive counterparty to all transactions,
buying at the ask price and selling at the bid price.The spread
between bid-ask prices is a measure of illiquidity.

Although there are a number of literatures based on conic
finance theory, they focus on credit risk [21, 22], design of
portfolio [23, 24], and hedging of financial and insurance
risks [25, 26]. To the best of our knowledge, there is no
literature research on valuation of ask and bid prices for
geometric Asian option. In this paper, within the framework
of conic finance, we lead to the explicit formulas for the ask
and bid prices of geometric Asian option.

The content of this paper is organized as follows. In
Section 2 we introduce the risk-neutral price for the geo-
metric Asian option. Within the framework of conic finance,
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Section 3 is devoted to estimating the bid-ask prices for
geometric Asian option. And we obtain the explicit formulas
for the bid-ask prices. In Section 4, we present numerical
results for the bid-ask prices. Finally, we finish our paper by
concluding remarks in the last section.

2. Geometric Asian Option under the Law of
One Price

In this section, we start with a brief description of the
geometric Asian option model presented in [27].

Under a probability space (Ω,F,P), Kemna and Vorst
[27] set up the pricing model in which the underlying asset
follows the geometric Brownian motion:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡, 0 ≤ 𝑡 ≤ 𝑇, 𝑆 (0) = 𝑆0 (1)

where 𝑟 is the risk-free rate and 𝜎 is volatility. And these
parameters are usually assumed to be constant. Let 𝑇 be the
maturity date and [𝑇0, 𝑇] be the final time interval over which
the average value of the stock is calculated. Let𝑉(𝑆𝑡, 𝑡) be the
option price with the underlying price 𝑆𝑡, time to maturity 𝑇,
and the strike price𝐾.Then, the price of the geometric Asian
option under the risk neutral measure P̃, at time 𝑡, may be
represented as follows:

𝑉 (𝑆𝑡, 𝑡) = 𝑒−𝑟(𝑇−𝑡)Ẽ [(𝐺𝑇 − 𝐾)+] , (2)

where 𝐺𝑇 is the geometric average of the underlying asset
prices during the time to the maturity 𝑇.

Kemna and Vorst [27] introduce a process 𝐺𝑇 defined by

𝐺𝑇 = exp( 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

(ln 𝑆𝑢) 𝑑𝑢) , (3)

to represent the geometric average of underlying asset 𝑆𝑡 until
the time 𝑇. And the discrete case equation (3) can be written
as follows:

𝐺𝑇 = ( 𝑛∏
𝑖=0

𝑆𝑇𝑖)
1/(𝑛+1) . (4)

In both continuous case (3) and discrete case (4), the
variable 𝐺𝑇 is log-normally distributed so that its expectation
and variance values may be calculated explicitly. For the
continuous case (3) the log-normal distribution is

log𝐺𝑇 ∼ 𝑁(12 (𝑟 − 12𝜎2) (𝑇 − 𝑇0)
+ log 𝑆𝑇0 , 13𝜎2 (𝑇 − 𝑇0)) .

(5)

Then, the price of geometric Asian call option at time 𝑇0 is
given as

𝑉(𝑆𝑇0 , 𝑇0) = 𝑆𝑇0𝑒𝑑∗𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑇0)𝑁(𝑑2) , (6)

where

𝑑∗ = −12 (𝑟 + 16𝜎2) (𝑇 − 𝑇0) ,
𝑑1 = log (𝑆𝑇0/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑇0)

𝜎√(1/3) (𝑇 − 𝑇0) ,

𝑑2 = 𝑑1 − 𝜎√ (𝑇 − 𝑇0)3 .

(7)

3. Estimation of Bid-Ask Prices Formula

In this section, within the framework of conic finance,
we derive the explicit formulas for the bid-ask prices of
geometric Asian options. We first present a brief description
of conic finance theory.Thenwe present ourmain conclusion
in the next section.

3.1. Conic Finance Theory. Conic finance is a brand-new
quantitative finance theory, which originates from the work
by Cherny and Madan [20] and Madan and Cherny [19]. The
key to the foundations of the conic finance is an underlying
concept of acceptable risks in the economy. Markets are
modeled as counterparty accepting at nonnegative stochastic
cash flow 𝑋 that have an acceptability level 𝛾. The theory
assumes that price depends on the direction of trade and there
are two prices, one for buying from the market called the ask
price 𝑎𝛾(𝑋) and one for selling to the market called the bid
price 𝑏𝛾(𝑋). The difference between both prices gives rise to
the bid-ask spread observed in financial markets.

Let 𝐿∞ fl 𝐿∞(Ω,F,P) be the space of all essentially
bounded. Madan and Cherny [19] derive these bid and ask
prices from the theory of acceptability indices (see [20]),
which are functions𝛼 : 𝐿∞ 󳨀→ [0,∞). In particular, they call
a net cash flow, or trade,𝑋 ∈ 𝐿∞ acceptable at an acceptability
level 𝛾 if and only if 𝛼(𝑋) ≥ 𝛾. Suppose that the marketmaker
sell a cash flow𝑋, for which driven by competition he charges
a minimal price of 𝑎. Nevertheless, the emerging remaining
cash flow 𝑎 − 𝑋 ought to be acceptable at level 𝛾. Hence, this
price 𝑎 would be the ask price of 𝑋. So the minimal price is
given by

𝑎𝛾 (𝑋) = inf {𝑎 : 𝛼 (𝑎 − 𝑋) ≥ 𝛾}
= inf {𝑎 : EQ [𝑎 − 𝑋] ≥ 𝛾 for any Q ∈ D𝛾}
= sup

Q∈𝐷𝛾

E
Q [𝑋] ,

(8)

where a family of sets of probability measures (𝐷𝛾)𝛾≥0 is
equivalent to the initial probability measure of P.

When the market maker buys 𝑋 for a price 𝑏, it is 𝑋 − 𝑏
that must be acceptable at level 𝛾 and the maximal price is

𝑏𝛾 (𝑋) = inf
Q∈𝐷𝛾

E
Q [𝑋] . (9)

As proposed by Madan and Cherny [20], parameter
family of distortion functions can be used to formulate
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an operational index of acceptability. The index 𝛼(𝑋) is
characterized as

𝛼 (𝑋) = sup{𝛾 ≥ 0 : ∫∞
−∞

𝑥𝑑𝜓𝛾 (𝐹𝑋 (𝑥))} , (10)

or

E
Q𝛾 [𝑋] = ∫∞

−∞
𝑥𝑑𝜓𝛾 (𝐹𝑋 (𝑥)) , (11)

where 𝑋 is an nonnegative stochastic variable, 𝐹𝑋(𝑥) is
the distribution function of 𝑋, and (𝜓𝛾)𝛾≥0 is a pointwise
increasing family of concave distortion functions.

Because the distortion function plays a crucial part in the
realization of explicit bid and ask prices, Cherny and Madan
[20] conclude a series of potential distortion function that
can be used. In the following definition, we first give some
particular distortion function that has been used extensively
in the literature.

Definition 1 (distortion function). A function 𝜓 : [0, 1] 󳨀→[0, 1] is a distortion function if and only if it is monotone,𝜓(0) = 0, 𝜓(1) = 1.
Definition 2 (Wang transform [28, 29]). Let Φ denote the
standard normal cumulative distribution function and let 𝛾
be a nonnegative constant. Then a distortion function 𝜓𝛾 :[0, 1] 󳨀→ [0, 1] defined by

𝜓𝛾 (𝑢) = Φ (Φ−1 (𝑢) + 𝛾) (12)

is called the Wang transform.

Definition 3 (the Maxminvar distortion function [20]). The
concave distortion function is given by

𝜓𝛾 (𝑢) = (1 − (1 − 𝑢)1+𝛾)1/(1+𝛾) ,
∀𝑢 ∈ [0, 1] , 𝛾 ≥ 0. (13)

Definition 4 (the Minmaxvar distortion function [20]). The
concave distortion function is given by

𝜓𝛾 (𝑢) = 1 − (1 − 𝑢1/(1+𝛾))1+𝛾 , ∀𝑢 ∈ [0, 1] , 𝛾 ≥ 0. (14)

Froma family of concave distortion functions (𝜓𝛾 )𝛾≥0 and
the properties of the distortion expectation (11), Cherny and
Madan [19] lead to the following formulas of bid-ask prices.

𝛼 (𝑎 − 𝑋) ≥ 𝛾 ⇐⇒
∫∞
−∞

𝑥𝑑𝜓𝛾 (𝐹𝑎−𝑋 (𝑥)) ≥ 0 ⇐⇒
𝑎 + ∫∞
−∞

𝑥𝑑𝜓𝛾 (𝐹−𝑋 (𝑥)) ≥ 0,
(15)

so that the minimum value of 𝑎 leads to the ask price:
𝑎𝛾 (𝑋) = −∫∞

−∞
𝑥𝑑𝜓𝛾 (𝐹−𝑋 (𝑥)) . (16)

Analogously, the maximum of 𝑏 leads to the bid price:

𝛼 (𝑋 − 𝑏) ≥ 𝛾 ⇐⇒
∫∞
−∞

𝑥𝑑𝜓𝛾 (𝐹𝑋−𝑏 (𝑥)) ≥ 0 ⇐⇒
−𝑏 + ∫∞

−∞
𝑥𝑑𝜓𝛾 (𝐹𝑋 (𝑥)) ≥ 0;

(17)

we obtain

𝑏𝛾 (𝑋) = ∫∞
−∞

𝑥𝑑𝜓𝛾 (𝐹𝑋 (𝑥)) . (18)

Under a nonadditive probability using Choquet expecta-
tion which introduced by Choquet in [30], the bid-ask prices
(16)-(18) may also be presented in the following definition.

Definition 5 (single-period bid-ask prices [19]). Let (𝜓𝛾)𝛾≥0
be a pointwise increasing family of concave distortion func-
tions and 𝛾 is the market liquidity level.Then, the bid price of
a discounted cash flow 𝑋 ∈ 𝐿∞ is given by

𝑏𝛾 (𝑋) = E
𝜓𝛾 [𝑋] = (𝐶) ∫𝑋 𝑑𝜓𝛾 ∘ P

= −∫0
−∞

𝜓𝛾 (P (𝑋 ≤ 𝑥)) 𝑑𝑥
+ ∫∞
0

(1 − 𝜓𝛾 (P (𝑋 ≤ 𝑥))) 𝑑𝑥
(19)

and its ask price is

𝑎𝛾 (𝑋) = −E𝜓𝛾 [−𝑋]
= ∫0
−∞

(𝜓𝛾 (P (𝑋 > 𝑥)) − 1) 𝑑𝑥
+ ∫∞
0

𝜓𝛾 (P (𝑋 > 𝑥)) 𝑑𝑥
(20)

In particular, for 𝛾 = 0, the bid-ask prices are equivalent
and they reduce to the regular Black-Scholes formula which
is undistorted under the risk-neutral probability measure. In
addition, we also have the relation as follows:

𝑏𝛾 (𝑋) ≤ E [𝑋] ≤ 𝑎𝛾 (𝑋) . (21)

3.2. Bid-Ask Formulas for Geometric Asian Option. In this
subsection, we give our main conclusion. For evaluation of
the explicit formulas for the bid-ask prices of geometric
Asian options, we first use the distortion function based on
the Wang Transform from Definition 2. Furthermore, by
using Choquet expectation in Definition 5 we can derive
the bid-ask price explicit formulas of the geometric Asian
call and put options. The following theorem shows our main
results.
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Theorem 6. Assume that the distortion function 𝜓𝛾(𝑢) is the
WangTransform; then the bid-ask prices of the geometric Asian
call option at time 𝑡 is given by

𝑏𝛾 (𝐶) = 𝑆𝑡𝑒𝑑𝑏Φ(𝑑𝑏1) − 𝑒−𝑟(𝑇−𝑡)𝐾Φ(𝑑𝑏2) , (22)

𝑎𝛾 (𝐶) = 𝑆𝑡𝑒𝑑𝑎Φ(𝑑𝑎1) − 𝑒−𝑟(𝑇−𝑡)𝐾Φ(𝑑𝑎2) , (23)

and the bid-ask prices of the geometric Asian put option at time𝑡 are given by

𝑏𝛾 (𝑃) = 𝑒−𝑟(𝑇−𝑡)𝐾Φ(𝑑𝑏2) − 𝑆𝑡𝑒𝑑𝑏Φ(𝑑𝑏1) , (24)

𝑎𝛾 (𝑃) = 𝑒−𝑟(𝑇−𝑡)𝐾Φ(𝑑𝑎2) − 𝑆𝑡𝑒𝑑𝑎Φ(𝑑𝑎1) , (25)

where

𝜏 = 𝑇 − 𝑡,
𝑑𝑏1 = ln (𝑆𝑡/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) 𝜏𝜎√(1/3) 𝜏 − 𝛾,
𝑑𝑏2 = 𝑑𝑏1 − 𝜎√𝜏3 ,
𝑑𝑎1 = ln (𝑆𝑡/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) 𝜏𝜎√(1/3) 𝜏 + 𝛾,
𝑑𝑎2 = 𝑑𝑎1 − 𝜎√𝜏3 ,
𝑑𝑏 = −12 (𝑟 + 16𝜎2) 𝜏 − 𝛾𝜎√𝜏3 ,
𝑑𝑎 = −12 (𝑟 + 16𝜎2) 𝜏 + 𝛾𝜎√𝜏3 ,
𝑑𝑏1 = ln (𝐾/𝑆𝑡) − (1/2) (𝑟 + (1/6) 𝜎2) 𝜏𝜎√(1/3) 𝜏 − 𝛾,
𝑑𝑏2 = 𝑑𝑏1 + 𝜎√𝜏3 ,
𝑑𝑎1 = ln (𝐾/𝑆𝑡) − (1/2) (𝑟 + (1/6) 𝜎2) 𝜏𝜎√1/3𝜏 + 𝛾,
𝑑𝑎2 = 𝑑𝑎1 + 𝜎√𝜏3 ,
𝑑𝑏 = −12 (𝑟 + 16𝜎2) 𝜏 + 𝛾𝜎√𝜏3 ,
𝑑𝑎 = −12 (𝑟 + 16𝜎2) 𝜏 − 𝛾𝜎√𝜏3 .

(26)

In particular, for 𝛾 = 0, the bid-ask prices are equivalent
and the bid-ask prices of geometric Asian call option reduce to
formula (6).

Proof. Let the payoff of geometric Asian call option be 𝐶𝑇 =(𝐺𝑇 − 𝐾)+, with 𝐺𝑇 being the geometric average of the
underlying asset price during the time 𝑡 to thematurity𝑇.The
continuous case of 𝐺𝑇 is defined by (3). And (5) shows that
random variable 𝐺𝑇 has a lognormal distribution; it means
that

𝐹𝐺𝑇 (𝑥)
= Φ( log (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√(1/3) (𝑇 − 𝑡) ) , (27)

where Φ is the standard normal cumulative distribution
function.

Now, by using Choquet expectation in Definition 5, we
can derive the bid price of the geometric Asian call option:

𝑏𝛾 (𝐶) = E
𝜓𝛾 [𝐶𝑇] = (𝐶) ∫𝐶𝑇 𝑑𝜓𝛾 ∘ P

= ∫∞
0

𝑥𝑑𝜓𝛾 (𝐹𝐶𝑇 (𝑥))
= ∫∞
𝐾

(𝑥 − 𝐾) 𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥))
= ∫∞
𝐾

𝑥𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥)) − ∫∞
𝐾

𝐾𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥))
fl 𝐴1 − 𝐵1.

(28)

If we apply the Wang transform (12) to the distribution
function 𝐹𝐺𝑇 , we will get the following representation:

𝜓𝛾 (𝐹𝐺𝑇 (𝑥)) = Φ (Φ−1 (𝐹𝐺𝑇 (𝑥)) + 𝛾)
= Φ( log (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√(1/3) (𝑇 − 𝑡)
+ 𝛾) .

(29)

And, if 𝑋 ∼ Lognormal (𝜇, 𝜎2) with cumulative distribution
function (CDF) 𝐹𝑋(𝑥), then we can obtain

∫∞
𝐾

𝑥𝑑𝐹𝑋 (𝑥) = ∫∞
𝐾

𝑥𝑑Φ( ln𝑥 − 𝜇𝜎 )
= 1𝜎√2𝜋 ∫∞

ln𝐾
𝑒𝑦𝑒−(𝑦−𝜇)2/2𝜎2𝑑𝑦

= 1𝜎√2𝜋 ∫∞
ln𝐾

𝑒𝜇+1/2𝜎2𝑒−(𝑦−(𝜇+𝜎2))2/2𝜎2𝑑𝑦
= 𝑒𝜇+1/2𝜎2Φ(𝜇 + 𝜎2 − ln𝐾𝜎 ) .

(30)

By using (29) and (30), we can calculate the integral 𝐴1
in (28). It is shown that
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𝐴1 = ∫∞
𝐾

𝑥𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥)) = ∫∞
ln𝐾

𝑒𝑦𝑑Φ(𝑦 − ln 𝑆𝑡 − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(𝑇 − 𝑡) /3 + 𝛾)

= 1√2𝜋 ∫∞
ln𝐾

1𝜎√(𝑇 − 𝑡) /3 ⋅ exp[[−
((𝑦 − ln 𝑆𝑡 − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)) /𝜎√(𝑇 − 𝑡) /3 + 𝛾)2

2 + 𝑦]]𝑑𝑦

= exp(ln 𝑆𝑡 + 12 (𝑟 − 12𝜎2) (𝑇 − 𝑡) − 𝛾𝜎√ (𝑇 − 𝑡)3 + 16𝜎2 (𝑇 − 𝑡))

⋅ Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡) + (1/3) 𝜎2 (𝑇 − 𝑡)
𝜎√1/3 (𝑇 − 𝑡) − 𝛾)

= exp(ln 𝑆𝑡 + 12 (𝑟 − 16𝜎2) (𝑇 − 𝑡) − 𝛾𝜎√ (𝑇 − 𝑡)3 ) ⋅ Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) − 𝛾) .

(31)

And the second integral 𝐵1 in (28) can be calculated as

𝐵1 = ∫∞
𝐾

𝐾𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥))
= ∫∞
𝐾

𝐾𝑑Φ( ln𝑥 − ln 𝑆𝑡 − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

+ 𝛾) = 𝐾(1

− Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) + 𝛾))

= 𝐾Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) − 𝛾) .

(32)

Substituting (31) and (32) into (28) and multiplying by a
discount factor 𝑒−𝑟(𝑇−𝑡), we can get the following expression
for the bid price:

𝑏𝛾 (𝐶) = 𝑆𝑡 exp(−12 (𝑟 + 16𝜎2) (𝑇 − 𝑡)

− 𝛾𝜎√ (𝑇 − 𝑡)3 )

⋅ Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾)

− 𝑒−𝑟(𝑇−𝑡)𝐾Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾) .
(33)

Now, by usingChoquet expectation inDefinition 5 we can
derive the ask price of the geometric Asian call option:

𝑎𝛾 (𝐶) = −E𝜓𝛾 [−𝐶𝑇] = −∫0
−∞

𝑥𝑑𝜓𝛾 (𝐹−𝐶𝑇 (𝑥))
= −∫0
−∞

𝑥𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝐾 − 𝑥))
= −∫∞
0

𝑥𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝐾 + 𝑥))
= −∫∞
𝐾

(𝑥 − 𝐾) 𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥))
= −∫∞
𝐾

𝑥𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥))
+ ∫∞
𝐾

𝐾𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥)) š 𝐴2 + 𝐵2.

(34)

Similar to the way in which we obtain the bid price. From
(27), (30), and Wang transform (12), we get the first integral
in (34) as follows:

𝐴2 = −∫∞
𝐾

𝑥𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥)) = −∫∞
𝐾

𝑥𝑑𝜓𝛾( ln (𝑆𝑡/𝑥) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(𝑇 − 𝑡) /3 )
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= −∫∞
𝐾

𝑥𝑑Φ( ln (𝑆𝑡/𝑥) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(𝑇 − 𝑡) /3 + 𝛾)

= ∫∞
𝐾

𝑥𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(𝑇 − 𝑡) /3 − 𝛾)

= exp(ln 𝑆𝑡 + 12 (𝑟 − 12𝜎2) (𝑇 − 𝑡) + 𝛾𝜎√ (𝑇 − 𝑡)3 + 16𝜎2 (𝑇 − 𝑡))

⋅ Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡) + (1/3) 𝜎2 (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) + 𝛾) ,

(35)

and the second integral can be calculated as

𝐵2 = ∫∞
𝐾

𝐾𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥))

= ∫∞
𝐾

𝐾𝑑Φ( ln (𝑆𝑡/𝑥) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

+ 𝛾)

= −∫∞
𝐾

𝐾𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾) = −𝐾(1

− Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) − 𝛾))

= −𝐾Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

+ 𝛾) .

(36)

By combining parts 𝐴2 and 𝐵2 and considering the
continuous discount factor 𝑒−𝑟(𝑇−𝑡), we have the ask price:
𝑎𝛾 (𝐶) = 𝑆𝑡 exp(−12 (𝑟 + 16𝜎2) (𝑇 − 𝑡)

+ 𝛾𝜎√ (𝑇 − 𝑡)3 )

⋅ Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

+ 𝛾)

− 𝑒−𝑟(𝑇−𝑡)𝐾Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

+ 𝛾)

(37)

In addition, we show the bid-ask prices of the geometric
Asian put option. Let 𝑃𝑇 = (𝐾 − 𝐺𝑇)+; by utilizing Choquet
expectation in Definition 5 and transformations (29) and
(30), we can derive the bid price of the geometric Asian put
option as follows:

𝑏𝛾 (𝑃) = E
𝜓𝛾 [𝑃𝑇] = ∫∞

0
𝑥𝑑𝜓𝛾 (𝐹𝑃𝑇 (𝑥)) = ∫∞

0
𝑥𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝐾 − 𝑥)) = −∫𝐾

0
(𝐾 − 𝑥) 𝑑𝜓𝛾 (1 − 𝐹𝐺𝑇 (𝑥))

= ∫𝐾
0
(𝐾 − 𝑥) 𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√(1/3) (𝑇 − 𝑡) − 𝛾) .
(38)

Conducting the same calculation steps that we used
during the derivation of the bid price of the call option, we
split the integral into two parts as follows:

𝐴 = ∫𝐾
0
𝐾𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√(1/3) (𝑇 − 𝑡)
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− 𝛾)

= 𝐾Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐾

0

= 𝐾Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾) ,
(39)

and

𝐵 = ∫𝐾
0
𝑥𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√(1/3) (𝑇 − 𝑡) − 𝛾)

= {∫∞
0

−∫∞
𝐾

}𝑥𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) − 𝛾)

= exp(ln 𝑆𝑡 + 12 (𝑟 − 12𝜎2) (𝑇 − 𝑡) + 𝛾𝜎√ (𝑇 − 𝑡)3 + 16𝜎2 (𝑇 − 𝑡))

⋅ (1 − Φ( ln (𝑆𝑡/𝐾) + (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡) + (1/3) 𝜎2 (𝑇 − 𝑡)
𝜎√(𝑇 − 𝑡) /3 + 𝛾))

= 𝑆𝑡 exp(12 (𝑟 − 12𝜎2) (𝑇 − 𝑡) + 𝛾𝜎√ (𝑇 − 𝑡)3 + 16𝜎2 (𝑇 − 𝑡))

⋅ Φ( ln (𝐾/S𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡) − (1/3) 𝜎2 (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) − 𝛾) .

(40)

Substituting the results of the two integrals in (38) and
multiplying by a discount factor 𝑒−𝑟(𝑇−𝑡), we get the bid price
of put option as follows:

𝑏𝛾 (𝑃)
= 𝑒−𝑟(𝑇−𝑡)𝐾Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√1/3 (𝑇 − 𝑡)
− 𝛾) − 𝑆𝑡 exp(−12 (𝑟 + 16𝜎2) (𝑇 − 𝑡)

+ 𝛾𝜎√ (𝑇 − 𝑡)3 )

⋅ Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡)

− 𝛾)

(41)

Finally, by the same methods that we used in the calcula-
tion process of ask price of the geometric Asian call option,

we can get the formula of the ask price of the geometric Asian
put option:

𝑎𝛾 (𝑃) = −E𝜓𝛾 [−𝑃𝑇] = −∫0
−∞

𝑥𝑑𝜓𝛾 (𝐹−𝑃𝑇 (𝑥))
= −∫0
−∞

𝑥𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝐾 + 𝑥)) = −∫∞
0

𝑥𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝐾 − 𝑥))
= ∫𝐾
0
(𝐾 − 𝑥) 𝑑𝜓𝛾 (𝐹𝐺𝑇 (𝑥))

= ∫𝐾
0
(𝐾 − 𝑥) 𝑑Φ( ln (𝑥/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)

𝜎√1/3 (𝑇 − 𝑡) + 𝛾)

= 𝑒−𝑟(𝑇−𝑡)𝐾Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 − (1/2) 𝜎2) (𝑇 − 𝑡)
𝜎√1/3 (𝑇 − 𝑡) + 𝛾)

− 𝑆𝑡 exp(−12 (𝑟 + 16𝜎2) (𝑇 − 𝑡) − 𝛾𝜎√ (𝑇 − 𝑡)3 )

⋅ Φ( ln (𝐾/𝑆𝑡) − (1/2) (𝑟 + (1/6) 𝜎2) (𝑇 − 𝑡)
𝜎√(1/3) (𝑇 − 𝑡) + 𝛾)

(42)

This completes the proof of Theorem 6.



8 Discrete Dynamics in Nature and Society

Table 1: The bid-ask prices for geometric Asian options at different 𝛾 with 𝑟 = 0.02, 𝜎 = 0.8, 𝑡 = 0, 𝑇 = 3/12.
Level 𝑆0 K Call Put

ask bid spread ask bid spread
0 100 90 10.752 10.752 0 0.048 0.048 0

100 2.748 2.748 0 1.845 1.845 0
110 0.178 0.178 0 9.077 9.077 0

0.02 100 90 10.864 10.641 0.223 0.050 0.045 0.005
100 2.814 2.682 0.131 1.894 1.797 0.097
110 0.186 0.170 0.016 9.183 8.971 0.212

0.4 100 90 13.031 8.575 4.456 0.129 0.016 0.113
100 4.250 1.629 2.621 2.985 1.037 1.948
110 0.420 0.066 0.354 11.224 7.009 4.216

0.9 100 90 15.984 6.068 9.916 0.372 0.003 0.369
100 6.613 0.737 5.875 4.844 0.434 4.410
110 1.045 0.016 1.029 13.924 4.669 9.256
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Figure 1: The price information for geometric Asian options at
different 𝛾 with 𝑆0 = 78, 𝐾 = 76, 𝑟 = 0.02, 𝜎 = 0.8, 𝑡 = 0, 𝑇 = 3/12.

4. Numerical Examples

In this section, we present numerical results obtained for the
geometricAsian option pricingmodel proposed in this paper.
Assume the risk-free interest rate 𝑟 being 8% per annum, the
stock price volatility 𝜎 being 20%, and the geometric Asian
option with 3 months to expiry (i.e., 𝑇 = 3/12). We show
the bid-ask prices for the geometric Asian option with the
different market liquidity parameter 𝛾, which are displayed
in Table 1 and Figure 1.

Table 1 provides the numerical results for the bid-ask
prices of geometric Asian put and call options. For 𝛾 = 0,
the ask and bid prices are equivalent and they reduce to the
analytic expression (6) presented by Kemna and Vorst [27].
Figure 1 plots bid-ask spread for the geometric Asian put and
call options at different static market liquidity parameter 𝛾.
The spread between bid-ask prices is a measure of illiquidity.

The nonnegative parameter 𝛾 gives an indication of the
markets’ liquidity: the higher the 𝛾, the wider the spread and
hence the less the liquidity.

5. Conclusion

In this paper, within the framework of conic finance, we
propose a useful approach to evaluate the ask and bid prices of
geometric Asian options and obtain the explicit formulas for
the ask and bid prices. Finally, by using the explicit formulas
of geometric Asian options, we carry out the impacts of the
static market liquidity parameter 𝛾 on bid-ask prices.
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