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Over the last few decades, evolutionary algorithms (EAs) have been widely adopted to solve complex optimization problems. 
However, EAs are powerless to challenge the constrained optimization problems (COPs) because they do not directly act to reduce 
constraint violations of constrained problems. In this paper, the robustly global optimization advantage of arti�cial bee colony 
(ABC) algorithm and the stably minor calculation characteristic of constraint consensus (CC) strategy for COPs are integrated into 
a novel hybrid heuristic algorithm, named ABCCC. CC strategy is fairly e�ective to rapidly reduce the constraint violations during 
the evolutionary search process. �e performance of the proposed ABCCC is veri�ed by a set of constrained benchmark problems 
comparing with two state-of-the-art CC-based EAs, including particle swarm optimization based on CC (PSOCC) and di�erential 
evolution based on CC (DECC). Experimental results demonstrate the promising performance of the proposed algorithm, in terms 
of both optimization quality and convergence speed.

1. Introduction

Optimization problems occur in many disciplines, for example, 
in engineering [1], physical sciences [2], social sciences [3], and 
commerce [4]. In real-world applications, optimization is 
carried out under certain physical limitations, with limited 
resources. If these limitations can be quanti�ed as equality or 
inequality constraints on the variables, then a constrained 
optimization problem can be formulated whose solution leads 
to an optimal solution that satis�es the limitations imposed [5].

Constraint optimization problem, where the objective 
functions are optimized under given constraints, isvery 
important and frequently appears in practical applications. 
�e general constrained optimization problem with inequality, 
equality, upper bound, and lower bound constraints is de�ned 
as follow:

where � = (�1, �2, . . . , ��) are �-dimensional variables, �(�)
is an objective function, �(�) is inequality constraint, ℎ(�) is 

equality constraint, and � is the number of inequality or equal-
ity constraints. �e values �� and �� are the lower bound and 
the upper bound of ��, respectively. �e upper and lower 
bounds de�ne the search space. �e inequality and equality 
constraints de�ne the feasible region. �erefore, the point in 
the feasible domain or the boundary is a feasible point, oth-
erwise it is not feasible.

Due to the complexity of constraint optimization prob-
lems, traditional evolutionary algorithms are di�cult to solve. 
Meanwhile, evolutionary algorithms are search techniques 
mostly based on unconstrained optimization problems, the 
optimum solution may not be accurate when utilizing these 
to solve constrained optimization problems. For this reason, 
it is necessary to combine a suitable constraint handling tech-
nique to handle constraint optimization problems. Researchers 
have proposed various kinds of constraint handling techniques 
in recent years. �e speci�c content will be discussed in the 
section below.

For constrained problem, it is widely acceptable that, dur-
ing the search process, the ability of considering the �tness 
and feasibility improvement is bene�cial for the optimizer to 
�nd out the feasible optimal solution more e�ectively and e�-
ciently than the existing search operators. For this purpose, a 

(1)

min �(�),
s.t. ��(�) ≤ 0, � = 1, 2, . . . , �,ℎ�(�) = 0, � = � + 1, . . . , �,�� ≤ �� ≤ �, � = 1, 2, . . . , �,
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novel arti�cial bee colony based on constrained consensus 
strategy (ABCCC) is elaborated. Arti�cial bee colony (ABC) 
algorithm proposed by Karaboga is a latest heuristic algorithm, 
which is inspired by the foraging behavior of honey bees for 
numerical optimization problems [6]. Compared with di�er-
ential evolution (DE) and particle swarm optimization (PSO), 
ABC algorithm has two distinct advantages: (1) ABC is very 
good in terms of the local and the global optimization. (2) 
ABC is ¢exible, robust and simple to use. It can be used e�-
ciently in the optimization of multimodal and multi-variable 
problems. For driving individuals moving towards the feasible 
region, the constraint consensus (CC) strategy is employed 
into ABC algorithm. �e CC strategy has the following advan-
tages: (1) CC strategy is simple to implement and that has been 
proved e�ective in the past tests [7]. (2) CC has minor calcu-
lation and best calculating stability. To e�ectively combine 
ABC algorithm and CC strategy, the treatment of infeasible 
individuals is re-designed. �at is, some of the infeasible indi-
viduals are evolved by CC strategy, the remaining infeasible 
ones and feasible individuals are reproduced by ABC algo-
rithm. To verify the characteristics of ABCCC, 10-�, and 30-�
CEC2017 benchmark functions are adopted to test its perfor-
mance. �e experiment shows that, in most cases, ABCCC 
converges faster and has an exact precision in terms of con-
vergence accuracyand it can consider the problem of popula-
tion diversity well. �e proposed ABCCC is highly competitive 
than DECC and PSOCC and this algorithm is utilized to com-
pare with famous constraint algorithms, CALSHADE [8] and 
UDE [9]. �e experimental results show that ABCCC outper-
forms the other algorithms. Many variants of ABC algorithm, 
such as CABC [10] and GABC [11], have been proposed by 
researchers in recent years. �e proposed ABCCC algorithm 
is also compared with CABCCC and GABCCC. ABCCC algo-
rithm performs better than the other two algorithms.

�is paper is organized as follows. A¨er the Introduction, 
Section 2 elaborates the constraint handling techniques in 
detail. Section 3 states the related works before describing the 
proposed algorithm in Section 4. Detail of the proposed new 
algorithm is in Section 4. �e experimental results and analysis 
are presented in Section 5. Finally, the conclusion is given in 
Section 6.

2. Constraint Handling Techniques

A great deal of work has already been undertaken on con-
straint handling techniques. �e constraint handling tech-
niques can be divided into four categories: (1) penalty 
functions; (2) special representations and operators; (3) sep-
aration of constraints and objectives; (4) hybrid methods. 
Substances of each category are brie¢y described below.

2.1. Penalty Functions. �is method was originally proposed 
by Richard Courant in the 1940s and was later expanded 
by Alice and David [12]. It is one of the main approaches 
o¨en used by researchers. �e idea of penalty functions is 
to transform a constrained optimization problem into an 
unconstrained one by adding (or subtracting) a certain value 
to the objective function based on the amount of constraint 

violation present in a certain solution [13]. �e general 
formulation of the penalty function is

where

where �� and �� are the functions of the inequality constraints ��(�), and the equality constraints ℎ�(�), respectively. �� and Φ� are the positive constants that are normally called “penalty 
factors”.

�ere are di�erent types of the penalty functions, such as: 
(1) static penalty [14]; (2) dynamic penalty [15]; (3) death 
penalty [16]; and (4) adaptive penalty [17]. �e main problem 
with penalty functions is the “ideal” penalty factor which will 
be adopted. If the penalty is too high, the evolutionary 
algorithms will be pushed inside the feasible region quickly. On 
the other hand, if the penalty is too low, a lot of the search time 
will be spent exploring the infeasible region because the penalty 
will be negligible with respect to the objective function [18].

In recent years, some modern constraint handling 
approaches, which use penalty functions deserve special 
consideration, since they are highly competitive. Runarsson and 
Yao [19] proposed SR method to achieve a balance, between 
objective function and the overall constraint violation, 
stochastically. An interesting aspect of the approach is that it 
doesn’t require the de�nition of a penalty factor. Instead, it 
requires a user-de�ned parameter called ��, which determines 
the balance between the objective function and the penalty 
function. �e basic form of the method is presented in Table 1.

�e main advantage of SR is its simplicity. However, it can’t 
guarantee any expected diversity measures since its ranking 
is stochastic.

�e �-constraint handling method was proposed in [20] 
in which the relaxation of the constraints is controlled by using 
the � parameter.

where � is the generation counter and �� is the control 
generation. �e recommended parameter ranges are �� ∈ [0.1�max

, 0.8 �
max
] and �� ∈ [2, 10] [20]. �e � level 

comparisons are basically de�ned as a lexicographic order, in 
which the violation precedes the objective value, because the 
feasibility of a point � is more important than the minimization 
of its objective value [21].�is method has the ability to 

(2)
�(�) = {�(�) if all constraints are feasible,�(�) ± penalty otherwise,

(3)penalty = �∑
�
Ψ� × �� +

�∑
�
Φ� × ��,

(4)�(�) = { �(0)(1 − �/��)�� 0 < � < ��,0 � ≥ ��,

Table 1: Stochastic ranking.

if (no constraint violation or rand < ��)
 rank based on the objective value only
else
 rank based on the constraint violation only
end
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maintain reasonable diversity. However, extra parameters have 
been a negative issue for this method.

2.2. Special Representations and Operators. Some researchers 
have developed special representation schemes to tackle a 
certain (particularly di�cult) problem for which a generic 
representation scheme might not be appropriate.

A more intriguing idea is to transform the whole feasible 
region into a di�erent shape that is easier to explore. �e most 
important approaches designed along these lines are the 
“homomorphous maps” [22]. �is approach performs a homo-
morphous mapping between an �-dimensional cube and a 
feasible search space (either convex or non-convex). �e main 
idea of this approach is to transform the original problem into 
another function that is easier to optimize by an evolutionary 
algorithm.

�e Homomorphous Maps (HM) was the most competi-
tive constraint handling approach for some time. However, 
the implementation of the algorithm is complex, and the 
experiments reported required a high number of �tness func-
tion evaluations [23].

2.3. Separation of Constraints and Objectives. Unlike penalty 
functions which combine the value of the objective function 
and the constraints of a problem to assign �tness, these 
approaches handle constraints and objectives separately.

Superiority of feasible points [24, 25], the idea of this tech-
nique is to assign always a higher �tness to feasible solutions. 
�is approach considers solutions under the feasibility rules 
when selecting individuals. Feasible ones are always consid-
ered better than the infeasible ones. Two infeasible individuals 
are compared based on their constraint violations. �en the 
feasible ones are compared based on their objective function 
values only. �e main disadvantage of this approach is the 
losses in diversity between solutions.

In [26], a multi-objective method with local and global 
search operators was proposed to solve constrained optimization 
problems. In this method, each constraint is treated as an objec-
tive to be optimized. One of the main drawbacks of this approach 
is the extra number of parameters and the time needed.

2.4. Hybrid Methods. Within this category, some methods may 
be considered when coupled with another technique.

Chen et al. [27] proposed a hybrid EA that integrates the 
penalty function method with the primal-dual method. �is 
approach is based on sequential minimization of the 
Lagrangian method.

Bernardino et al. [28] proposed a GA hybridized with an 
AIS. �e idea is to adopt as antigens some feasible solutions 
and evolve (in an inner GA) the antibodies (i.e., the infeasible 
solutions) so that they are “similar” (at a genotypic level) to 
the antigens.

3. Related Works

3.1. Classical ABC Algorithm. In a natural bee swarm, there 
are three kinds of honey bees to search foods generally, which 
include the employed bees, the onlookers, and the scouts (both 

the onlookers and the scouts are also called unemployed 
bees). �e employed bees search the food around the food 
source in their memory, meanwhile they deliver their food 
information to the onlookers. �e onlookers tend to select 
good food sources from those founded by the employed 
bees, then further search the foods around the selected food 
source. �e scouts are translated from a few employed bees, 
which abandon their food sources and search new ones. In a 
word, the food search of bees is collectively performed by the 
employed bees, the onlookers, and the scouts [29].

By simulating the foraging behaviors of honey bee swarm, 
Karaboga recently invented ABC algorithm for numerical func-
tion optimization [6]. �e pseudo code for the ABC algorithm 
is listed in Table 2 and the detail descriptions are given below.

In initialization phase, the algorithm generates a group of 
food sources corresponding to the solutions in the search 
space [30]. �e food sources are produced randomly within 
the range of the boundaries of the variables.

where � = 1, 2, . . . , SN, � = 1, 2, . . . , �. SN is the number of 
food sources and equals to half of the colony size. � is the 
dimension of the problem, representing the number of param-
eters to be optimized. �min

�  and �max
�  are lower and upper 

bounds of the �th parameter. �e �tness of food sources will 
be evaluated. Additionally, counters which store the number 
of trials of each bee are set to 0 in this phase.

In the employed bees’ phase, each employed bee is sent to 
the food source in its memory and �nds a neighboring food 
source. �e neighboring food source is produced according 
to Equation (6) as follows.

where � is a randomly selected food source di�erent from �, �
is a randomly selected dimension. � is a random number 
which is uniformly distributed in range [−1, 1]. �e new food 
source � is determined by changing one dimension on �. If the 
value in this dimension produced by this operation exceeds 
its predetermined boundaries, it will set to be the 
boundaries.

�e new food source is then evaluated. A greedy selection 
is applied on the original food source and the new one. �e 
better one will be kept in the memory. �e trials counter of 
this food will be reset to zero if the food source is improved, 
otherwise, its value will be incremented by one.

In the onlooker bees’ phase, the onlookers receive the 
information of the food sources shared by employed bees. 
�en they will each choose a food source to exploit, depending 
on a probability related to the nectar amount of the food 
source (�tness values of the solution). �at is to say, there may 
be more than one onlooker bee choosing the same food source 
if the source has a higher �tness. �e probability is calculated 
according to Equation (7) as followed.

(5)��,� = �min

� + rand (0, 1)(�max

� − �min

� ),

(6)��,� = ��,� + �(��,� − ��,�),

(7)�� = fitness�

∑SN�=1fitness� .
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where ∇�(�) is the gradient of the constraint, and ‖∇�(�)‖ is 
its length, � is the constraint violation ∇�(�) − �, � = 0 for 
satis�ed constraints, and �� is the right side of the constraint, � is +1 if it is necessary to increase �(�) to satisfy the constraint, 
and −1 if it is necessary to decrease �(�) to satisfy the 
constraint.

�e consensus vector is constructed by component-wise 
averaging of the feasibility vectors for the violated constraints. 
Let �� represent the number of violated constraints that have 
variable �� as a component, ��� represents the component for 
variable �� in the feasibility vector for the �th constraint, and �� represents the sum of the ��� for variable �� over the feasibility 
vectors for all of the violated constraints. �e component of 
the consensus vector for variable �� is then given by ��/��. If 
this vector is too short, then the iterations are halted with an 
unsuccessful outcome [7].

�e constraint consensus algorithm is summarized in 
Table 3. �e algorithm halts when every constraint has a con-
straint violation of zero or a feasibility distance is less than �, 
i.e., NINF is zero.

4. Constraint Consensus Update-Based ABC 
Algorithm

In this section, the overall ¢ow chart of the proposed algorithm 
is introduced and discussed �rst.

(8)�� = ��∇�(�)‖∇�(�)‖2 ,
A¨er food sources have been chosen, each onlooker bee �nds 
a new food source in its neighborhood following Equation (6), 
just like the employed bee does. A greedy selection is applied 
on the new and original food sources, too.

In scout bees’ phase, if a food source hasn’t been improved 
for a predetermined cycle, which is a control parameter called 
“limit”, the food source is abandoned and the bee becomes a scout 
bee. A new food source will be produced randomly in the search 
space using Equation (5), as in the case of initialization phase.

�e employed, onlooker and scout bees’ phase will recycle 
until the termination condition is met. �e best food source 
which presents the best solution is then outputted.

3.2. Constraint Consensus Strategy. CC strategy, using a variety 
of projection algorithms to solve the feasibility problems with 
nonlinear and nonconvex constraints. �e key idea is to help 
a currently infeasible solution to quickly move to the feasible 
region or move close to the feasible region by constructing a 
consensus among the currently violated constraints [7, 31, 32].

Before elaborating the content of CC strategy, it is more 
signi�cant to demonstrate some concepts. �e feasibility vec-
tor for an individual constraint is the vector extending from 
an infeasible point to its orthogonal projection on the con-
straint [33]. �e measure, of how close an infeasible point to 
feasibility, is the minimum Euclidean distance between the 
point and the feasible region, referred to here as the feasibility 
distance [33].

�e �rst step is to �nd the feasibility vector for each con-
straint that is violated at the current point �. �e feasibility 
vector is calculated according to the following formula:

Table 2: Original ABC algorithm.

1 Initialize the food sources and evaluate the nectar amount (�tness) of food sources
Send the employed bees to the current food source
Iteration = 0

2 Do while (the termination conditions are not met)
2.1 /∗Employed Bees’ Phase∗/

for (each employed bee)
Find a new food source in its neighborhood following the Equation (6)
Evaluate the �tness of the new food source, apply greedy selection

end for
2.2 Calculate the probability P for each food source according to the Equation (7)
2.3 /∗Onlooker Bees’ Phase∗/

for (each onlooker bee)
Send onlooker bees to food sources depending on P
Find a new food source in its neighborhood following the Equation (6)
Evaluate the �tness of the new food source, apply greedy selection

end for
2.4 /∗Scout Bees’ Phase∗/

if (any employed bee becomes scout bee)
Send the scout bee to a randomly produced food source

end if
2.5 Memorize the best solution achieved so far

Iteration = Iteration +1
end while

3 Output the best solution achieved
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where �� and �� are the upper and lower bound for decision 
variable ��,� and � is the dimension of the variables.

�en, for some of the infeasible solutions with size �, new 
o�spring are generated as following:

where ��� is the value obtained by the constraint consensus 
strategy and � is a random factor in the range of [0.4, 0.9].

For the remaining NP-P individuals (some infeasible and 
all feasible ones), the update method based on ABC algorithm 
is adopted.

For each newly generated individual, if it is better than its 
corresponding parent, it survives in the next generation, and 
the whole population is sorted based on the �tness values or 
constraint violations. In this paper, individuals are selected 
based on the following criteria: (1) between two feasible 
solutions, the smaller �tness value is (for the minimization 
problem), the �tter individual is; (2) a feasible solution is 
always better than an infeasible one; and (3) between two 
infeasible solutions, the one having the smaller sum of 
constraint violation is selected.

Equality constraints are converted to inequalities by the 
following form, where � is a small tolerance value, i.e., 10−4.

5. Results and Analysis

In this section, we present and analyze the performance of the 
proposed ABCCC algorithm.

5.1. Test Function. �e algorithm was tested by solving the set 
of benchmark problems that were introduced in the CEC 2017 
competition on Constrained Optimization [34].

�ese problems have di�erent mathematical characteris-
tics, such as the objective function or the constraints are either 
linear or nonlinear. �e constraints are either equality or ine-
quality type. �e objective function is either unimodal or 
multimodal. And the feasible space may be very tiny compared 
to the search space.

�e 10 test functions are listed below, where � is the num-
ber of decision variables, and both � and � are constants.

(1)   C01  
  

(2)  C02

(10)��,� = ���,� + �∗(���,� − ��,�),

(11)
�����ℎ�(�)����� − � ≤ 0.

(12)

min �(�) = �∑
�=1
( �∑
�=1
��)
2

� = � − �,
�(�) = �∑

�=1
[�2� − 5000 cos (0.1���) − 4000] ≤ 0,

� ∈ [−100, 100]�.

(13)

min �(�) = �∑
�=1
( �∑
�=1
��)
2

� = � − �, � =�∗�,
�(�) = �∑

�=1
[�2� − 5000 cos (0.1���) − 4000] ≤ 0,

� ∈ [−100, 100]�.

4.1. Overall Flow Chart. �e overall process of the proposed 
algorithm is illustrated in Figure 1. In Figure 1, a population 
with size NP is initialized stochastically. Suppose that there 
are IF infeasible individuals in the initialized population. 
New o�spring of the � infeasible individuals, but not all IF 
infeasible individuals, are generated based on the CC strategy 
introduced in Section 3.2. �e classical generation strategy of 
ABC algorithm is applied to remaining infeasible individuals 
and all feasible individuals with size NP-P. �e aim is to save 
computing time, as well as to maintain the diversity of the 
population. For each newly generated individual, if it is better 
than its corresponding parent, it survives in the next generation.

�e pseud-code of the algorithm is shown in Table 4 and 
will be explained below.

4.2. Detailed Steps of the ABCCC. In this algorithm, a 
new update operator that combines the concept of the CC 
method with the traditional mutation operator is proposed. 
�is proposal will drive infeasible points to a better search 
space rather than random movements. �e e�ect of this 
approach is to quickly reduce the total violation. Note that the 
proposed update operator will only be bene�cial for infeasible 
individuals, and the update operator based on ABC method 
will be used for remaining individuals (including feasible and 
infeasible individuals).

First, the population is initialized by the following 
formula:

(9)��,� = �� + rand (0, 1)(�� − ��),

Table 3: Constraint consensus algorithm.

Inputs: a set of constraints
an initial point x
a feasibility distance tolerance �
a movement tolerance �

1 NINF = 0, for all �: �� = 0, �� = 0
2 for every constraint ��

2.1 if �� is violated

2.1.1 Find the feasibility vector and the 
feasibility distance

2.1.2 if the feasibility distance is greater than �
NINF = NINF+1
for every variable �� in ���� ← �� + 1, �� ← �� + ���
end for

end if
end if

end for
3 if NINF = 0, then exist successfully
4 for every variable ���� = ��/��

end for
5 if ‖�‖ <= � then exit unsuccessfully
6 � ← � + �
7 if necessary, reset � to respect any violated variable 

bounds
8 Go to step1
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Start

Random initialization of population

Evaluate �tness value for each individual

T = 1

Infeasible solution?

Select some of the
infeasible individuals

Remaining infeasible
individuals

Generate corresponding individual using
the update operator based on CC

All the feasible solutions

Apply update operator based on
ABC method

Selection

Stopping criteria

End

NO

YES

YES
NO T = T + 1

Figure 1: Overall ¢ow chart of the proposed algorithm.

Table 4: Algorithm of the ABCCC.

1 Randomly initialize a population of size NP
�e variables in each individual are generated using equation (9)
� = 0

2 if there are infeasible solutions
2.1 Select � of the infeasible solutions, and generate new o�spring using (10)
2.2 for each individual in the remaining (NP – P) individuals

New o�spring are generated using mutation strategy based on ABC
end for

2.3 Sort the entire population based on the selection mechanism
� = � + 1
end if

3 Go to step 2
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(8) C08

(9) C09
    

(10)  C10
  

5.2. Experiments Settings. Parameters setting of the proposed 
ABCCC algorithm include population size NP, which was 100 
and the percentage of the selected infeasible individuals, which 
was 50%. �e random factor � was 0.5. �e total number of 
iterations was set to 100 and the number of independent 
runs for each problem was set to 10. Parameters setting of 
the DECC and PSOCC algorithm were similar to those of 
ABCCC, speci�cally, the scaling factor � of DE was set to 
0.5, and the crossover rate CR was 0.4. For PSO, the learning 
factors �1 and �2 were usually equal, and value was 1.4. �e 
inertia weight � was set to 0.8. �e parameters of CC strategy 
were set as follows: tolerance value of feasibility distance � was 
set to 10−6; movement tolerance � was 0.0001 and a preset 
number of iterations � was 10. For equality constraints the 
tolerance value � was set to 10−4.

According to the [33] , there are many variations of the 
 original CC method which have been proposed, such as: (1) 
 feasibility-distance-based (Fdnear/Fdfar) algorithms, (2) 
average direction-based (Dbavg) algorithm, (3) maximum 
direction-based (Dbmax) algorithm, (4) direction-based and 
bound-based (DBbnd) algorithm. �ey di�er by the way they 
construct the consensus vector. In the basic CC method, all 
feasibility vectors are treated equally and the movement is 
created by averaging nonzero components of the feasibility 
vector. �e feasibility-distance-based algorithms use the 
length of the feasibility vector associated with each violated 
constraint to set the consensus vector. In the “near” mode, 
the consensus vector is set equal to the shortest feasibility 
vector. In the “far” mode, the opposite is true. �e Dbavg 
method decides the direction of movement in a dimension 

(19)

min �(�) = max(�),� = � − �, �� = �(2�−1), �� = �(2�) where � = 1, . . . , �2 ,
ℎ1(�) = �/2∑

�=1
( �∑
�=1
��)
2

= 0,
ℎ2(�) = �/2∑

�=1
( �∑
�=1
��)
2

= 0,
� ∈ [−100, 100]�.

(20)

min �(�) = max(�),� = � − �, �� = �(2�−1), �� = �(2�) where � = 1, . . . , �2 ,
�(�) = �/2∏

�=1
�� ≤ 0,

ℎ(�) = �/2−1∑
�=1
(�2� − ��+1)2 = 0,

� ∈ [−10, 10]�.

(21)

min �(�) = max(�) � = � − �,
ℎ1(�) = �∑

�=1
( �∑
�=1
��)
2

= 0,
ℎ2(�) = �−1∑

�=1
(�� − ��+1)2 = 0,

� ∈ [−100, 100]�.

(3)  C03

(4)  C04

(5)  C05

  (6)  C06

(7)  C07

(14)

min �(�) = �∑
�=1
( �∑
�=1
��)
2

� = � − �,
�(�) = �∑

�=1
[�2� − 5000 cos (0.1���) − 4000] ≤ 0,

ℎ(�) = − �∑
�=1
�� sin (0.1���) = 0,

� ∈ [−100, 100]�.

(15)

min �(�) = �∑
�=1
[�2� − 10 cos (2���) + 10] � = � − �,

�1(�) = − �∑
�=1
�� sin (2��) ≤ 0,

�2(�) = �∑
�=1
�� sin (��) ≤ 0,

� ∈ [−10, 10]�.

(16)

min �(�) = �−1∑
�=1
(100(�2� − ��+1)2 + (�� − 1)2),

� = � − , � = �1∗z,w = �2∗�,
	1(�) = �∑

�=1
[�2� − 50 cos (2���) − 40] ≤ 0,

	2(�) = �∑
�=1
[w2� − 50 cos (2�w�) − 40] ≤ 0,

� ∈ [−10, 10]�.

(17)

min �(�) = �∑
�=1
[�2� − 10 cos (2���) + 10] � = � − �,

ℎ1(�) = −
�∑
�=1
�� sin (��) = 0,

ℎ2(�) =
�∑
�=1
�� sin (���) = 0,

ℎ3(�) = −
�∑
�=1
�� cos (��) = 0,

ℎ4(�) =
�∑
�=1
�� cos (���) = 0,

ℎ5(�) =
�∑
�=1
(�� sin(2∗√����������)) = 0,

ℎ6(�) = −
�∑
�=1
(�� sin(2∗√����������)) = 0,

� ∈ [−20, 20]�.

(18)

min �(�) = �∑
�=1
(�� sin (��)) � = � − �,

ℎ1(�) = �∑
�=1
(�� − 100 cos (0.5��) + 100) = 0,

ℎ2(�) = − �∑
�=1
(�� − 100 cos (0.5��) + 100) = 0,

� ∈ [−50, 50]�.
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evolved with PSO. �e results of the comparison are shown in 
the next section.

5.3. Results. In this section, ABCCC, PSOCC, and DECC 
are �rst tested. �en ABCCC is compared with di�erent 
CC variants. Next, the e�ect of parameter � in ABCCC is 
analyzed. And next, ABCCC is compared with other advanced 
algorithms against CEC2017. Finally, the comparison results 
of ABCCC and ABC’s variants are displayed.

5.3.1. ABCCC and Other EACC against CEC2017. �e 
numerical comparison results for both 10-� and 30-� test 
problems are presented in Table 5. In order to observe the 
performance of the algorithm more intuitively, the convergence 
curves for each test function are shown in Figure 2. Box plot 
results are shown in Figure 3.

In the 10-� case, from Table 5, clearly, the proposed ABCCC 
algorithm could obtain more suitable solutions with smaller 
�tness values than PSOCC and DECC, especially for the best 

by a simple count of the number of votes for positive or neg-
ative movement, and the magnitude of the movement is 
decided by averaging the projections in the winning direc-
tion. Dbmax decides the direction of the movement based 
on the most common sign among the components of the 
feasibility vectors, whether positive or negative. �en, the 
largest proposed movement in the winning direction is set 
as the consensus vector. In the DBbnd method, the size of 
the movement in each component depends on the types of 
constraints that include that variable. Movements in the 
selected direction suggested by equality constraints are 
totaled, for inequalities only the largest movement in the 
selected direction is added [33].

�erefore, for some of the infeasible individuals with size �, the above methods are used respectively. In addition, the 
newly proposed algorithm (ABCCC) is compared with the 
original algorithm (DECC). Moreover, the DE optimizer of 
the original algorithm is also replaced with PSO. �at is, all 
the remaining individuals (including feasible and infeasible) 

Table 5: Comparison results of the proposed algorithm with other two methods.

Problem Algorithm
10D 30D

Best Mean Std Best Mean Std

C01
ABCCC 4.3422e − 01 1.0276e + 00 7.7749e − 01 6.2693e + 03 8.2442e + 03 1.6027e + 03
DECC 2.0552e + 01 5.7294e + 01 2.6456e + 01 8.7930e + 03 1.3306e + 04 2.3850e + 03

PSOCC 1.9394e + 01 3.0953e + 01 7.5116e + 00 1.2742e + 03 1.6774e + 03 2.2386e + 02

C02
ABCCC 1.1917e − 01 5.6705e − 01 3.6207e − 01 1.4588e + 03 3.4858e + 03 1.0644e + 03
DECC 2.2081e + 01 3.8531e + 01 1.2447e + 01 5.0072e + 03 5.9380e + 03 4.8469e + 02

PSOCC 2.8930e + 01 3.6837e + 01 4.6696e + 00 8.9951e + 02 1.5818e + 03 3.6121e + 02

C03
ABCCC 2.6169e − 01 7.2534e − 01 4.5649e − 01 6.2305e + 03 8.9104e + 03 1.8025e + 03
DECC 1.9347e + 01 7.9392e + 01 2.6244e + 01 1.0745e + 04 1.3418e + 04 1.9380e + 03

PSOCC 2.5698e + 01 3.2883e + 01 3.7946e + 00 1.4090e + 03 2.1856e + 03 7.4170e + 02

C04
ABCCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 5.9930e − 09 4.4008e − 08 5.5059e − 08
DECC 1.7852e + 01 3.2618e + 01 7.5740e + 00 2.3784e + 02 2.5582e + 02 1.1614e + 01

PSOCC 4.4996e + 01 6.7187e + 01 1.4799e + 01 3.3885e + 02 3.6265e + 02 1.4894e + 01

C05
ABCCC 3.8795e − 04 5.4388e − 03 9.4572e − 03 1.6887e − 02 2.3190e − 01 2.7175e − 01
DECC 7.2160e + 00 8.1310e + 00 6.5960e − 01 1.0310e + 02 1.3773e + 02 2.6676e + 01

PSOCC 2.0620e + 01 4.6958e + 01 3.0318e + 01 3.0447e + 02 4.4667e + 02 1.3757e + 02

C06
ABCCC 0.0000e + 00 1.9903e − 01 6.2940e − 01 7.8153e + 02 3.1383e + 03 1.7131e + 03
DECC 1.1025e + 02 1.5862e + 02 5.6512e + 01 1.4014e + 03 1.8484e + 03 2.9160e + 02

PSOCC 6.9656e + 01 1.3079e + 02 5.3494e + 01 1.0215e + 03 1.5199e + 03 3.8129e + 02

C07
ABCCC −5.2474e + 02 −5.2474e + 02 6.7115e-06 −8.9397e + 02 −6.0124e + 02 1.8827e + 02
DECC −3.1552e + 02 −3.0261e + 02 8.6554e + 00 −3.4917e + 02 −2.3050e + 02 5.7684e + 01

PSOCC −2.3716e + 02 −2.0193e + 02 2.3230e + 01 −4.6299e + 02 −3.4168e + 02 5.7643e + 01

C08
ABCCC 1.2499e + 00 2.6492e + 00 1.0700e + 00 7.8818e + 00 1.3153e + 01 5.0152e + 00
DECC 7.6596e − 01 1.4086e + 00 4.8360e − 01 1.1897e + 01 1.5149e + 01 2.4929e + 00

PSOCC 1.2276e + 00 2.2839e + 00 5.8413e − 01 7.3701e + 00 9.6496e + 00 1.4993e + 00

C09
ABCCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 −3.0939e − 01 8.6376e − 01
DECC 1.8540e − 01 3.2352e − 01 1.2396e − 01 2.9752e + 00 3.4867e + 00 3.8672e − 01

PSOCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 6.6104e − 01 6.6047e − 01

C10
ABCCC 1.0175e + 01 1.5753e + 01 5.1411e + 00 4.4011e + 01 5.1414e + 01 4.9977e + 00
DECC 4.5172e − 01 1.1297e + 00 6.1977e − 01 2.4098e + 01 2.8066e + 01 2.0066e + 00

PSOCC 1.3172e + 00 2.3567e + 00 4.3120e − 01 8.1363e + 00 1.1921e + 01 2.4818e + 00



9Discrete Dynamics in Nature and Society

0 50

C01 C02

C03 C04

C05 C06

100

k

101

102

103

104

Fi
tn

es
s v

al
ue

PSOCC

DECC

ABCCC

100

102

104

Fi
tn

es
s v

al
ue

0 50 100

k

PSOCC

DECC

ABCCC

100

102

104

Fi
tn

es
s v

al
ue

0 50 100

k

PSOCC

DECC

ABCCC

10–10

100

Fi
tn

es
s v

al
ue

0 50 100

k

PSOCC

DECC

ABCCC

10–2

100

102

104

Fi
tn

es
s v

al
ue

0 50 100

k

PSOCC

DECC

ABCCC

102

100

104

Fi
tn

es
s v

al
ue

0 50 100

k

PSOCC

DECC

ABCCC

(a)

Figure 2: Continued.
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got the best solutions, but the solutions were distinctly larger 
than the ones in the case of 10 dimensions. For the special case 
C07 function, both the best value and the average value of 
30-� was smaller than the ones of 10-�.

Figure 3 shows the box plots of the algorithms. For each 
box, the central mark indicates the median, and the bottom 
and top edges of the box indicates the 25th and 75th percen-
tiles, respectively. �e whiskers extend to the most extreme 
data points not considered outliers, and the outliers are plotted 
individually using the “+” symbol. From Figure 3, ABCCC 
succeeded on most test functions (C01, C02, C03, C04, C05, 
C06, C07, and C09).

5.3.2. ABCCC with Di�erent CC Variants Against 
CEC2017. �e comparison results for ABCCC with di�erent 

and average results in most cases (C01, C02, C03, C04, C05, 
C06, C07, and C09). From the curves shown in Figure 2, it was 
proved that ABCCC owned a faster convergence rate than others 
and obtained the more ideal global solutions. Nevertheless, there 
were exceptions in a few test functions (C08 and C10). For these 
two functions, the optimal solutions were obtained by DECC.

With the increase of dimension, it was more di�cult and 
time-consuming to �nd the minimum value by evolutionary 
algorithms. It was foreseeable that the results of 30-� were 
worse than that of 10-�. Table 5 demonstrated that, for the 
30-� results, the proposed ABCCC algorithm displayed its 
instability. From Table 5, for C01, C02, and C03, the best solu-
tions obtained by PSOCC were smaller than ABCCC and 
DECC. �en ABCCC outperformed DECC. For the remaining 
test functions (C04, C05, C06, C08, C09, and C10), ABCCC 
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Figure 2: Average convergence of the algorithms (10-�).
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various. For C07, it was a little di�erent from C06. �e optimal 
solutions (the same value of best and mean) might be obtained 
by ABCCC and its variants, but the standard deviation was 
distinct. In summary, the results indicated that, in most cases, 
ABCCC and its variants had similar e�ects.

5.3.3. Performance of ABCCC with Di�erent Values of �
against CEC2017. In this section, ABCCC was run with 
di�erent percentages of infeasible individuals (�) in the whole 
individuals, where � is set as 10%, 30%, 50%, 70%, and 90% 
to evaluate their in¢uence on results. �e detailed results 
are shown in Table 7. It is expected that the search cycle will 
increase with higher values of �.

When comparing the search cycle, the ABCCC algorithm 
with � = 10% would be better as it costs minimum time to get 
results. Considering the quality of solutions, the performance 
of ABCCC with � = 50% is slightly better than most other 
cases based on the average �tness values in Table 7. According 
to the best �tness values, ABCCC with � = 70% is superior to 
ABCCCs with other values of �.

CC variants for both 10-� and 30-� test problems are shown 
in Table 6. Figure 4 is the convergence curves for each test 
function. Figure 5 shows the box plot results of the algorithm.

From Table 6, there is no rule to follow for the occurrence 
of optimal solution. Di�erent algorithms get similar results. 
Moreover, it was obvious that the optimum value of 30-� was 
larger than the value of 10-� except C07 for ABCCC and its 
variants. �ere was also not much di�erence between CC and 
its variants in 30-� results. From Figure 5, it was obviously 
that there were no regular patterns to judge which algorithm 
performed better within ABCCC and its variants.

From Figure 4, intuitively, there was no obvious di�erence 
among the experimental results of ABCCC and its variants. 
In particular, for the test functions C04 and C09, the outcomes 
obtained by di�erent variants were nearly the same because 
the global optimal solutions had been successfully found out. 
From Table 6, for C06, although all of ABCCC and its variants 
might probably �nd out the global optimal solutions (the same 
values of best), the mean values and the standard deviation 
were entirely di�erent, which meant their robustness was 
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Table 6: Comparison results of the proposed algorithm with other variants.

Problem Algorithm
10D 30D

Best Mean Std Best Mean Std

C01

ABCCC 4.3422e − 01 1.0276e + 00 7.7749e − 01 6.2693e + 03 8.2442e + 03 1.6027e + 03
ABCavCC 2.6666e − 01 8.1525e − 01 6.3591e − 01 5.3333e + 03 8.6063e + 03 1.5452e + 03

ABCmaxCC 2.8739e − 01 9.1758e − 01 5.7175e − 01 5.7557e + 03 8.8971e + 03 2.2734e + 03
ABCbndCC 2.6214e − 01 1.6712e + 00 1.6987e + 00 5.7557e + 03 8.8971e + 03 2.2734e + 03
ABCFDCC 5.7396e − 01 1.2627e + 00 5.7950e − 01 7.0198e + 03 8.7193e + 03 1.2469e + 03

C02

ABCCC 1.1917e − 01 5.6705e − 01 3.6207e − 01 1.4588e + 03 3.4858e + 03 1.0644e + 03
ABCavCC 1.5624e − 01 1.0622e + 00 8.9996e−01 1.6507e + 03 3.6622e + 03 1.3132e + 03

ABCmaxCC 8.9291e−02 1.2594e + 00 1.8626e + 00 2.8866e + 03 4.2196e + 03 1.0230e + 03
ABCbndCC 7.6185e−02 4.6963e−01 3.1958e−01 2.3144e + 03 4.1829e + 03 1.1693e + 03
ABCFDCC 1.7417e−01 1.0920e + 00 9.4148e−01 1.0826e + 03 4.3641e + 03 1.9628e + 03

C03

ABCCC 2.6169e−01 7.2534e−01 4.5649e−01 6.2305e + 03 8.9104e + 03 1.8025e + 03
ABCavCC 2.8291e − 01 1.5084e + 00 8.4892e − 01 6.3652e + 03 9.5822e + 03 2.2970e + 03

ABCmaxCC 1.8380e − 01 1.5424e + 00 1.2224e + 00 6.0213e + 03 8.8483e + 03 2.4095e + 03
ABCbndCC 1.8797e − 01 1.2587e + 00 1.2260e + 00 4.9709e + 03 7.7572e + 03 1.9659e + 03
ABCFDCC 2.8988e − 01 1.3396e + 00 5.5769e − 01 5.1170e + 03 7.2360e + 03 2.3147e + 03

C04

ABCCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 5.9930e − 09 4.4008e − 08 5.5059e − 08
ABCavCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 8.0700e − 09 2.1109e − 08 1.4693e − 08

ABCmaxCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 2.5637e − 09 5.0740e − 08 9.2429e − 08
ABCbndCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 7.5989e − 09 2.3105e − 08 2.2866e − 08
ABCFDCC 0.0000e + 00 0.0000e + 00 0.0000e + 00 2.3212e − 09 2.1475e − 08 1.1726e − 08

C05

ABCCC 3.8795e − 04 5.4388e − 03 9.4572e − 03 1.6887e − 02 2.3190e − 01 2.7175e − 01
ABCavCC 2.6890e − 04 6.3786e − 03 1.2543e − 02 7.1646e − 03 2.9009e − 01 4.2186e − 01

ABCmaxCC 4.5148e − 04 7.0324e − 03 1.4091e − 02 5.4169e − 03 6.5210e − 01 1.2583e + 00
ABCbndCC 2.7664e − 04 4.2588e − 03 3.2153e − 03 3.8594e − 03 7.3446e − 01 1.3437e + 00
ABCFDCC 4.3109e − 04 6.3481e − 03 5.0212e − 03 6.0190e − 03 2.1450e − 01 2.0751e − 01

C06

ABCCC 0.0000e + 00 1.9903e − 01 6.2940e − 01 7.8153e + 02 3.1383e + 03 1.7131e + 03
ABCavCC 0.0000e + 00 7.9625e − 01 1.0280e + 00 3.6692e + 02 1.8784e + 03 1.7233e + 03

ABCmaxCC 0.0000e + 00 7.9609e − 01 1.0278e + 00 2.0786e + 02 1.4075e + 03 1.2753e + 03
ABCbndCC 0.0000e + 00 1.1942e + 00 1.0278e + 00 1.9917e + 02 1.4675e + 03 1.3062e + 03
ABCFDCC 0.0000e + 00 3.9994e − 01 8.4317e − 01 1.6313e + 02 2.3210e + 03 2.2130e + 03

C07

ABCCC −5.2474e + 02 −5.2474e + 02 6.7115e − 06 −8.9397e + 02 −6.0124e + 02 1.8827e + 02
ABCavCC −5.2474e + 02 −5.2474e + 02 1.0406e − 02 −1.4919e + 03 −1.4823e + 03 6.1156e + 00

ABCmaxCC −5.2474e + 02 −5.2474e + 02 3.0676e − 08 −1.4950e + 03 −1.4822e + 03 1.0069e + 01
ABCbndCC −5.2474e + 02 −5.2474e + 02 1.3458e − 11 −9.0179e + 02 −6.8494e + 02 1.9621e + 02
ABCFDCC −5.2474e + 02 −5.2474e + 02 1.3291e − 08 −1.4950e + 03 −1.4822e + 03 1.0069e + 01

C08

ABCCC 2.5150e + 00 5.0474e + 00 1.2945e + 00 7.8818e + 00 1.3153e + 01 5.0152e + 00
ABCavCC 4.3560e + 00 5.4574e + 00 1.0707e + 00 1.7922e + 01 3.9656e + 01 1.4675e + 01

ABCmaxCC 9.5318e − 01 4.8754e + 00 2.6297e + 00 1.7232e + 01 3.8949e + 01 1.1115e + 01
ABCbndCC 1.4529e + 00 4.5194e + 00 2.1072e + 00 1.1273e + 01 1.9942e + 01 6.4448e + 00
ABCFDCC 2.2534e + 00 3.9948e + 00 1.1559e + 00 2.4065e + 01 3.4540e + 01 6.6039e + 00

C09

ABCCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 3.0939e − 01 8.6376e − 01
ABCavCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 4.7143e − 01 6.8766e − 01

ABCmaxCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 3.2199e − 01 8.5846e − 01
ABCbndCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 9.1733e − 01 6.4206e − 01
ABCFDCC −6.0917e − 01 −6.0917e − 01 0.0000e + 00 −6.0917e − 01 4.3180e − 01 6.1748e − 01

C10

ABCCC 1.0175e + 01 1.5753e + 01 5.1411e + 00 4.4011e + 01 5.1414e + 01 4.9977e + 00
ABCavCC 6.1631e + 00 1.6773e + 01 5.8186e + 00 4.2706e + 01 5.0985e + 01 5.8012e + 00

ABCmaxCC 1.3028e + 01 1.8441e + 01 3.4762e + 00 4.9827e + 01 6.1087e + 01 2.7835e + 00
ABCbndCC 1.0416e + 01 1.8453e + 01 7.1632e + 00 4.0410e + 01 5.0126e + 01 7.1920e + 00
ABCFDCC 9.1202e + 00 1.6989e + 01 4.8894e + 00 3.9870e + 01 4.7673e + 01 3.7433e + 00
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C10, UDE performs best with 10-� case, but CALSHADE 
performs better with 30-� case for C10.

�e results of our proposed algorithm are compared with 
ones of CLSHADE and UDE, which shows that the ABCCC 
algorithm outperforms the other algorithms.

5.3.5. ABCCC Compared with ABC’s Variants with CC Strategy 
against CEC2017. Many researchers have proposed many 
other variants of ABC algorithm, such as CABC [10] and 
GABC [11]. �e proposed ABCCC algorithm is also compared 
with ABC’s variants with CC strategy against CEC2017. 
�e results are shown in Tables 10 and 11. Vividly, ABCCC 
performs best for the most test functions except 10-� C01, 

Figure 6 shows the convergence curves of C02 function, 
it is clear that the ABCCC with � = 50% convergences faster 
and obtains better optimal solution.

5.3.4. ABCCC Compared with CLSHADE and UDE against 
CEC2017. From the above mentioned analysis, ABCCC with � = 50% is regarded as the best algorithm. So we compare it 
with some famous constraint algorithms, such as CLSHADE [8] 
and UDE [9]. �e detailed results are shown in Tables 8 and 9.  
From these tables, based on the �tness values for 10-� and 
30-� test problems, ABCCC is able to obtain better  optimal 
solutions for most test functions. But for 10-� or 30-� C01 
and C02, CALSHADE gets the optimal solutions. For C08 and 
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Figure 4: Average convergence of the �ve methods (10-�).
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6. Conclusion

During the last few decades, many evolutionary algorithms 
have been introduced to solve constrained optimization prob-
lems. However, it is the lack of e�ective constraint handling 
technologies in evolutionary optimization. In this research, a 
new updating strategy for the ABC algorithm has been intro-
duced, which is inspired by the usefulness of the concepts 
constrained consensus (CC) approach. It is inevitable to make 
some considerable improvements of utilizing CC in evolution-
ary algorithms. To minimize the computational time and 

C08, and C10 cases. �e GABCCC gets the optimum for C01 
and C08. For C10, CABCCC �nds the �nal solution. When the 
dimension is 30, based on the average �tness values, ABCCC 
performs better than others.

GABCCC utilizes the global optimal value to mutate the 
individual in the search cycle, but lacks of diversity. Although 
CABCCC randomly selects dimensions and carries out 
mutation operations on individuals of each dimension, 
which also declines its convergence rate. During the test, the 
search cycle becomes longer and the results are not accurate 
enough.
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maintain a good diversity within the population, the new 
updating strategy based on CC method was applied to some 
of the infeasible individuals in each generation. �e remaining 
individuals (including feasible and infeasible) were evolved by 
ABC method.

�e new method was tested on a set of constrained 
problems. Experiments were compared with di�erent variants 
of the approach. It also compared the performance of ABCCC 
with DECC and PSOCC. In most cases, the results of the 
algorithm show that ABCCC could obtain better results and 
converged faster than the other two methods. However, the 
CC method and some of its variants perform similarly in the 
test functions.

�e proposed ABCCC algorithm was also compared 
with some famous constraint algorithms, such as CLSHADE 
[8] and UDE [9]. �e experimental results showed that 
ABCCC algorithm performed well and could get the optimal 
solution. Furthermore, when ABCCC algorithm was com-
pared with ABC’s variants using CC strategy, the results of 
our algorithm were superior to those of the other 
algorithms.
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Figure 6: Convergence curves of ABCCC with di�erent values of � (C02).

Table 7: Comparison results of the proposed algorithm with di�erent values of � (10-�).

�-value Best Aver Std �-value Best Aver Std

C01

� = 0.1 3.6224e − 01 2.1745e + 00 3.7883e + 00

C02

� = 0.1 9.6252e − 02 7.5394e − 01 5.1756e − 01
� = 0.3 6.6545e − 01 1.0406e + 00 3.4463e − 01 � = 0.3 1.2425e − 01 1.9530e + 00 2.8007e + 00
� = 0.5 4.3422e − 01 1.0276e + 00 7.7749e − 01 � = 0.5 1.1917e − 01 5.6705e − 01 3.6207e − 01
� = 0.7 8.0072e − 01 1.4671e + 00 7.0296e − 01 � = 0.7 2.6261e − 01 9.3691e − 01 1.2533e + 00
� = 0.9 2.7358e − 01 1.2008e + 00 6.8819e − 01 � = 0.9 2.5149e − 01 9.4132e − 01 1.2486e + 00

C03

� = 0.1 3.3249e − 01 1.2147e + 00 5.6815e − 01

C04

� = 0.1 0.0000e + 00 0.0000e + 00 0.0000e + 00
� = 0.3 5.2694e − 01 1.3587e + 00 7.7649e − 01 � = 0.3 0.0000e + 00 0.0000e + 00 0.0000e + 00
� = 0.5 2.6169e − 01 7.2534e − 01 4.5649e − 01 � = 0.5 0.0000e + 00 0.0000e + 00 0.0000e + 00
� = 0.7 1.7941e − 01 2.2968e + 00 3.1205e + 00 � = 0.7 0.0000e + 00 0.0000e + 00 0.0000e + 00
� = 0.9 3.1033e − 01 3.1911e + 00 3.8990e + 00 � = 0.9 0.0000e + 00 0.0000e + 00 0.0000e + 00

C05

� = 0.1 3.1579e − 04 3.0156e − 03 3.4689e − 03

C06

� = 0.1 0.0000e + 00 2.0000e − 01 6.3244e − 01
� = 0.3 1.3199e − 03 1.2395e − 02 1.7242e − 02 � = 0.3 0.0000e + 00 7.9602e − 01 1.0277e + 00
� = 0.5 3.8795e − 04 5.4388e − 03 9.4572e − 03 � = 0.5 0.0000e + 00 1.9903e − 01 6.2940e − 01
� = 0.7 1.4399e − 04 5.3629e − 03 6.7180e − 03 � = 0.7 0.0000e + 00 1.9921e + 00 1.3279e + 00
� = 0.9 6.0703e − 04 1.2685e − 02 2.9036e − 02 � = 0.9 3.9851e + 00 1.1887e + 02 1.4430e + 02

C07

� = 0.1 −5.2474e + 02 −5.2474e + 02 2.1047e − 07

C08

� = 0.1 5.1001e + 00 8.7588e + 00 2.7110e + 00
� = 0.3 −5.2474e + 02 −5.2474e + 02 2.6055e − 07 � = 0.3 1.1888e + 00 2.8243e + 00 9.0287e − 01
� = 0.5 −5.2474e + 02 −5.2474e + 02 6.7115e − 06 � = 0.5 1.2499e + 00 2.6492e + 00 1.0700e + 00
� = 0.7 −5.2474e + 02 −5.2453e + 02 6.7970e − 01 � = 0.7 2.5761e + 00 4.3356e + 00 1.0971e + 00
� = 0.9 −5.2474e + 02 −5.2474e + 02 9.0928e − 06 � = 0.9 6.5659e − 01 4.0359e + 00 1.9499e + 00

C09

� = 0.1 −6.0917e − 01 −6.0917e − 01 0.0000e + 00

C10

� = 0.1 1.4054e + 01 2.0605e + 01 5.9842e + 00
� = 0.3 −6.0917e − 01 −6.0917e − 01 0.0000e + 00 � = 0.3 8.9854e + 00 1.6984e + 01 5.7525e + 00
� = 0.5 −6.0917e − 01 −6.0917e − 01 0.0000e + 00 � = 0.5 1.0175e + 01 1.5753e + 01 5.1411e + 00
� = 0.7 −6.0917e − 01 −6.0917e − 01 0.0000e + 00 � = 0.7 8.3204e + 00 1.7478e + 01 5.2565e + 00
� = 0.9 −6.0917e − 01 −6.0917e − 01 0.0000e + 00 � = 0.9 8.9586e + 00 1.6326e + 01 4.7826e + 00
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