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�e empirical research shows that the log-return of stock price in �nance market rejects the normal distribution and admits a subclass 
of the asymmetric distribution. Hence, the pricing problem of stock loan is investigated under the assumption that the log-return 
of stock price follows the CGMY process in this work. Under this framework, the pricing model of stock loan can be described 
by a free boundary condition problem of space-fractional partial di�erential equation (FPDE). First of all, in order to change the 
original model de�ned in a �xed domain, a penalty term is introduced, and then a �rst order fully implicit di�erence schemes is 
developed. Secondly, based on the numerical scheme, we prove the stock loan value generated by our method does not fall below 
the value obtained when the contract of stock loan is exercised early. Finally, the numerical experiments are implemented and the 
impacts of key parameters in the CGMY model on the value and optimal redemption price of stock loan are analyzed, and some 
reasonable explanation should be given. 

1. Introduction

A stock loan can be treated as a contract between two parties: 
the bank or other �nancial institution (the lender), and a client 
(the borrower). �e borrower obtains a loan from the lender 
with their stocks as collateral, and the contract o�ers the bor-
rower a right to redeem the stock at any valid time. But he/
she should pay o� the loan as well as the cumulative loan. As 
described in Ref. [1], the risk aversion investors can use stock 
loan to transfer the risk of holding stock to the �nancial insti-
tutions, and this kind of derivatives also can establish market 
liquidity. �erefore, the stock loan is one of the most important 
�nancial derivatives in the �nancial market and currently, both 
Florida Mortgage Corporation and Shelly Bay Capital special-
ize in providing stock loan services.

�e pricing problem about the stock loan has been a 
popular topic in the academic since the �rst research paper 
[1] about the stock loan published in 2007. In this literature, 
the risk asset was assumed to follow the Geometric Brownian 
motion (GBM) and the contract of stock loan is �nite matu-
rity. Following this publication, more and more researchers 
paid attentions to the academical topic of stock loan valua-
tion with other conditions. For instance, Lu and Putri [2] 

considered the pricing problem of stock loan with �nite 
maturity margin. Under the framework of hyper-exponen-
tial jump di�usion model, Cai and Sun [3] studied the value 
and optimal redemption price of stock loan with in�nite 
and �nite maturity. �e stock loan with �nite maturity was 
also investigated in Ref. [4] under the case that risk-free 
interest rate follows the Rednleman–Bartter model without 
dri¤ term.

It is well known that the classical Black–Scholes (B–S) 
model was established under a lot of strict assumptions, such 
as the log-return of stock price follows the nonmoral distri-
bution, frictionless, and so on. However, these strict assump-
tions do not accord with the dynamic process of stock price 
in real �nancial market. �e empirical research shows that 
discontinuities or jumps are believed to be an indispensable 
element of �nancial risk-asset price (see e.g., [5–7]) and the 
log-return of risk asset appear to be “asymmetric distribu-
tion” and “leptokurtic distribution” (see e.g., [8–12]). For 
this reason, for capturing these characters of stock price, 
many scholars use other complex stochastic process to drive 
the stock price. Prominent examples including the CEV 
model [13], GEV model [14], KoBoL model [15], and so on. 
A frequently used stochastic process is called CGMY process 
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and it was presented by Carr et al. [16] with the aim to 
provide a model for the dynamic of equity log-returns. �is 
model is rich enough to accommodate jumps of �nite or 
in�nite activity, and �nite or in�nite variation. In fact, this 
stochastic process is a particular type of pure jump Lévy 
process with four key parameters (e.g., �, �, �, and �) 
which control its essential characteristics.�e parameter �
may be viewed as a measure of the overall level of activity. 
�e aggregate activity level should be calibrated through 
movements under the case of keeping the other three param-
eters constant and integrating over all that moves exceeding 
a small level. Parameters � and � control the rate of expo-
nential decay on the right and le¤ of the Lévy density, 
respectively, leading to skewed distributions when they are 
unequal. Parameter � is particularly useful in characterizing 
the �ne structure of the stochastic process.�e CGMY pro-
cess has in�nite variation and �nite quadratic variation if � ∈ (1, 2). At present, many papers discussed  pricing prob-
lem of �nancial derivatives based on the CGMY process. 
Ballotta and Kyriakou [17] obtained the option price by 
using the Monte Carlo method in this case. Zhang et al. [18] 
presented a fast numerical method to double barrier option 
under framework of CGMY. Chen et al. [19] investigated 
European option and they obtained the explicit closed-form 
analytical based on the model.

A better refernce value to the holder of stock loan can be 
provided in this case of CGMY model, a better reference value 
to the holder of stock loan is provided; therefore, in this paper 
we intend to investigate the pricing of stock loans with 
�nite-maturity under the CGMY model. �e pricing model 
is free-boundary problem of partial di�erential equation with 
tempered fractional derivatives. �e tempered fractional 
derivatives and nonlinearity associated with the free boundary 
add the di«culty of solving the pricing model. Aiming at this 
problem, we consider a penalty method in which the free 
boundary is removed by adding a small and continuous pen-
alty term to the governing equation. �erefore, the mathemat-
ical model should be solved on a �xed domain. Even if on the 
�xed domain, the analytical solution is seldom available so 
that a full-implicit scheme is employed. Based on our numer-
ical scheme, we prove that the stock loan value generated by 
the penalty method cannot fall below the value obtained when 
the stock loan is exercised early, and we also do simulation to 
verify the result.

�is study has �ve main sections. Section 1 provides the 
introduction. �e pricing model of stock loan is set in Section 
2 and the numerical method is introduced in Section 3. �e 
simulation and discussions are presented in Section 4, and 
conclusion is displayed in Section 5.

2. Mathematical Model

In this section, the governing equation of the stock loan with 
�nite maturity, which is a partial di�erential equation with 
fractional derivative, is presented under the CGMY frame-
work. And then, �nancially, the corresponding free moving 
boundary and terminal conditions will be given to complete 
the pricing model.

�e CGMY process assumes the log value of stock price (�� = ln(��)) follows a stochastic di�erential equation under 
the risk-neutral measure Q [16]

where �, �, and � are the risk free interest rate, the dividend 
and the current time, respectively. �������  is a stochastic var-
iable and its characteristic function is

In addition,

where the parameters �,�,� and � are constants, and � ∈ (1, 2), � > 0, � ≥ 0,� ≥ 0.
2.1. Governing Equation. In fact, as described in Ref. [1] a 
stock loan problem can be regarded as an American call option 
with a time-varying strike price ����, where � is the principal 
and � is the continuously compounded loan interest rate and � ≥ � in general. �erefore, the payo� function of stock loan 
at maturity can be written as

In addition, typically as same as the American call, at each 
valid time there is a particular value of the underlying, which 
yields a boundary between two regions: in one side(called 
exercising region) the investor exercise the contract of stock 
loan and in other side (called holding region) one should hold 
this contract. �e particular value of the asset �� is called opti-
mal redemption price and denoted by ��(�� = ln��). �en, 
based on the principle of non-arbitrage pricing, in the holding 
region, the value of stock loan at time � satis�es

where EQ is the conditional mean operator under the measure 
Q and F� denotes the information ¬ow at time �. Famous 
authors, Cartea [20] and Del-Castillo-Negrete obtained the 
governing equation of �(�, �) through the Fourier transfor-
mation as follows:

where � ∈ (−∞,��], and

(1)��� = (� − � − �)�� + �������� ,

(2)

�����(�, ��; �, �,�, �)
= exp{���Γ(−�)[(� − ��)� −�� + (� + ��)� − ��]}.

(3)� = �Γ(�){(� − 1)� −�� + (� + 1)� − ��},

(4)Π(��, �; �) = max(exp(��) −����, 0).

(5)�(��, �) = �−�(�−�)EQ[Π(��, �)|F�],

(6)

���� + (� − � − �)���� + �Γ(−�)������∞(�−���)+ �Γ(−�)�−�����∞(����) = [� + �Γ(−�)(�� + ��)]�,

(7)
−∞����(�, �) = 1Γ(2 − �) �

2

��2∫
�

−∞
�(�, �)(� − �)2−�−1��,

(8)
���∞�(�, �) = (−1)�Γ(2 − �) �

2

��2∫
∞

�
�(�, �)(� − �)2−�−1��,
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are le¤ and right sided Riemann–Liouville fractional 
derivatives.

In fact, the �-order le¤ and right fractional derivatives are 
closely related to CGMY process. �e fractional di�erentiation 
is nonlocal, which relates to the stock loan value in the stop-
ping region (−∞,��]. �is is where the stock loan value is 
equal to its intrinsic value. �e nonlocalness of this fractional 
operator means that over a time step Δ�, the price of risk-asset �� should di�use to value ��+Δ� far away from ��, provides a way 
in e«ciently simulating the existence of jumps of the 
risk-asset.

2.2. �e Boundary Conditions. In this subsection, to complete 
the pricing system, a set of appropriate boundary conditions 
will be given. First of all, as a rational investor, she/he does not 
redeem stock if the level of stock price is very low and here we 
assume the stock price �� is close to zero, i.e., � = ln�� → −∞, 
then one can obtain a boundary condition as

On the other hand, the continuity of stock loan value �(�, �)
at optimal redemption price �� should still be retained to 
ensure the smooth pasty of the stock loan value across the free 
boundary. For these reasons, we still impose the two boundary 
conditions as follows:

And the terminal condition is the payo� function

To sum up, the complete pricing model for stock loan with 
�nite maturity under CGMY process can be written as

It must be noted that, a rational investor cannot redeem the 
stock if the value of redemption is less than the holding value; 
therefore, the value � of the stock loan should satisfy the fol-
lowing inequality

(9)lim
�→−∞
�(�, �) = 0.

(10)�(��, �) = ��� −����,
(11)

��(��, �)�� = �� = ��� .

(12)�(�, �) = max(�� −����, 0).

(13)

���� + (� − � − �)���� + �Γ(−�)������∞(�−���)+ �Γ(−�)�−�����∞(����) = [� + �Γ(−�)(�� + ��)]�,
(14)�(��, �) = ��� −����,

(15)
��(��, �)�� = �� = ��� ,

(16)lim
�→−∞
�(�, �) = 0,

(17)�(�, �) = max(�� −����, 0).

for all � ≤ �� and 0 ≤ � ≤ �.
2.3. Model Normalization. It must be noted that there is a 
time-factor ��� in the boundary conditions (14) and (17). And 
we �nd the time-factor should in¬uence numerical results, 
hence, we introduce a new variable system to the model (14)–
(17) for avoiding the e�ect of ���. Take

then

let � = � − ��, therefore we obtain

And

let � = � − ��, so one obtains

(18)�(�, �) ≥ max(�� −����, 0),

(19)� = � − ��, �(�, �) = ����(�, �), �� = � − ��,

(20)
���� = ����� + ��� ���� − ���� ���� ,

(21)
���� = ��� ���� ,

(22)

��������(�−���(�, �)) = (−1)
����Γ(� − �) �

�

���∫
��

�

�−���(
, �)
(
 − �)�−�+1 �


= (−1)���(�+��)Γ(� − �) �
�

���∫
�

�+��

�−���(
, �)
(
 − � − 
�)�−�+1 �
.

(23)

(−1)���(�+��)Γ(� − �) �
�

���∫
��

�

�−�(�+��)�(�, �)
(� − �)�−�+1 ��

= (−1)���(�+��)Γ(� − �) �
�

���∫
��

�

����−�(�+��)�−���(�, �)
(� − �)�−�+1 ��

= (−1)���(�+��)Γ(� − �) �
�

���∫
��

�

����−�(�+��)�(�, �)
(� − �)�−�+1 ��

= ���+�������(�−���(�, �)).

(24)

�−��−∞����(����(�, �))
= (−1)��−��Γ(� − �) �

�

���∫
�

−∞

����(
, �)
(� − 
)�−�+1 �


= (−1)��−�(�+��)Γ(� − �) �
�

���∫
�

−∞

����(
, �)
(� + 	� − 
)�−�+1 �
,

(25)

(−1)��−�(�+��)Γ(� − �) �
�

���∫
�

−∞

��(�+��)�(�, �)
(� − �)�−�+1 ��

= (−1)��−�(�+��)Γ(� − �) �
�

���∫
�

−∞

�����(�+��)�−���(�, �)
(� − �)�−�+1 ��

= (−1)��−�(�+��)Γ(� − �) �
�

���∫
�

−∞

�����(�+��)�(�, �)
(� − �)�−�+1 ��

= �−��+��−∞��� (����(�, �)).
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If adding the penalty term (34) to the FPDE in (26), one can 
obtain a nonlinear FPDE system de�ned on a �xed domain as 
follows:

where exp(�max) denotes the maximum stock price, � ∈ (−∞,�max]. And according to the results in Ref. [21], the 
maximum value of stock is equal to 3 or 4 times of strike price, 
hence we take exp(�max) = 3� in this paper. In addition,  
we will omit the subscript � of function ��(�, �) for 
convenience.

3.2. Di�erence Scheme. For the FPDE of (37) is nonlinear, it 
results in the analytical solution of the mathematical model 
(37)–(39) that is laborious and even impossible to achieve even 
if the model is de�ned on the �xed domain (−∞,�max] × [0, �]. 
�erefore, an e�ective numerical algorithm should be 
preferred.

Speci�cally, taking Δ� > 0 as spatial step such that 
�1Δ� = �max, where �1 is a positive integer, and placing �2 + 1
uniform grids in the time � direction, namely Δ� = �/�2, that 
is

and � = ⋅ ⋅ ⋅ , −2, −1, 0, 1, 2,�1 + 1; � = 1, 2, . . . , �2 + 1. For the 
�rst order spatial and time, we use the following di�erence 
scheme

And the fractional derivative can be approximated by the 
�rst-order Grnwald–Letnikov formula as [22]

(36)

��
�� + �
��
�� + �Γ(−�)(��

�,�
�� �+−∞�

�,�
� �)

+ (� − �)� + Δ��
�� + � − 	
= 0,

(37)lim
�→−∞
��(�, �) = 0,

(38)��(�max, �) = ��max −�,
(39)�� = max(�� −�, 0),

(40)�� = (� − 1)Δ�, �� = (� − 1)Δ�,

(41)
��(��, ��)
�� =

�(��, ��) − �(��−1, ��)
Δ� + �(Δ�),

(42)
��(��, ��)
�� =

�(��, ��+1) − �(��, ��)
Δ� + �(Δ�).

(43)

−∞��,�� ��� =
1
(Δ�)�

�+1
∑
�=0
�����−�+1 −

1
(Δ�)�
(�1�Δ�� + �2 + �3�−Δ��)

⋅ (1 − �−Δ��)���� + �(Δ�),

(44)

���,��max
��� =
1
(Δ�)�

�1−�+1
∑
�=0
�����+�−1 −

1
(Δ�)�
(�1�Δ�� + �2 + �3�−Δ��)

⋅ (1 − �−Δ��)���� + �(Δ�),

Now, substituting Eq. (20), (21), (23), (25) into Eq. (13) and 
a¤er transforming the boundary conditions (14)–(17) through 
Eq. (19), the PDE system of function �(�, �) can be obtained 
as follows:

where � = � − w − � − �, � ∈ (−∞, ��],

And the equation (18) should be changed as

Mathematically, the function �(�, �) in the model (26)–(30) 
can be viewed as an American call option with strike price �
and free-boundary ���. According to the property of American 
call, the values of �(�, �) are not less than the payo� 
max(�� −�, 0). And the free-boundary ��� is monotonically 
increasing with respect to time to expiry of option contract. 
In the next section, a numerical scheme based on the penalty 
method will be proposed to solve this model.

3. Numerical Method

In this section, we �rst consider a penalty approach in which 
the free moving boundary is removed by adding a small and 
continuous penalty term, so that the stock loan pricing prob-
lem can be solved on a �xed domain. �en, a di�erent scheme 
is proposed and an e�ective nonlinear Newton-type iteration 
strategy is employed. Furthermore, due to the coe«cient 
matrixes of the �nally linear system, which contains the full 
matrix with Toeplitz structure, the fast biconjugate gradient 
stabilized method (FBi-CGSTAB) is used to solve our 
system.

3.1. Model Transformation. In this paper the penalty function 
is de�ned as

where � is a regularization constant and 0 < � ≪ 1, � is a 
constant,

(26)
���� + ����� + �Γ(−�)(���,��� �+−∞��,�� �) + (� − �)� = 0,

(27)lim
�→−∞
�(�, �) = 0,

(28)�(��, �) = ��� −�,
(29)��(��, �) = ��� ,
(30)�(�, �) = max(�� − �, 0),

(31)���,��� �=������ −���,
(32)−∞��,�� �=−∞���� −���.
(33)�(�, �) ≥ max(�� −�, 0).

(34)
����(�, �) + � − �(�) ,

(35)�(�) = �� −�.
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where � ≥ 1.
Theorem 3. If the time step Δ� ≤ 1/(� − �), �3 ≥ 0 and

then the approximate stock loan values {���} generated by the 
scheme Eq. (38) satisfy

for all �, �, where

For details of proof process, please refer to Appendix A.2.

4. Numerical Examples and Discussions

In this part, the numerical simulation should be executed for 
verifying the theoretical consideration of our proposed di�er-
ence scheme. �e system (48) is nonlinear, hence a practical 
Newton-type iteration strategy is given to realize the nonlinear 
di�erence scheme. �e special structure preserved by the coef-
�cient matrix resulted by di�erence scheme is carefully 
exploited. Furthermore, the fractional derivatives usually 
result in a dense coe«cient matrix in the system. It has signif-
icant computational and storage requirements. In terms of 
computational cost; it is very important to use an e�ective and 
e«cient method to solve our linear system. �erefore, the fast 
biconjugate gradient stabilized method (FBi-CGSTAB) [18] 
is employed. Finally, the impacts of important parameters to 
the optimal redemption price should be analyzed.

Practically, to implement the numerical scheme (48) in 
computer, the semi-in�nite domain (−∞,�max] must be trun-
cated into a �nite domain:

here we take �min = ln(0.0001), and now �(�min, �) = 0. In this 
case, we should rede�ne the space step Δ� = (�max − �min)/�2, 
and

If we let

then the matrix of numerical scheme (48) can be written as:

(53)
� ≥ 2��(��max +�) + |�|��max

��max − 1��max
+ �(�,�) + (� − �)��max ,

(54)��� ≥ max(��� −�, 0) = max(��, 0),

(55)� = �Γ(−�)(Δ�)� ,

(56)
�(�,�) = �Γ(−�)[(�1��max� + �2 + �3)��

+(�1��max� + �2 + �3)��].

(57){[�min, �max] × [0, �]},

(58)�� = �min + (� − 1)Δ�, � = 1, 2, . . . , �2 + 1.

(59)� = 1 − Δ�(� − �) − �Δ�Δ� , � = �Δ�Δ� , � = −Δ��Γ(−�)(Δ�)�
,

(60)
{[� − �(�1 + �2)]I + �B + �(A + A�)U�} − �(U�) = U�+1 − E�,

where ��� is the value of function �(�, �) at grid point (��, ��), ��(� = 0, 1, 2, . . .) are fractional di�erence coe«cients

and the parameters ��(� = 1, 2, 3) satisfy the following system

If taking �3 as the free variable, the solution of system (46) can 
be obtained as

So, the fully implicit di�erence scheme without the truncation 
error for (36) is got as follows:

with the boundary and terminal conditions

where

For our proposed di�erence scheme, we have a discrete ana-
logue form of the important property inherited by the stock 
loan model. Prior to presenting the proof, we need the follow-
ing two lemmas.

Lemma 1. If the parameter �3 > 0, then ��(� = 1.2) in the Eq. 
(50) are more than zero.

�e proof process of Lemma 1 is provided in Appendix A.1

Lemma 2 (see [23]). For 1 < � < 2, the coe�cients �� satisfy

where � ≥ 1.
In fact, according to Lemma 2, we obtain the following 

equation:

(45)
�� = (−1)�(�� ),
( �� ) = �(� − 1) ⋅ ⋅ ⋅ (� − � + 1)�! ,

(46)
�1 + �2 + �3 = 1,
�1 − �3 = �2 .

(47)
�1 = �2 + �3,
�2 = 2 − �2 − 2�3.

(48)

��+1� − ���
Δ� + �

��� − ���−1
Δ� + (� − �)�

�
� +
��
��� − � + ��

+ �Γ(−�)
(Δ�)�
(
�1−�+2∑
�=0
�����+�−1 − 
1��� +

∞
∑
�=0
�����−�+1 − 
2���) = 0,

(49)

lim
�→−∞
��� = 0, ���1+1 = ��max −�, ��2+1� = max(��� −�, 0),

(50)
�1 = (�1�Δ�� + �2 + �3�−Δ��)(1 − �−Δ��)�,
�2 = (�1�Δ�� + �2 + �3�−Δ��)(1 − �−Δ��)�.

(51)

�0 = 1, �1 = −�, 0 ⩽ ⋅ ⋅ ⋅ ≤ �3 ≤ �2 ≤ 1,
∞
∑
�=0
�� = 0,

�
∑
�=0
�� < 0,

(52)

�
∑
�=0, � ̸=1
�� < �,
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with strike � and optimal exercise boundary ���. �en, math-
ematically, the values of �(�, �) are not less than payo� func-
tion max(�� −�, 0) and ��� is increasing with respect to time 
to expiry. Figures 3 and 4 show the two facts, respectively.

4.2. Impact of Parameters. As described in Section 2, the 
essential characteristics of CGMY model are controlled by 
four key parameters, namely, �, �, �, and � and. In other 
words these parameters should a�ect the value and optimal 
redemption price of stock loan. Hence, in this subsection we 
employ the proposed numerical method to investigate the 
impacts of the four parameters on the stock loan value and 
capture the optimal redemption price for di�erent parameters 
setting with some reasonable explanation.

Figures 5 and 6 display the behaviours of stock loan valu-
ation and optimal redemption price for di�erent �, respec-
tively. As shown in Figure 5, the mesh surf of �(�, �) is higher 
with the increase of �. Financially, this phenomenon could be 
explained from the fact that except keeping the other param-
eters constant, the aggregate activity level of CGMY process 
may be calibrated through movements in � and the level is 
increasing with respect to �. In addition, the stock loan and 

where

and I denotes the (�1 − 1) × (�1 − 1) identity matrix, A�
means the transposition of matrix A. Both A and B are Toeplitz 
matrix

In fact, the system (60) is not solved directly for the penalty 
function �(�) is nonlinear with respect to �, so this nonlinear 
system can be solved through Newton-type iteration approach, 
which is provided in Appendix A.3.

4.1. Numerical Testing. To ensure that both the theoretical 
model and method are feasible, many results in our work must 
be veri�ed before quantitative analysis; therefore, in this part 
we will carry out some numerical testing. First of all, the fact 
that our proposed numerical algorithm satis�es the discrete 
analogue of the positive constraint, �(�, �) ≥ max(�� −�, 0)
in �eorem 3 will be veri�ed. As shown in Figures 1 and 2, 
the mesh surface of �(�, �) ≥ max(�� −�, 0) for the di�erent  
time and stock price under various parameter setting is presented. 
And the mesh surface shows that the present di�erence scheme 
conserves the inequality ��� ≥ max(��, 0) for all �, �.

As described in Section 2.3, the function �(�, �) in the 
model (36)–(39) can be recognized as an American call option 

(61)
U
� = (��2, ��3, . . . , ���2), �(U�) = (�(��2), �(��3), . . . , �(���2)),

(62)

�(���) = Δ������ + � − �� , E
� = (���1 , ���1 , . . . , ���1 + ��0)�,

(63)

A =
[[[[[[[
[

�1 �0 0 ⋅ ⋅ ⋅ 0�2 �1 0 ⋅ ⋅ ⋅ 0�3 �2 �0 ⋅ ⋅ ⋅ 0
.
.
.

. . .
. . .

. . .
.
.
.��−2 ��−3 ⋅ ⋅ ⋅ �1 �0��−1 ��−2 ⋅ ⋅ ⋅ �2 �1

]]]]]]]
]

,

B =
[[[[[[[
[

0 0 0 ⋅ ⋅ ⋅ 0 01 0 0 ⋅ ⋅ ⋅ 0 00 1 0 ⋅ ⋅ ⋅ 0 0
.
.
.

. . .
. . .

. . .
. . .

.

.

.0 0 0 ⋅ ⋅ ⋅ 0 00 0 0 ⋅ ⋅ ⋅ 1 0

]]]]]]]
]

.
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Figure 1:  Mesh surface of �(�, �) − �(�) with � = 0.05, � = 0.06,� = 0.1, � = 0.03, � = 1.2, � = 1, � = 1.5, � = 2, � = 50.
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max(� −�exp(��), 0) must be equal to the stock loan value 
and the optimal redemption price is the boundary of exercis-
ing region, the higher stock loan values should yield the bigger 
optimal redemption price, namely, a bigger � shall yield a 
higher optimal redemption boundary shown in Figure 6.

�eoretically, the two parameters � and � control the rate 
of exponential decay on the right and le¤ of the density of 
CGMY process,respectively. As for � <�(� >�), the le¤ 
(right) tail of the distribution for this process is heavier than the 
right (le¤) tail, which is consistent with the neutral distribution 
typically implied from stock loan values [16]. Also a smaller 
value of �(�) results in a heavier le¤ (right) tail. Moreover, 
according to the results in Ref. [24], it is suggested that the stock 
loan should have a positive value only if there is a large decrease 
in the risk-asset. Hence, the stock loan value relies on the le¤ 
(right) tail of the risk-neutral distribution of stock. In other 
words, the fatter the le¤ (right) tail is, the more valuable the 
stock loan value. �erefore, as shown in Figures 7 and 8, the 
mesh surface of �(�, �) is decreasing with respect to � and �
during with other parameters given, as depicted in the complete 
time dimension.

According to the analysis in explained earlier, it is not dif-
�cult to obtain that a smaller value of � or � would yield a 
higher stock loan value, hence, as a rational investor she/he 
should raise the redemption price at any valid time when there 
are smaller value of � or �. And in other words, the higher 
optimal redemption boundary is increasing with respect to �
and � at any valid time, as shown in Figures 9 and 10.

Finally, we should focus on the impact of parameter �. 
Carr [16] claims that parameter � decides whether the up 
jumps and down jumps of CGMY process have a completely 
monotone Lévy density. Moreover, both activity and variation 
of this process will become larger as � becomes bigger. So, the 
investors must be willing to obtain a higher value of contract 
under the case of “out-the-money”, then the mesh-surface is 
increasing with respect to � with other parameters are kept 
�xed as shown in Figure 11. However, when stock prices are 
less than principal, our numerical results are consistent with 
the conclusion of call option calculated by the fat tails distri-
bution under the “in-the-money” case [14]. As for the stock 
loan contract, the stock prices must be larger than principal 
in the exercising region where the value of stock loan decreases 
monotonically with respect to �. �is leads to a fact that the 

American call have a similar property that the higher activity 
level of underlying asset results in the higher value. Hence, it 
is reasonable to suggest that the stock loan value mesh surface �(�, �) should move upwards as � becomes larger. 
Mathematically, in the exercising region where the payo� 
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bigger the value of � is, the higher the optimal redemption 
boundary is, as depicted in Figure 12.

5. Conclusions

In this paper, the stock loan valuation under the CGMY frame-
work is investigated. In this case, the pricing mathematical 
model is a FPDF free-boundary problem. A nonlinear penalty 
term is introduced to transform the free-boundary model into 
one with �xed domain. �en, a full nonlinear implicit numerical 
scheme is proposed and we also proved that the numerical solu-
tion of transformed model satis�ed the inequality �(�, �) ≥ max(exp(�) −�, 0). In addition, to improve e«ciency 
of computation, the FBi-CGSTAB method was employed.

In numerical simulation, the impacts of key parameters �,�,�, and � on the stock loan value and optimal redemp-
tion price are analyzed. Parameter � decides activity level of 
underlying asset so that both stock loan value and optimal 
redemption price are increasing with respect to �. For the two 
parameters � and �, they control the rate of exponential decay 
on the right and le¤ of the Lévy density, respectively; in other 
words, the bigger value of �(�) results in the fatter le¤ (right) 
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Figure 9:  ��=1 − ��=3 with � = 0.05, � = 0.08, � = 0.03,� = 1.2, � = 1.5, � = 2,� = 50.
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A¤er simpli�cation one can obtain

where

Since,

we have

where

In addition, from the fact ∑∞�=0�����−�+1 = ���+1∑∞�=0���−�Δ�, and 
according to [15], when |�| ≤ 1, (1 − �)� = ∑∞�=0���−�, we get

And according to Eq. (50) one can obtain

(A.6)

[1 − (� − �)Δ� − �Δ�Δ� �
�
� = ��+1� −

�Δ�
Δ� �
�
�−1

+Δ��Γ(−�)
(Δ�)�

(
�1−�+2
∑
�=0,� ̸=1

����+�−1 +

∞
∑
�=0,� ̸=1

����−�+1)

+Δ���
��� − �
− Δ��� −

Δ��Γ(−�)
(Δ�)�

(2�1 − �1 − �2)],

(A.7)

�� = −
�Γ(−�)
(Δ�)�
[
�1−�+2
∑
�=0
����+�−1 − �1�� +

∞
∑
�=0
����−�+1 − �2��]

+ (
 − �)�� +


Δ�(��−1 − ��)

= −�Γ(−�)
(Δ�)�
[
�1−�+2∑
�=0
��(	��+�−1 − �) +

∞
∑
�=0
��(	��−�+1 − �)]

+ (
 − �)(	�� − �) + 
Δ� (	
��−1 − 	��)

+ �Γ(−�)
(Δ�)�
(�1 + �2)(	�� − �).

(A.8)
���������
�Δ� − 1
Δ�

��������� ≤
��max − 1
�max

,
∞
∑
�=0
�� = 0,

(A.9)

�������
����� ≤
����������
�Γ(−�)
(Δ�)�
[
�1−�+2
∑
�=0
����+�−1 +

∞
∑
�=0
����−�+1]

����������
+
�������
�
Δ�(�
��−1 − ���)

�������

+
���������
�Γ(−�)
(Δ�)�
(
1 + 
2)(��� − 	)

���������
+ ����(� − �)(�

�� − 	)����

≤
����������
�Γ(−�)
(Δ�)�
[
�1−�+2
∑
�=0
����+�−1 +

∞
∑
�=0
����−�+1]

����������
+ |�|��max

��max − 1
�max

+ �(�,�) + (� − �)��max ,

(A.10)
�(�,�) = �Γ(−�)[(�1��max� + �2 + �3)��

+(�1��max� + �2 + �3)��].

(A.11)

����������
�Γ(−�)
(Δ�)�

∞
∑
�=0
�����−�+1
����������
=
������������
���+1�Γ(−�)(1 − �

−Δ�)�
(Δ�)�

������������
≤ ��max�Γ(−�).

tail. For this reason, both mesh surface of �(�, �) and optimal 
redemption boundary decrease with respect to � and �. For 
parameter �, in the case of “out-of-the-moneyness”, the bigger � can yield the higher mesh surface and optimal redemption 
price. However, this phenomenon would disappear if stock 
price became less than the strike price.

Appendix

A.1. Proof Process of Lemma 1

Proof. We prove �1 > 0. Substituting (47) into the formula 
of �1, one can obtain

Due to � ∈ (1, 2], so (1/2)� + (1/2)(2 − �) < 0. Moreover,

and (1 − �−Δ��)� > 0, therefore if �3 ≥ 0, then �1 > 0. Similarly, 
we also prove �2 > 0 under the condition of �3 ≥ 0. ☐

A.2. Proof Process of Theorem 3

Proof. Without loss of generality, we prove this theorem in 
two steps. �e scheme (48) can be rewritten as

In order to prove ��� ≥ ���, for all �, �, we introduce

and it is straightforward to obtain ��1+1� = ��1+1� − �� ≥ 0. 
Hence, by substituting ��� into (A.3), it yields

(A.1)

�1 = [(�2 + �3)�
Δ�� + 2 − �2 − 2�4 + �3](1 − �

−Δ��)�

= [(�Δ�� + �−Δ�� − 2)�3 + �2 +
2 − �
2 ](1 − �

−Δ��)�.

(A.2)�Δ�� + �−Δ�� − 2 ≥ 2√�Δ���−Δ�� − 2 = 0,

(A.3)

[1 − (� − �)Δ� − �Δ�Δ� −
Δ��Γ(−�)
(Δ�)�

(2�1 − 
1 − 
2)]���

= ��+1� −
�Δ�
Δ� �

�
�−1 +
Δ��Γ(−�)
(Δ�)�

(
�1−�+2
∑
�=0,� ̸=1
�����+�−1 +

∞
∑
�=0,� ̸=1
�����−�+1)

+ Δ���
��� − � + ��

.

(A.4)��� = ��� − ��,

(A.5)

[1 − (� − �)Δ� − �Δ�Δ� −
Δ��Γ(−�)
(Δ�)�

(2�1 − 
1 + 
2)](��� + 
�)

= ��+1� + 
� +
Δ��Γ(−�)
(Δ�)�

(
�1−�+2∑
�=0,� ̸=1
��(���+�−1 + 
�+�−1))

− �Δ�Δ� (�
�
�−1 + 
�−1) + Δ��Γ(−�)(Δ�)�

⋅ (
∞
∑
�=0,� ̸=1
��(���−�+1 + 
�−�+1)) + Δ������ − � .
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According the Eq. (53), we have

In addition

based on the condition ��1+1� ≥ 0, we can obtain �� ≥ 0, natu-
rally ��� ≥ 0. Consequently

for all �, �.
Next, we should prove that ��� ≥ 0 for all �, �. Following the 
above idea, we de�ne

and let � be an index such that ��� = ��. It follows from (48) 
that

A¤er arrangement, it gives

In �rst step, ��� ≥ �� for all �, � have been proved, then 
Δ���/(��� − � + ��) < 0, so

Noticing the formula in the square brackets in the above equa-
tion is more than 0, and ��2+1� = max(exp(��) −�, 0) ≥ 0 for 
all �, namely ��2+1 ≥ 0. Hence, by mathematical induction, 
one obtains

for all �, �, which completes the proof.

(A.20)�(��) ≥ 0.

(A.21)�(0) = Δ�(�� −�) ≤ 0.

(A.22)��(0) = � + �Δ��
(� + �)2 ≥ 0

(A.23)��� ≥ ��,

(A.24)�� = min
�
���,

(A.25)

[1 − (� − �)Δ� − �Δ�Δ� −
Δ��Γ(−�)
(Δ�)�

(2�1 − 
1 − 
2)]��

≥ ��+1� −
�Δ�
Δ� �

� + Δ��Γ(−�)
(Δ�)�

(
�1−�+2
∑
�=0, ̸=1
���� +

∞
∑
�=0, ̸=1
����)

+ Δ���
��� − � + ��

.

(A.26)

[1 − (� − �)Δ� − �Δ�Δ� −
Δ��Γ(−�)
(Δ�)�

(2�1 − 
1 − 
2)]��

≥ ��+1� +
Δ���
��� − � + ��

.

(A.27)

[1 − (� − �)Δ� − �Δ�Δ� − Δ��Γ(−�)(Δ�)�
(2�1 − �1 − �2)]�� ≥ ��+1� .

(A.28)��� ≥ 0,

Finally, the following inequality can be obtained

where � = �Γ(−�)/(Δ�)�.
De�ne

take � be an index such that ��� = ��. Noticing the fact  
that 0 < Δ� ≤ 1/(� − �), Γ(−�) < 0, ��(
 = 1, 2) < 0 and � = � − � − � −� < 0, therefore

and �� ≥ 0 for � ≥ 2, for � = �, it follows from (A.3) that

A¤er simple algebra operation, one obtains

De�ne a function

where � = 1 − (� − �)Δ� − Δ��Γ(−�)/(Δ�)�(�1 − �1 − �2) > 0. 
So if we assume that ��+1 ≥ 0, directly, we get

(A.12)

����������
�1−�+2∑
�=0
��(���+�−1 − �)

����������
≤
����������
�1−�+2∑
�=0
�����+�−1
����������

+ �
����������
�1−�+2∑
�=0
��
����������
=
����������
�1−�+2∑
�=0,� ̸=1
�����+�−1 + �1��1

����������
+ �
����������
�1−�+2∑
�=0,� ̸=1
�� + �1
����������
≤
����������
�1−�+2∑
�=0,� ̸=1
����max

����������
+ �����1��max

����

+ �
����������
�1−�+2∑
�=0,� ̸=1
��
����������
+ ������1���� ≤ � ��max + ���max

+ �� + �� = 2���max + 2��.

(A.13)

������������ ≤ 2��(��max +�) + |�|��max
��max − 1��max

+ �(�,�) + (� − �)��max ,

(A.14)�� = min
�
���,

(A.15)

1 − (� − �)Δ� − �Δ�Δ� − Δ��Γ(−�)(Δ�)�
(2�1 − �1 − �2) > 0,

(A.16)−�Δ�Δ� > 0,

(A.17)

[1 − (� − �)Δ� − �Δ�Δ� −
Δ��Γ(−�)
(Δ�)�

(2�1 − 
1 − 
2)]

≥ 
�+1� −
�Δ�
Δ� 

� + Δ��Γ(−�)
(Δ�)�

(
�1−�+2
∑
�=0, ̸=1
��
� +

∞
∑
�=0, ̸=1
��
�)

+ Δ���
�� + �
− Δ���.

(A.18)

[1 − (� − �)Δ� − Δ��Γ(−�)
(Δ�)�

(�1 − �1 − �2)]
�

− Δ���

� + �
+ Δ�	� ≥ 
�+1� ≥ 
�+1.

(A.19)�(�) = �� − �Δ��� + � + Δ���,
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A.3. Newton-Type Iteration Approach to the 
System (48)

where � = 1, 2, . . ., with the initial value �0 = U�+1 for each time 
level as the given initial guess and ��� = �� − ��−1. J

F
 is Jacobian 

matrix of column vector �(��) and � ∈ (0, 1) is a damping 
parameter. We choose U� = ��, if ������� − ��−1�����∞ ≤ � for some �
as the stopping criterion, where � is a su«ciently small positive 
control tolerance number. In this paper, we take � = 0.2, � = 10−4, � = 10−5 and �3 = 0. Now the challenging 
point that should be emphasized is that both matrices A and 
A
� are dense matrix, and the storage requirement and compu-

tational e�orts are very high, which presents di«culty in cap-
turing the optimal exercise boundary under the CGMY 
framework. So, the FBi-CGSTAB method should be employed 
to overcome the challenging point. And �nally, the total stor-
age requirement and computational costs have been signi�-
cantly reduced from �(�12) to �(�1) and from �(�13) to �(�1log�1) respectively.

Data Availability

�ere isn’t any data in our manuscript, but for the Matlab code, 
we can provide to anyone who want.

Conflicts of Interest

�e author declare that they have no con¬icts of interest.

Acknowledgments

We are especially grateful for anonymous referees for com-
ments and suggestions that greatly improved this paper. �e 
work on this paper was partially supported by the Guizhou 
science and Technology Department Basic Research Projects 
([2019]1175); Science and Technology Bureau Project of 
Baiyun District ([2017]37); PhD Research Fund of Guizhou 
University of Commerce ([2018]001).

References

[1]  J. Xia and X. Y. Zhan, “Stock loans,” Mathematical Finance, 
vol. 17, no. 2, pp. 307–317, 2007.

[2]  X. P. Lu and E. R. M. Putri, “Finite maturity margin call stock 
loans,” Operations Research Letters, vol. 44, no. 1, pp. 12–18, 2016.

[3]  N. Cai and L. H. Sun, “Valuation of stock loans with jump risk,” 
Journal of Economic Dynamics and Control, vol. 40, pp. 213–241, 
2014.

[4]  W. T. Chen, L. B. Xu, and S. P. Zhu, “Stock loan valuation under 
a stochstic interest rate model,” Computers & Mathematics with 
Applications, vol. 70, pp. 1757–1771, 2015.

(A.29)

{[� − �(�1 + �2)]I + �B + �(A + A�) − JF(��−1)}���
= −{[� − �(�1 + �2)]I + �B + �(A + A�)}��−1
+ �(��+1) − E� + �(��−1),

(A.30)�� = ��−1 + �(�� − ��−1),



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

