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Transcendental functions are a fundamental building block of science and engineering. Among them, a relatively new function
denominated as Lambert 𝑊 is highlighted. The importance of such function relies on the fact that it can perform novel isolation
of variables. In this work, we propose two accurate piece-wise approximate solutions, one for the lower branch and another one
for the upper branch, respectively. The proposed analytic approximations are obtained by using the power series extender method
(PSEM) in combinationwith asymptotic solutions. In addition, we will compare some published approximations with our proposal,
highlighting our advantages in terms of significant digits and speed of evaluation. Furthermore, the approximations are validated
by the successful simulation of a problem of economy and other acoustic waves of nonlinear ions.

1. Introduction

Transcendental equations are those containing transcenden-
tal functions with the variable to be solved for, which have
the particularity that can not be expressed in terms of a
sequence of algebraic operations [1–4]. This is the case of
the Lambert 𝑊 Function [5, 6]. The Lambert W Function as
today known, denoted by𝑊(𝑥), is amultivalued function that
can be defined as the inverse of the following transcendental
function [5–9]:

𝑦 (𝑥) exp 𝑦 (𝑥) = 𝑥, (1)

resulting in
𝑦 (𝑥) = 𝑊(𝑥) , (2)

where 𝑥 can be any real or complex number, and 𝑊(𝑥) is
known as Lambert 𝑊 Function.

The Lambert W Function (𝑊(𝑥)) is a multivalued func-
tion (also called multibranched function); branches consid-
ering only real numbers of 𝑥 are plotted in Figure 1. The two
real branches, 𝑊0(𝑥) and 𝑊−1(𝑥), can be identified. 𝑊0(𝑥) is
called the upper branch (also named the principal branch)
and satisfies the condition 𝑊(𝑥) ≥ −1. This branch can be
split into two branches, 𝑊0+(𝑥) and 𝑊0−(𝑥). 𝑊−1(𝑥) is called
the lower branch and satisfies the condition 𝑊(𝑥) ≤ −1.
Both branches are jointed at (−1/𝑒, −1). Then, on the interval−1/𝑒 < 𝑥 < 0, there are two possible values for𝑊(𝑥), the one
for𝑊0−(𝑥) and the second for𝑊−1(𝑥).

The origin of (2) begins in 1758 when Johann Heinrich
Lambert solved the next trinomial equation [5, 6] by giving a
series for 𝑥 in powers of 𝑞.

𝑥 = 𝑞 + 𝑥𝑚 (3)
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Figure 1: The two real branches of the Lambert W Function.𝑊0(𝑥)
is the upper branch and𝑊−1(𝑥) is the lower branch.

Some years later, in 1783 Leonhard Euler presented (3)
into a symmetrical form as follows [5, 6]:

𝑥𝛼 − 𝑥𝛽 = (𝛼 − 𝛽) V𝑥𝛼+𝛽 (4)

which is developed in series expansion as

log 𝑥 = V + 212! V2 + 323! V3 + 434! V4 + ⋅ ⋅ ⋅ (5)

and can be expressed as

log 𝑥 = ∑
𝑛=1

𝑛𝑛−1𝑛! V𝑛 = 𝑇 (V) . (6)

This series is called the Tree Function 𝑇(V) and is related
to the LambertWFunction (2) because𝑇(V) = −𝑊(−V) [5, 6].
The Lambert W Function is also called the Omega function
or Product Log function [5, 13]. However, the inverse of (1)
was first described by Polya and Szego in 1925 [14]. Later,
during 1949 up to 1959, Edward Maitland Wright performs
significant contribution to the solution of the transcendental
equation (1) by means of his effort to solve Delay Differential
Equations (DDE) [15, 16]. At the same time as Wright, in
1950, N. D. Hayes [17] collaborated in the solution of (1) with
his work on transcendental equations. In 1973, Crowley et
al. [18] presented an algorithm (called the 443-algorithm)
for the solution of that transcendental equation; an updated
version of the 443-algorithm (called the 743-algorithm) was
given in 1995 [19]. Different works have been published from

1758 along the years regarding the solution of (1); however,
it was until the work of Corless et al. published in 1996
[5] that 𝑊(𝑥) is given to be known worldwide. Corless
et al. [5] made a revision of related works and potential
applications and provide approximate representations and
numeric algorithms of evaluation to the function. At the
same time, this function was included inMaple CAS software
[5, 20].

Since then, many works have appeared with reviews
and significant contributions to the approximation of the𝑊(𝑥) oriented to diverse applications; some relevant works
are presented by Corless et al. [21, 22], Brito et al. [6],
Abdolhossein et al. [23], Fukushima [24],Marko [25], Fredrik
[9], Jeffrey et al. [26], Jeffrey [27], Kheyfits [28], Darko [7],
Dence [29], and Mezo et al. [30]. Moreover, a conference
was created and celebrated in honour of the Lambert W
Function in 2016. Lambert 𝑊 is today used in all fields of
science where transcendental functions as (1) are implicit
in equations to solve. In general, 𝑊(𝑥) can be applied in
Physics, Mathematics, Chemistry, Engineering, and so on [5,
6, 8]. Some particular applications are biochemical kinetics
[25, 31], electromagnetics (capacitor, transmission lines, etc.)
[32], semiconductor (diode) circuits [33, 34], photocells [35],
acoustics [36], optics [37], particle physics [38], general
relativity [39], geophysics [40], risk theory [41], technological
systems [42], information theory [43], combinatorial [5, 44],
iterative exponentiation [5, 45, 46], graph theory [47], oscil-
lation theory [13], time-delay dynamics [48–51], pedagogical
[5], physiology [52, 53], hydrology [54, 55], hydraulic [56],
materials and transport research [57–59], electrochemistry
[60], microfluidics [61], statistical mechanics [62], etc.

The formal solution of the Lambert W function can be
expressed as [56]

𝑊(𝑥) ≈ ln 𝑥
ln 𝑥

ln 𝑥
ln 𝑥

ln ⋅ ⋅ ⋅
(7)

This expression clearly requires an infinite iterative calcu-
lus, which is not feasible to compute.

From the numerical and analytical point of view, there
are several methods to compute transcendental functions
like this; for example, Chapeau-Blondeau [10] and Corless
et al. [5] proposed to evaluate the Lambert W branches
using approximate analytical expressions and increasing
accuracy with the Halley numerical method [35, 63–65].
Other proposals to obtain an analytic approximation of the
Lambert W function are [11, 66–68]. Fukushima proposed
an algorithm [24] to obtain the numerical solution for𝑊0(𝑥)
and𝑊−1(𝑥) bymeans of an expansion around the zero branch
point. Moreover, Chapeau-Blondeau [10], de Brujin [67], and
Karamata [68] proposed series expansions to evaluate branch𝑊−1(𝑥).

In this work, we propose to apply power series extender
method (PSEM) [69] to calculate approximate solutions for
both branch Lambert 𝑊. PSEM is a novel tool that is able
to produce easy computable, highly accurate approximations
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without requiring to perform: integrals, solution of differ-
ential equations or inclusive without requiring the existence
of a perturbative parameter. What is more, the approximate
solutions exhibit a large domain of convergence.

Section 2 presents the basic procedure to apply PSEM.
The procedure to obtain the approximation of lower and
upper branch of Lambert 𝑊 is presented in Section 3. Next,
two case studies are presented in Section 5. Later, Section 6
presents a discussion about the main results of this work.
Finally, the concluding remarks are presented in Section 7.

2. Basic Procedure of PSEM

In broad sense, a nonlinear differential equation can be
expressed as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑥) = 0, 𝑥 ∈ Ω, (8)

having as boundary condition,

𝐵(𝑢, 𝜕𝑢𝜕𝜂) = 0, 𝑥 ∈ Γ, (9)

where 𝐿 and 𝑁 are a linear operator and a nonlinear
operator, respectively, 𝑓(𝑥) is a known analytic function, 𝐵
is a boundary operator, Γ is the boundary of domain Ω,
and 𝜕𝑢/𝜕𝜂 denotes differentiation along the normal drawn
outwards fromΩ [70].

Next, we express the solution of (8) as a Taylor expansion:

𝑢 = ∞∑
𝑘=0

V𝑘 (𝑥 − 𝑥0)𝑘 , (10)

where V𝑘(𝑘 = 0.1, 2, . . .) are the coefficients of the power series
and 𝑥0 is the expansion point.

Now, in [69, 71], it is proposed that the solution for (8) can
be written as a finite sum of functions as

𝑢 = 𝑢0 + 𝑛∑
𝑖=0

𝑓𝑖 (𝑥, 𝑢𝑖) , (11)

or

𝑢 = 𝑢0 + ∑𝑛𝑖=0 𝑓𝑖 (𝑥, 𝑢𝑖)1 + ∑2𝑛𝑗=𝑛+1 𝑓𝑗 (𝑥, 𝑢𝑗) , (12)

where 𝑢𝑖 are constants to be determined by PSEM,𝑓𝑖(𝑥, 𝑢𝑖) are arbitrary trial functions, and 𝑛 and 2𝑛 are the
orders of approximations (11) and (12), respectively. We will
denominate (11) and (12) as a trial function (TF). Next, we
calculate the Taylor expansion of (11) or (12), resulting in the
power series:

𝑢 = 𝑢0 + 𝑛∑
𝑖=0

𝑃𝑖,0 + 𝑛∑
𝑖=0

∞∑
𝑘=1

𝑃𝑖,𝑘 (𝑥 − 𝑥0)𝑘 , (13)

𝑢 = 𝑢0 + 𝑛∑
𝑖=0

𝑃𝑖,0 + 2𝑛∑
𝑖=0

∞∑
𝑘=1

𝑃𝑖,𝑘 (𝑥 − 𝑥0)𝑘 , (14)

respectively, where Taylor coefficients 𝑃𝑘 are expressed
in terms of parameters 𝑢𝑖. Finally, we equate/match the
coefficients of power series (13) or (14) with the correspon-
dent ones of (10) to obtain the values of 𝑢𝑖 and substitute
them into (11) or (12) to obtain the PSEM approximation
[69].

It is possible to enrich PSEM by means of introducing
cancellation points (CP). For every cancellation point several
equations depending on the number of desire derivatives
to satisfy are constructed. Such new equations are included
in PSEM process to complement the system of equations
in order to obtain the coefficients (𝑢𝑖). The cancellation
equations are constructed by evaluating the TF and its
derivatives at some strategically selected CP to increase
the accuracy within a region. It is important to note that
every introduced cancellation point and its derivatives would
replace the corresponding superior order equations in the
regular PSEM procedure.

The TF can be composed by combining different type
of functions as long as the Taylor series exist. Note that
regrouping terms of the 𝑥-powers are valid for (13) and
(14), because 𝑓𝑖 functions were chosen analytic in a well-
defined domain in the independent variable 𝑥, whereby, the
correspondent Taylor series are convergent for such values of𝑥 [72, 73]. By restricting the values of (8) to the mentioned
domain of convergence, the sum of the Taylor series of 𝑓𝑖 is
also convergent [72, 73]. In the same fashion, the quotient of
two analytic functions series (see (12)) in 𝑥0 is also analytic,
whenever the denominator is different from zero at 𝑥0. It is
important to notice that PSEM convergence greatly depends
on the proper selection of the trial function. Then, it is
necessary that the proposed TF can potentially describe
the qualitative behaviour of the solution of the nonlinear
problem.

3. PSEM Approximation Procedure for
Lambert 𝑊 Function

In this section, we will present the approximations for
both branches of Lambert 𝑊 function by using the PSEM
procedure. Each branch will be divided into some regions
in order to reduce the complexity of the approximations
increasing in consequence with the speed of evaluation. In
addition, all the numerical PSEM approximations of this
work are obtained considering at least four significant digits.
Readers can find in Appendix A the proposed numerical
approximations. It is important to remark that all the power
series expansions of this work were obtained using special
transformations of 𝑊(𝑥) and applying the built-in package
“MultiSeries” of Maple 18.

3.1. Lower Branch Treatment. The lower branch will be
segmented into three pieces. For the first approximation, we
propose

𝑊̃−1,1 = 𝛼𝛽 (𝑥 + 1𝑒) − 1,
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𝛼 = 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑥 (𝑎3 + 𝑎4𝑥))) ,
𝛽 = 1 + 𝑥 (𝑏1 + 𝑥 (𝑏2 + 𝑥 (𝑏3 + 𝑥 (𝑏4 + 𝑏5𝑥)))) ,

(15)

where constants 𝑎1 ⋅ ⋅ ⋅ , 𝑎4 and 𝑏1, . . . , 𝑏5 will be deter-
mined by the PSEMprocedure. In order to obtain an accurate
approximation, we propose to obtain build 4 equations for𝑊−1(𝑥), 𝑊󸀠−1(𝑥), . . . ,𝑊󸀠󸀠󸀠−1 (𝑥) evaluating them at 𝑥 = −0.355
and other 5 equations for 𝑊−1(𝑥), 𝑊󸀠−1(𝑥), . . . ,𝑊(𝑖V)−1 (𝑥) eval-
uating them at 𝑥 = −0.367, and equating with the same
derivatives of (15). Then, by solving the resulting equation
system for the unknown constants we obtain the approximate
solution (A.1) (see Appendix A). The second and third
approximations are expressed as

𝑊̃−1,2 = 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑥 (𝑎3 + 𝑎4𝑥)))1 + 𝑥 (𝑏1 + 𝑥 (𝑏2 + 𝑥 (𝑏3 + 𝑏4𝑥))) , (16)

and

𝑊̃−1,3 = 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑎3𝑥))1 + 𝑥 (𝑏1 + 𝑥 (𝑏2 + 𝑏3𝑥)) + 𝑊̃−1,𝑎 (𝑥) , (17)

where

𝑊̃−1,𝑎 (𝑥) = 𝑘0 − 𝑘1 + 𝑘1𝑘0 ,
𝑘0 = ln (−𝑥) ,
𝑘1 = ln (−𝑘0) .

(18)

It is important to note that𝑊−1,𝑎 is obtained by calculating
the order two power series expansion at 𝑋 = 0 for

𝑊−1 (− exp (− 1𝑋)) = − 1𝑋 − ln( 1𝑋) − 𝑋 ln( 1𝑋) , (19)

and transforming (19) using 𝑋 = −1/ln(−𝑥), we obtain (18).
In summary, the lower branch is approximated (see (A.1)-

(A.3) in Appendix A) by

𝑊̃−1 (𝑥) =
{{{{{{{{{

𝑊̃−1,1 (𝑥) − exp (−1) ≤ 𝑥 < −0.34,
𝑊̃−1,2 (𝑥) −0.34 ≤ 𝑥 < −0.1,
𝑊̃−1,3 (𝑥) −0.1 ≤ 𝑥 ≤ 0.

(20)

3.2. Upper Branch Treatment. The upper branch is divided
into four segments. First, we propose the following transform:

𝑊𝑇 (𝑥) = 11 +𝑊0 (𝑥) , (21)

Then, the proposed trial function to apply PSEM to (21) is

𝑊𝑇 (𝑥) = 𝑎0 + 𝑥 (𝑎1 + 𝑎2𝑥)1 + 𝑥 (𝑏1 + 𝑥 (𝑏2 + 𝑏3𝑥)) (𝑥 + 1𝑒)
+ 𝑊̃𝑇,𝑎 (𝑥) ,

(22)

with

𝑊̃𝑇,𝑎 (𝑥) = −√2𝑒𝑥 + 11√2 + 8𝑍24𝑍 , 𝑍 = √1 + 𝑒𝑥, (23)

where 𝑊̃𝑇,𝑎 is obtained by calculating the order four power
series expansion at 𝑥 = −𝑒 for (21).Then, the first approxima-
tion for the upper branch of Lambert 𝑊 is

𝑊̃0,1 (𝑥) = −𝑊̃𝑇 (𝑥) − 1
𝑊̃𝑇 (𝑥) , (24)

Next, the TF for the next two approximations are

𝑊̃0,2
= 𝑎0 ln (1 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑥 (𝑎3 + 𝑥 (𝑎4 + 𝑎5𝑥))))) , (25)

and

𝑊̃0,3 = 𝑎0 ln (1 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑥 (𝑎3 + 𝑥 (𝑎4 + 𝑥 (𝑎5 + 𝑥 (𝑎6 + 𝑥 (𝑎7 + 𝑥 (𝑎8 + 𝑎9𝑥))))))))) . (26)

For the last approximation, we propose the following
transform:

𝑊𝑇1 (𝑋) = 𝑊0 (exp (1 − 𝑋𝑋 ) − 1) . (27)

Then, we calculate the order 5 power series expansion of
(27) and replace 𝑋 = 1/(1 + ln(1 + 𝑥)); it results in

𝑊̃0,4 (𝑥) = 1𝑘0 − 1 − 𝑘1 + (1 + 𝑘1 + (−12 + (12) 𝑘21
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+ (−16 + (−1 + (−12 + (13) 𝑘1) 𝑘1) 𝑘1) 𝑘0) 𝑘0)
⋅ 𝑘0

𝑘0 = 11 + ln (1 + 𝑥) ,
𝑘1 = ln( 1𝑘0) , 𝑥 ≥ 20000.

(28)

In summary, the upper branch is approximated by

𝑊̃0 (𝑥) =
{{{{{{{{{{{{{{{

𝑊̃0,1 (𝑥) − exp (−1) ≤ 𝑥 < 1,
𝑊̃0,2 (𝑥) 1 ≤ 𝑥 < 40,
𝑊̃0,3 (𝑥) 40 ≤ 𝑥 < 20000,
𝑊̃0,4 (𝑥) 𝑥 ≥ 20000.

(29)

Numerical PSEM approximations 𝑊̃0,1(𝑥), 𝑊̃0,2(𝑥),
and 𝑊̃0,3(𝑥) are (A.4), (A.5), and (A.6), respectively (see
Appendix A).

4. Iterative Scheme to Improve Accuracy

In [74] an easy computable iterative algorithm was proposed
to increase the accuracy of𝑊(𝑥) approximation.The iterative
formula is given by

𝑊𝑛+1 = 𝑊𝑛 (1 + 𝑒𝑛) , (30)

where 𝑛 is number of iterations, 𝑒𝑛 is
𝑒𝑛 = ( 𝑧𝑛1 +𝑊𝑛)

⋅ [ 2 (1 +𝑊𝑛) (1 +𝑊𝑛 + (2/3) 𝑧𝑛) − 𝑧𝑛2 (1 +𝑊𝑛) (1 +𝑊𝑛 + (2/3) 𝑧𝑛) − 2𝑧𝑛 ] ,
(31)

and

𝑧𝑛 = ln( 𝑥𝑊𝑛) − 𝑊𝑛. (32)

The error term for this iterative scheme is 𝑂(𝑒4𝑛) [74, 75].
In general terms, lower and upper branch were approximated
by PSEM in order to obtain more than 4 significant digits.
Then, after a single pass of 30 we obtain more than 16
digits as depicted in Figure 2. In the same fashion, Figures
3 and 4 show more than 15 digits for the upper branch
approximations. Therefore, our scheme is compatible with
the double float (64-bit IEEE 754) format of C/C++, which
provides 15 significant digits. Furthermore, the same figures
presented the significant digits of other works from literature
after a singles pass of (30), causing our proposal to be the only
one that keeps more than 15 digits for the complete domain of
Lambert 𝑊. If more significant digits are required, user can
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Figure 3: Significant digits for (29) and other ones reported at [7, 11,
12] after a single pass of iterative scheme of (30) for the interval of𝑥 = [−exp(−1), 0].

add more iterations to the scheme.The significant digits were
calculated using

Significant digits = −log10
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑊 (𝑥) − 𝑊̃ (𝑥)𝑊 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (33)

The number of employed digits extended to 50 (in Maple
CAS software) during the simulation in order to avoid
rounding errors during the evaluation of approximations. It
is important to notice from Figure 4 that our approximation
presents the higher number (more than 23) of significant
digits for𝑊0 > 15 than all the other approximations.

4.1. Computation Time Measurement. A computation time
(CPU time) comparison among our approximation and other
ones from literature was performed using Fortran 77/90,
using as compiler the gcc 5.4.0 with level 3 of optimization.
The computer used for the simulations was an Intel Core
Pentium(R) CPU 2117U × 2 running at 1.80GHz under Linux
Ubuntu 16.04. In order to circumvent the operative system
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Figure 5: Computation time (CT) for 𝑊̃−1(𝑥) and 𝑊̃0(𝑥).

instabilities, the time measurement was determined by the
average time of 10 million of evaluations for each point.
It is important to note in Figure 5 that our approximation
presents, in general, the best CPU time behaviour in com-
parison with other reported approximations: [7, 10] for lower
branch and [7, 11, 12] for the upper branch. However, for some
regions our approximation exhibits a similar or slightly better
CPU time. Further work is necessary to obtain faster approx-
imations compatible with double float standard as the one
reported [24], which presents a precise and fast computation
numerical algorithm to evaluate 𝑊(𝑥) that exhibits 50 nsec
of average time. The key advantage of [24] to obtain such
speed is that authors do not use transcendental functions to
evaluate Lambert 𝑊. However, our approximation is simple

piece-wise formulas that are straightforward to implement in
Fortran (see Appendix A), C/C++, Java, Basic, among many
others.

5. Case Studies

In this section we present two applications of the Lambert
function 𝑊. The first case of application is to economy and
second one is an interesting application to plasma physics.

5.1. Economic Order Quantity with Perishable Inventory. In
[76] a problem of Economic Order Quantity (EOQ) with
perishable inventory related to the supply chain design of
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Figure 6: Approximate and exact optimal transfer batch quantity 𝑄∗.

melons was reported. After some assumptions the authors of
[76] obtain the optimal transfer batch quantity as

𝑄∗
= −𝑝𝛼 (𝑊−1(𝐾𝛼 exp (𝛼𝑡𝑟 + 𝛽𝑡𝑗 − 1)

𝑉𝑝 − 1𝑒) + 1) . (34)

where the batch transfer cost is 𝐾 [$], the batch transfer
time is 𝑡𝑟 [h], the time in the cold chain is 𝑡𝑗 [in days], the
value of the melons at picking is 𝑉, the deterioration rate
at a field temperature at 30∘C is 𝛼 [hour], the deterioration
rate in the cold chain is 𝛽 [per day], and the picking rate is𝑝 [cartons/h].

As an example obtained from [76], we assume the values
for 𝑉 =$7, 𝛼 = 0.03h, 𝑡𝑟 = 1/2h, 𝐾 =$75, 𝑡𝑗 = 5days,𝛽 = 0.02 per day. Allowing the picking rate to vary between
1 and 120 cartons per hour producing an optimal transfer
batch quantity, 𝑄∗, which is shown in Figure 6, where we
have plotted (34) using our proposal and the exact numerical
Lambert𝑊 based solution fromMaple 18.

5.2. Application on Extremes of the Sagdeev Pseudo-Potential.
After several assumptions and manipulations, the electro-
static potential 𝜑 solution [77] is obtained as

𝜑1 = 12 (V20 +𝑊−1 (𝜎2 exp (−V20))) , (35)

and

𝜑2 = 12 (V20 +𝑊0 (𝜎2 exp (−V20))) , (36)

where the first and second roots correspond, respectively,
to the maximum and minimum in the pseudo-potential, in
terms of both real branches of Lambert 𝑊. V0 and 𝜎 are
constants of the phenomenon.

The exact (𝜑1 and 𝜑2) and approximate (𝜑1 and 𝜑2) con-
tour plot for different values of 𝜎 is presented in Figure 7(b).
In addition, to find the locus of the conjugation points (see
Figure 7(a)), wemust insert 𝜎2 = exp(V20 −1) in (35) and (36).

The conjugation points separate the (upper) region of
the root 𝜑1, corresponding to the maximum in the pseudo-
potential, from the (lower) region of the root 𝜑2, correspond-
ing to the minimum in the pseudo-potential.

6. Discussion

PSEM procedure produces compact and high accurate
approximations as depicted in Figures 2, 3, and 4. Further-
more, as a reference for convergence of PSEM,we use the root
mean square error defined as

𝐸rms = √ 1𝑏 − 𝑎 ∫𝑏
𝑎
(𝐸 (𝑡))2 𝑑𝑡, (37)

where 𝐸(𝑡) means relative error and 𝑎 and 𝑏 represent the
valid region of the approximation. The integration procedure
will be performed using Simpson’s rule 1/3 taking 100 samples
for each valid interval of the approximations (20) and (29).
Additionally, in order to calculate (37), we consider the
exact value of Lambert 𝑊 function as the numerical values
obtained from the built-in command fromMaple 18.

Figure 8 depicts the 𝐸rms error for each branch approx-
imations, using several 𝑖-th trial functions (TF) increasing
gradually the number of constants accordingly with Tables
1 and 2. Such figure shows how as the number of constants
increments the 𝐸rms error reduces its value significantly
showing the good convergence of the PSEM procedure.

As it is expected, the cases study shows how our proposal
can be applied to solve practical problems in sciences and
engineering. In fact, the simplicity of the piece-wise approx-
imations allows easily implementing the approximations
within computer languages as Fortran, C++, among many
others. It is also worth mentioning that the computation
time of our proposal was compared against other reported
approximations from literature presenting the advantage of
our proposal. Further work is required to reduce even more
the computation time in order to compete with numerical
algorithms as the one reported in [24].
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7. Concluding Remarks

In this article piece-wise approximations for both branches
of Lambert 𝑊 were proposed. The approximations were
obtained using PSEM in combination with asymptotic
approximations, resulting in handy and highly accurate
expressions in comparison with other ones from literature.

In fact, we apply the approximations to practical problems
in the fields of economic and physics, exhibiting highly
accurate results. It is important to highlight that the cou-
pling of PSEM with asymptotic solutions was successful to
improve the accuracy in the vicinity of the expansion point
and keeping the high accuracy of the original asymptotic
approximation for large values of the domain. Additionally,
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Table 1: Trial (𝑖-th) functions (TF) for PSEM for 𝑊̃−1,1(𝑥), 𝑊̃−1,2(𝑥)
and 𝑊̃−1,3(𝑥).
TF Approximation

𝑖 𝑊̃−1,1(𝑥)
1 𝐿(𝑥) − 1
2

𝑎1𝑥𝑏1𝑥 + 1𝐿(𝑥) − 1
3

𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
4

𝑎2𝑥2 + 𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
5

𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
6

𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
7

𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
8

𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏5𝑥5 + 𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1𝐿(𝑥) − 1
𝑖 𝑊̃−1,2(𝑥)
1

𝑎1𝑥𝑏1𝑥 + 1
2

𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1
3

𝑎2𝑥2 + 𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1
4

𝑎2𝑥2 + 𝑎1𝑥𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1
5

𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1
6

𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1
7

𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1
𝑖 𝑊̃−1,3(𝑥)
1 𝑄(𝑥)
2

𝑎1𝑥𝑏1𝑥 + 1 + 𝑄(𝑥)
3

𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1 + 𝑄(𝑥)
4

𝑎2𝑥2 + 𝑎1𝑥𝑏2𝑥2 + 𝑏1𝑥 + 1 + 𝑄(𝑥)
5

𝑎2𝑥2 + 𝑎1𝑥𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1 + 𝑄(𝑥)
6

𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1 + 𝑄(𝑥)
♣𝐿(𝑥) = (𝑥 + exp(−1)).♠𝑄(𝑥) = ln(−𝑥) − ln(−ln(−𝑥)) + ln(−ln(−𝑥))/ln(−𝑥).

we prove that it is possible to improve the accuracy using
an easy computable iterative scheme based on asymptotic
methods. The computation time was measured resulting that

Table 2: Trial (𝑖-th) functions (TF) for PSEM for 𝑊̃0,1(𝑥), 𝑊̃0,2(𝑥)
and 𝑊̃0,3(𝑥).
TF Approximation

𝑖 𝑊̃0,1(𝑥)
1 𝐴(𝑥)
2

𝑎0𝑏1𝑥 + 1𝐵(𝑥) + 𝐴(𝑥)
3

𝑎1𝑥 + 𝑎0𝑏1𝑥 + 1 𝐵(𝑥) + 𝐴(𝑥)
4

𝑎1𝑥 + 𝑎0𝑏2𝑥2 + 𝑏1𝑥 + 1𝐵(𝑥) + 𝐴(𝑥)
5

𝑎1𝑥2 + 𝑎1𝑥 + 𝑎0𝑏2𝑥2 + 𝑏1𝑥 + 1 𝐵(𝑥) + 𝐴(𝑥)
6

𝑎1𝑥2 + 𝑎1𝑥 + 𝑎0𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 1𝐵(𝑥) + 𝐴(𝑥)
𝑖 𝑊̃0,2(𝑥)
1 𝑎0ln(𝑎1𝑥 + 1)
2 𝑎0ln(𝑎2𝑥2 + 𝑎1𝑥 + 1)
3 𝑎0ln(𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
4 𝑎0ln(𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
5 𝑎0ln(𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
𝑖 𝑊̃0,3(𝑥)
1 𝑎0ln(𝑎1𝑥 + 1)
2 𝑎0ln(𝑎2𝑥2 + 𝑎1𝑥 + 1)
3 𝑎0ln(𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
4 𝑎0ln(𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
5 𝑎0ln(𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
6 𝑎0ln(𝑎6𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
7 𝑎0ln(𝑎7𝑥7 + 𝑎6𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 1)
8 𝑎0ln(𝑎8𝑥8+𝑎7𝑥7+𝑎6𝑥6+𝑎5𝑥5+𝑎4𝑥4+𝑎3𝑥3+𝑎2𝑥2+𝑎1𝑥+1)
9

𝑎0ln(𝑎9𝑥9 + 𝑎8𝑥8 + 𝑎7𝑥7 + 𝑎6𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 +𝑎2𝑥2 + 𝑎1𝑥 + 1)
♣𝐴(𝑥) = −(√2𝑒𝑥−11√2+16√1 + 𝑒𝑥)/(√2𝑒𝑥−11√2−8√1 + 𝑒𝑥), 𝐵(𝑥) =
𝑥 + 1/𝑒.

our proposal is fast in comparison with other approximations
from literature. Even more, the significant digits from our
proposal are fully compatible with the double float format
from C/C++ concluding that our approximations can be
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applied to practical problems as the study cases of this
work.

Appendix

A. Numerical PSEM Approximations

The numerical approximations obtained using PSEM with
parameters from Table 3 are for the lower branch:

𝑊̃−1,1 = 𝛼 (𝑥 + 1/𝑒)𝛽 − 1, − exp (−1) ≤ 𝑥 < −0.34,
𝛼 = −7.874564067684664 + (−63.11879948166995

+ (−168.6110850408981 − 150.1089086912451𝑥)
⋅ 𝑥) 𝑥) 𝑥,

𝛽 = 1 + (15.97679839497612 + (98.26612857148953
+ (293.9558944644677
+ (430.4471947824411 + 247.8576700279611𝑥) 𝑥)
⋅ 𝑥) 𝑥) 𝑥,

(A.1)

𝑊̃−1,2 = 𝛾𝛿 , − 0.34 ≤ 𝑥 < −0.1,
𝛾 = (−1362.78381643109 + (−1386.04132570149

+ (11892.1649836015 + 16904.0507511421𝑥) 𝑥) 𝑥)
⋅ 𝑥,

𝛿 = 1 + (251.440197724561 + (−1264.99554712435
+ (−5687.63429510978 − 2639.24130979048𝑥) 𝑥)
⋅ 𝑥) 𝑥,

(A.2)

and

𝑊̃−1,3 = 𝜖𝜀 + 𝑊̃−1,𝑎 (𝑥) , − 0.1 ≤ 𝑥 < 0,
𝜖 = (1.01999365162218

+ (−12.6917365519443 − 45.1506015092455𝑥)
⋅ 𝑥) 𝑥,

𝜀 = 1 + (−22.9809693297808
+ (−104.692066099727 − 95.2085341727207𝑥)
⋅ 𝑥) 𝑥.

(A.3)

Next, the approximations for the upper branch are

𝑊̃0,1 = −𝑘1 − 1𝑘1 , − exp (−1) ≤ 𝑥 < 1,
𝑘1 = 13 + √2

2√1 + 𝑒𝑥 − 124√2 + 2𝑒𝑥 + 𝜁𝜂 (𝑥 + 1𝑒) ,
𝜁 = (𝑥 + 0.36787944117144) (0.050248489761611

+ (0.11138904851051 + 0.040744556245195𝑥)
⋅ 𝑥) ,

𝜂 = 1 + (2.7090878606183 + (1.5510922597820
+ 0.095477712183841𝑥) 𝑥) 𝑥,

(A.4)

𝑊̃0,2 = 0.1600049638651493 ln (𝜃1) , 1 ≤ 𝑥 < 40,
𝜃1 = 1 + (5.950065500550155

+ (13.96586471370701 + (10.52192021050505
+ (3.065294254265870
+ 0.1204576876518760𝑥) 𝑥) 𝑥) 𝑥) 𝑥,

(A.5)

and

𝑊̃0,3 = 0.09898045358731312 ln (𝜃2) , 40 ≤ 𝑥 < 20000,
𝜃2 = 1 + (−3.16866642511229𝑒11 + (3.420439800038598𝑒10 + (−1.501433652432257𝑒9

+ (3.44887729947585𝑒7 + (−4.453783741137856𝑒5 + (3257.926478908996 + (−10.82545259305382 + (0.06898058947898353 + 0.00004703653406071575𝑥) 𝑥) 𝑥) 𝑥) 𝑥)
⋅ 𝑥) 𝑥) 𝑥) 𝑥.

(A.6)

B. Fortran Code to Compute the CPU Time

!=========================== ========================================
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!Routine for measure CPU time of the PSEM approximations for Lambert W

real:: start, finish, tt
integer jend,j
integer ∗ 8 i,ii
real ∗ 8 z,x,w,wmin,wmax,dw
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real ∗ 8 V,A, Q,F
real ∗ 8 k0,k1,k2
real ∗ 8 k3

ii=10000000
jend=120
wmin=-15.0d0
wmax=15.0d0
dw=(wmax-wmin)/dble(jend)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
write( ∗ ,"(a20,a20,a25)") "z","W","Tp nS"
do j=0,jend
x=wmin+dw ∗ dble(j)
w=x
call cpu time(start)

x=w ∗ exp(w)
do i=0,ii

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Lower branch LambertW!!!!!!!!!!!!!! !!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!! W-1,3(x)

if(-0.1<=x.and.x<0.and. w<-1) then
k0 = (1.01999365162218+(-12. 6917365519443-45.1506015092455∗ x) ∗ x) ∗ x/(1+&
(-22.9809693297808+(-104.692066099727 -95.2085341727207∗ x) ∗ x) ∗ x)

k1 = log(-x)
k2 = k1-log(-k1)+log(-k1)/k1
V = k0+k2

end if

!!!!!!!!!!!!!!!! W-1,2(x)
if(-0.34<=x.and. x<-0.1.and. w<-1) then
V = (-1362.78381643109+ (-1386.04132570149+(11892.1649836015+
16904.0507511421∗ x) ∗ x) ∗ x) ∗ x/(1+ &
(251.440197724561+(-1264.99554712435+
(-5687.63429510978-2639.24130979048∗ x) ∗ x) ∗ x) ∗ x)

end if
!
!!!!!!!!!!!!!!!! W-1,1(x)

if(-0.3678794411714423<=x. and.x<-0.34.and. w<-1) then
V= (-7.874564067684664+ (-63.11879948166995+ (-168.6110850408981-&
150.1089086912451∗ x) ∗ x) ∗ x) ∗ x ∗ (x+0.3678794411714423)/(1.0+&
(15.97679839497612+(98.26612857148953+ (293.9558944644677+&
(430.4471947824411+247.8576700279611∗ x) ∗ x) ∗ x) ∗ x) ∗ x)-1.0

end if
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Upper branch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!W0,1(x)

if(-0.3678794411714423<=x. and.x<1.and. w>=-1) then
k1 = sqrt(1.+2.7182818284591∗ x)
k2 = 0.33333333333333+.70710678118655 /k1-0.058925565098880∗ k1+&
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(x+0.36787944117144)∗ (0.050248489761611+(0.11138904851051+
0.040744556245195∗ x) ∗ x)/(1.+ &
(2.7090878606183+(1.5510922597820+ 0.095477712183841∗ x) ∗ x) ∗ x)

V = -(k2-1)/k2
end if

!
!!!!!!!!!!!!!!!!W0,2(x)

if(1<=x.and.x<40) then
k1 = 1+(5.950065500550155+ (13.96586471370701+ (10.52192021050505+

(3.065294254265870+ 0.1204576876518760∗ x) ∗ x) ∗ x) ∗ x) ∗ x
V = 0.1600049638651493∗ log (k1)

end if
!
!!!!!!!!!!!!!!!!W0,3(x)

if(40<=x.and.x<20000) then
k1 = 1+(-3.16866642511229e11+ (3.420439800038598e10+ &

(-1.501433652432257e9+ (3.44887729947585e7+ (-4.453783741137856e5+ &
(3257.926478908996+ (-10.82545259305382+ (0.6898058947898353e-1+ &
0.4703653406071575e-4∗ x) ∗ x) ∗ x) ∗ x) ∗ x) ∗ x) ∗ x) ∗ x) ∗ x

V = 0.9898045358731312e-1∗ log(k1)
end if

!
!!!!!!!!!!!!!!!!W0,4(x)

if(20000<=x) then
k1 = 1/(1+log(1+x))
k2 = 1/k1
k3 = log(k2)
V = k2-1-k3+(1+k3+(-1/2+(1/2)∗k3∗∗2 +(-1/6+(-1+(-1/2+

(1/3) ∗ k3) ∗ k3) ∗ k3) ∗ k1) ∗ k1) ∗ k1

end if
!
! Fritsch�s formula

A = log(x/V)-V
Q = (2 ∗ (1+V)) ∗ (1+V+(2/3) ∗ A)
F = A ∗ (Q-A)/((1+V)∗ (Q-2 ∗ A))
z = V ∗ (1+F)
continue

continue
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

enddo
call cpu time(finish)
tt=((finish-start)/10000000)∗ 1000000000
write( ∗ ,"(0pf25.15,0pf25.15,0PF15.5)") x,z,tt

enddo
end program lambertw tiempos
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Table 3: Parameters for PSEM procedure.

Equation Cancellation points Employed derivatives
Eq. (16) 𝑥0 = −0.33 𝑊(𝑥0),𝑊󸀠(𝑥0),𝑥1 = −0.25 𝑊(𝑥1),𝑊󸀠(𝑥1),𝑥2 = −0.15 𝑊(𝑥2),𝑊󸀠(𝑥2),𝑥3 = −0.10 𝑊(𝑥3),𝑊󸀠(𝑥3).
Eq. (17) 𝑥0 = −0.10 𝑊(𝑥0),𝑊󸀠(𝑥0), ⋅ ⋅ ⋅ ,𝑊(V)(𝑥0).
Eq. (24) 𝑥0 = 0.25 𝑊(𝑥0),𝑊󸀠(𝑥0), ⋅ ⋅ ⋅ ,𝑊(V)(𝑥0)
Eq. (25) 𝑥0 = 1 𝑊(𝑥0),𝑊󸀠(𝑥0),𝑥1 = 10 𝑊(𝑥1),𝑊󸀠(𝑥1),𝑥2 = 30 𝑊(𝑥2),𝑊󸀠(𝑥2).
Eq. (26) 𝑥0 = 40 𝑊(𝑥0),𝑊󸀠(𝑥0),𝑊󸀠󸀠(𝑥0),𝑥1 = 100 𝑊(𝑥1),𝑊󸀠(𝑥1),𝑊󸀠󸀠(𝑥1),𝑥2 = 1000 𝑊(𝑥2),𝑊󸀠(𝑥2),𝑥3 = 10000 𝑊(𝑥3),𝑊󸀠(𝑥3).
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[8] D. Veberič, “Lambert W function for applications in physics,”
Computer Physics Communications, vol. 183, no. 12, pp. 2622–
2628, 2012.

[9] F. Johansson, “Computing the LambertW function in arbitrary-
precision complex interval arithmetic,” https://arxiv.org/abs/
1705.03266.

[10] F. Chapeau-Blondeau and A. Monir, “Numerical evaluation of
the LambertW function and application to generation of gen-
eralized Gaussian noise with exponent 1/2,” IEEE Transactions
on Signal Processing, vol. 50, no. 9, pp. 2160–2165, 2002.

[11] D.A. Barry, J.-Y. Parlange, L. Li,H. Prommer,C. J. Cunningham,
and F. Stagnitti, “Analytical approximations for real values
of the Lambert W-function,” Mathematics and Computers in
Simulation, vol. 53, no. 1-2, pp. 95–103, 2000.

[12] R. Iacono and J. P. Boyd, “New approximations to the principal
real-valued branch of the Lambert W-function,” Advances in
Computational Mathematics, pp. 1–34, 2017.

[13] I. Jadlovska, “Application of Lambert W function in oscillation
theory,” Acta Electrotechnica et Informatica, vol. 14, no. 1, pp. 9–
17, 2014.

[14] G. Polya and G. Szego, Problems and Theorems in Analysis,
Springer-Verlag, 1972.

[15] E. M. Wright, “Xl the linear difference-differential equation
with constant coefficients,” Proceedings of the Royal Society of
Edinburgh, Section: A Mathematics, vol. 62, no. 4, pp. 387–393,
1949.

[16] E. M. Wright, “Xii solution of the equation 𝑧𝑒𝑧,” Proceedings of
the Royal Society of Edinburgh Section A: Mathematics, vol. 65,
no. 2, pp. 193–203, 1959.

[17] N. D. Hayes, “Roots of the transcendental equation associated
with a certain difference-differential equation,” Journal of the
London Mathematical Society, vol. 1, no. 3, pp. 226–232, 1950.

[18] F. N. Fritsch, R. E. Shafer, and W. P. Crowley, “Algorithm
443: solution of the transcendental equation 𝑤e𝑊 = 𝑥 [c5],”
Communications of the ACM, vol. 16, no. 2, pp. 123-124, 1973.

[19] D. A. Barry, S. J. Barry, and P. J. Culligan-Hensley, “Algorithm
743: Wapr–a fortran routine for calculating real values of
the w-function,” ACM Transactions on Mathematical Software
(TOMS), vol. 21, no. 2, pp. 172–181, 1995.

[20] R. M. Corless, G. H. Gonnet, D. EG. Hare, D. J. Jeffrey, and
D. Knuth, “Lambert’s W function in Maple,” Maple Technical
Newsletter, vol. 9, no. 1, pp. 12–22, 1993.

[21] D. J. Jeffrey, D. E. G. Hare, and R. M. Corless, “Unwinding
the branches of the Lambert W function,” The Mathematical
Scientist, vol. 21, no. 1, pp. 1–7, 1996.

[22] R. M. Corless, D. J. Jeffrey, and D. E. Knuth, “A sequence
of series for the Lambert W function,” in Proceedings of
the 1997 international symposium on Symbolic and algebraic
computation, pp. 197–204, ACM, 1997.

[23] A. Hoorfar and M. Hassani, “Inequalities on the Lambert W
function and hyperpower function,”Research Report Collection,
vol. 10, no. 2, 2007.

[24] T. Fukushima, “Precise and fast computation of Lambert W-
functions without transcendental function evaluations,” Journal
of Computational and Applied Mathematics, vol. 244, pp. 77–89,
2013.
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[53] A. E. Ehret, M. Böol, and M. Itskov, “A continuum constitutive
model for the active behaviour of skeletal muscle,” Journal of the
Mechanics and Physics of Solids, vol. 59, no. 3, pp. 625–636, 2011.

[54] F. Heße, F. A. Radu, M. Thullner, and S. Attinger, “Upscaling
of the advection-diffusion-reaction equation with Monod reac-
tion,” Advances in Water Resources, vol. 32, no. 8, pp. 1336–1351,
2009.

[55] R. Gong, C. Lu, W.-M. Wu et al., “Estimating reaction rate
coefficientswithin a travel-timemodeling framework,”Ground-
water, vol. 49, no. 2, pp. 209–218, 2011.

[56] D. Brkic, “Lambert w function in hydraulic problems,” in
Proceedings of the MASSEE International Conference on Math-
ematics MICOM, 2009.

[57] L. Zhang, D. Xing, and J. Sun, “Calculating activation energy
of amorphous phase with the Lambert W function,” Journal of
Thermal Analysis and Calorimetry, vol. 100, no. 1, pp. 3–10, 2010.

[58] M. Conrath, N. Fries, M. Zhang, and M. E. Dreyer, “Radial
capillary transport from an infinite reservoir,” Transport in
Porous Media, vol. 84, no. 1, pp. 109–132, 2010.

[59] C. Hadj Belgacem and M. Fnaiech, “Solution for the critical
thickness models of dislocation generation in epitaxial thin
films using the Lambert W function,” Journal of Materials
Science, vol. 46, no. 6, pp. 1913–1915, 2011.

[60] A. Pohjoranta, A.Mendelson, and R. Tenno, “A copper electrol-
ysis cell model including effects of the ohmic potential loss in
the cell,” Electrochimica Acta, vol. 55, no. 3, pp. 1001–1012, 2010.

[61] J. Berthier and P. Silberzan, Microfluidics for Biotechnology,
Artech House, Norwood, Mass, USA, 2010.

[62] J.-M. Caillol, “Some applications of the LambertW function to
classical statistical mechanics,” Journal of Physics A: Mathemat-
ical and General, vol. 36, no. 42, pp. 10431–10442, 2003.

[63] V. K. Kyncheva, V. V. Yotov, and S. I. Ivanov, “Convergence of
Newton, Halley and Chebyshev iterative methods as methods
for simultaneous determination of multiple polynomial zeros,”
Applied Numerical Mathematics, vol. 112, pp. 146–154, 2017.



Discrete Dynamics in Nature and Society 15

[64] N. Osada, “Chebyshev-Halley methods for analytic functions,”
Journal of Computational and AppliedMathematics, vol. 216, no.
2, pp. 585–599, 2008.

[65] L. Yau and A. Ben-Israel, “The Newton and Halley methods for
complex roots,” The American Mathematical Monthly, vol. 105,
no. 9, pp. 806–818, 1998.

[66] J. P. Boyd, “Global approximations to the principal real-valued
branch of the Lambert W-function,” Applied Mathematics
Letters, vol. 11, no. 6, pp. 27–31, 1998.

[67] N. G. de Brujin, Asymptotic Methods in Analysis, North-
Holland, 1961.

[68] J. Karamata, “Sur quelques problemes poses par ramanujan,”
Journal of the Indian Mathematical Society, vol. 24, no. 3-4, pp.
343–365, 1960.

[69] H. Vazquez-Leal, “The enhanced power series method to
find exact or approximate solutions of nonlinear differential
equations,”Applied andComputational Mathematics, vol. 14, no.
2, pp. 168–179, 2015.

[70] Y.-G. Wang,W.-H. Lin, and N. Liu, “A homotopy perturbation-
based method for large deflection of a cantilever beam under
a terminal follower force,” International Journal for Computa-
tional Methods in Engineering Science andMechanics, vol. 13, no.
3, pp. 197–201, 2012.

[71] H. Vazquez-Leal and A. Sarmiento-Reyes, “Power series exten-
der method for the solution of nonlinear differential equations,”
Mathematical Problems in Engineering, vol. 2015, no. 1-2, Article
ID 717404, 7 pages, 2015.

[72] D. G. Zill,A First Course in Differential Equations with Modeling
Applications, Cenage Learning, 10th edition, 2012.

[73] W. Balser, Formal Power Series and Linear Systems of Meromor-
phic Ordinary Differential Equations, Springer, 1999.

[74] F. N. Fritsch, R. E. Shafer, and W. P. Crowley, “Solution of the
transcendental equationwew=x,”Communications of the ACM,
vol. 16, no. 2, pp. 123-124, 1973.

[75] D.A. Barry, P. J. Culligan-Hensley, and S. J. Barry, “Real values of
theW-function,” ACM Transactions on Mathematical Software,
vol. 21, no. 2, pp. 161–171, 1995.

[76] S.M.Disney andR.D.H.Warburton, “On the LambertW func-
tion: Economic Order Quantity applications and pedagogical
considerations,” International Journal of Production Economics,
vol. 140, no. 2, pp. 756–764, 2012.

[77] I. D. Dubinova, “Application of the Lambert W function in
mathematical problems of plasma physics,” Plasma Physics
Reports, vol. 30, no. 10, pp. 872–877, 2004.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/



