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This paper investigates joint decisions on airline network design and capacity allocation by integrating an uncapacitated single
allocation p-hub median location problem into a revenuemanagement problem. For the situation in which uncertain demand can
be captured by a finite set of scenarios, we extend this integrated problem with average profit maximization to a combined average-
case and worst-case analysis of this integration. We formulate this problem as a two-stage stochastic programming framework to
maximize the profit, including the cost of installing the hubs and a weighted sum of average and worst case transportation cost
and the revenue from tickets over all scenarios. This model can give flexible decisions by putting the emphasis on the importance
of average and worst case profits. To solve this problem, a genetic algorithm is applied. Computational results demonstrate the
outperformance of the proposed formulation.

1. Introduction

Since the airline deregulation act enacted in 1978, airlines
introduce the concept of revenue management, restructure
airline network and develop centralized airline control cen-
ters to establish and sustain a competitive edge in thismarket-
driven environment [1]. Hence, hub location and revenue
management play significant roles in boosting the develop-
ment of the airline industry. New challenges remain in these
two disciplines.

Hub location problem by locating the hubs and connect-
ing fewer links from the hubs to the non-hubs makes an
airline network obtain more traffic flows and largely reduce
the cost. In the area of revenue management, the flows can
be performed as air tickets which can be effectively allocated
to different segments of customers to obtain more revenue.
Hence, these two disciplines are closely related. Until now,
only twopublications [2, 3] have considered about integrating
the hub location into the revenue management to maximize
the airline profit on the one hand. These studies consider the
average profit, which is difficult to identify the underlying

distribution probability. On the other hand, our research is
also inspired by a weight-based combined consideration of
the average-case and worst-case values in [4].They provide a
flexible decision for an emergency response network design
problem by putting relative emphasis on average-case and
worst-case cost. Consequently, our aim is to maximize the
profit of integrating a hub location problem into a rev-
enue management problem and to provide less conservative
and restrictive solutions by a weight-based combination of
average-case and worst-case profits.

The main contribution of our research is developing a
new mathematical model and proposing flexible decisions
for an integrated problem of hub location and revenue
management. In this paper, we present a weight-based two-
stage stochastic programming framework formulation by
combining average-case and worst-case profits. To reduce
the computation time, a genetic algorithm (GA) has been
applied. The results show that our formulation outperforms
the other one only considering the average case. Accordingly,
the effects of the weight value, the network configuration and
the discount factor on the profit are discussed.
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The organization of this paper is as follows: Section 2
presents a brief literature review. Section 3 describes an
integrated problem of hub location and revenue manage-
ment. Section 4 details the solution methodology. Section 5
discusses the results. Section 6 summarizes our conclusions.

2. Literature Review

Since [5] introduces the concept of revenue management, the
research on revenue management has received tremendous
attention in both academia and industry. The main problems
in revenue management can be categorized: pricing, capacity
control, overbooking, auctions and forecasting [6]. This
paper focuses on capacity control problem by allocating the
capacities on all itineraries of an airline network to different
booking classes segmented by customer demand over a fixed
period from departure to maximize the airline revenue.
Early publications provide an effective analysis of revenue
management on single flight leg without consideration of
network effects ([5, 7]). Progress in this area has moved
forward to network revenue management problem which
is proposed by [8]. The main difference between these two
problems is that dramatic expansion of the airline network
makes the itineraries largely increase. The research about
network topology in network revenue management can be
classified by: on the one hand, for multiple legs without a
specific network structure, some research ([9–14]) decom-
poses the multi-leg problem into many single leg problems
and then makes a decision on allocating the capacities to
every single leg. The research on the hub-and-spoke network
also has received significant attention on the other hand.
[15] considers the network revenue management in a hub-
and-spoke network. In their assumptions, a single hub can
serve 𝑁 spokes. [16] studies the capacity allocation in a
two-airline alliance under competitions in a hub-and-spoke
network. [17] studies the airline revenue management with
consideration of a competitor’s behavior under simultaneous
price and capacity competition in a hub-and-spoke network.
[18] explores the impact of structural properties on a hub-
to-hub network revenue management problem. As seen
from the above literature, the research of airline revenue
is closely relevant to airline network structure. Until now,
only two papers ([2, 3]) focus on integrated research of hub
location and revenue management. Our paper continues to
consider this integrated problem. For reviews on revenue
management, we refer the readers to e.g., [19, 20].

The hub is used to largely reduce the links between the
origins and the destinations in an airline network [21]. Hub
location problem is a discipline which focuses on locating
the hubs from a set of nodes and routing the links from
the hubs to the non-hubs. Since [22, 23] contribute the first
mathematical formulation and the solution method to the
hub location problem, this research has received constant
attention. Four fundamental hub location problems are [24]:
(1) 𝑝-hub median, (2) 𝑝-hub center, (3) uncapacitated or
capacitated 𝑝-hub location, and (4) hub covering. Diverse
network topologies also play a role in the development of
these four problems, e.g. tree network, star-star network,
cycle network and hub line network. This paper focuses

on a star-star 𝑝-hub location problem. [25] studies a single
allocation 𝑝-hub median problem in a star-star network
structure. [26] minimizes the routing cost between the hubs
and the non-hubs in a star-star network. [27] formulates two
separated problems on a star-star network. One is 𝑝-hub
center problem, which is tominimize themaximum length of
the paths between different nodes.The other is𝑝-hubmedian
problem with bounded path length to minimize the cost.
Then they analyze the performances of these two problems.
[28] explores the hardness of a star 𝑝-hub center problem.
For poor service quality incurred by minimizing the routing
cost, [29] proposes Δ𝛽-star single-allocation 𝑝-hub center
problem. A min-max criterion is introduced by maximizing
the service quality and minimizing the cost. These above
research with a cost-based objective assume that every origin
or destinationnode should be served.However, if someorigin
& destination (O&D) pairs are not profitable, the airline isn’t
necessary to operate them. This assumption is relaxed by
[30]. They measure the tradeoff between the profits of the
commodities served on some O&D pairs and the cost of hub
location and routing between the hubs and the non-hubs.
Our paper also considers the hub location problem from the
perspective of optimizing the profit.Theoverviews on the hub
location problem ([21, 31]) provide a detailed treatment.

This paper is based on a very recent work [3]. They
integrate an uncapacitated single allocation 𝑝-hub median
problem and a revenue management problem in a star-star
network. A two-stage stochastic programming formulation is
presented to maximize the profit. In the first stage, the hub
location, the link between the hub and the non-hub and the
protection level of tickets for different booking classes are
determined. The booking limit of tickets can be obtained in
the second stage. The demand is captured in a set of discrete
scenarios under the average case.The average-case analysis is
effective when a probability distribution is known. However,
demand information is always hard to obtain which makes
the results more sensitive and less accurate. To address this
concern, robust optimization is proposed as an alternative
method to handle data uncertainty. Instead of considering
distributional information, robust optimization assumes a
defined set of values that any uncertainty can be realized. The
solution is obtained under the realization ofmost unfavorable
uncertainty in this set. That is to say, robust optimization
analyzes the worst-case value. But choosing an uncertain
parameter set makes the result over-conservative. For more
information regarding the average-case and worst-case anal-
ysis, the readers are referred to [32, 33]. To overcome these
shortcomings, the research on the complementary effects
of worst-case and average-case analysis is appeared ([34–
38]). In addition, there is relatively sparse research regarding
the average-case or worst-case analysis for a two-stage opti-
mization problem. [39] explores the performance between
the worst-case cost of two-stage robust optimization and
the expected cost of two-stage stochastic programming. [40]
discusses the performance between a two-stage scenario-
based stochastic optimization model and a two-stage robust
optimization formulation in response management for resi-
dential appliances under real-time price-based demand. The
above research still explores the pros and the cons between
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Figure 1: Airline star-star network.

these two methods rather than providing a more flexible
solution. The recent advance in the research is proposed by
[4]. This paper formulates a two-stage stochastic program-
ming framework for an emergency response network design
problem to minimize a weighted sum of average and worst
case costs.This contribution can give the flexibility of network
configuration by putting relative emphasis on the average-
case and the worst-case costs. In our paper, this research is
introduced into an integrated problem of hub location and
revenue management.

3. Problem Description

Weconsider an integrated problem of an uncapacitated single
allocation 𝑝 hub median location problem and a network
revenue management problem. In this star-star network, a
central hub 0 is predefined. The hubs must be connected to
the central hub 0. The number of hub 𝑗 is 𝑃 and these hubs
are chosen from a set of nodes 𝐼. The non-hub 𝑖 refers to
the node that hasn’t been chosen as a hub. Consequently, two
stars are formed: (1) the links between the hubs and the non-
hubs, and (2) the other links between the hubs and the central
hub. Here, the O&Dpairs in this network can traverse at least
one hub and atmost two hubs (not including the central hub).
That is to say, all these O&D pairs can be made of these two
basic links: (1) 𝑇𝑦𝑝𝑒 1 is the link between non-hub 𝑖 and hub
𝑗; (2) 𝑇𝑦𝑝𝑒 2 is used for connecting hub 𝑗 to central hub 0.
Figure 1 illustrates the underlying star-star network structure
in this paper.

We have the following assumptions for our problem:

(i) The location of the central hub 0 is predefined.

(ii) No direct link is allowed between the two hubs.

(iii) Each non-hub can be allocated to only one hub and
direct link between the two non-hubs is not allowed.

(iv) Only the aircraft type with capacity 𝑄1 can be avail-
able on 𝑇𝑦𝑝𝑒 1 link. 𝑇𝑦𝑝𝑒 2 link allows the aircraft
type with capacity 𝑄2.

(v) The capacities on𝑇𝑦𝑝𝑒 1 and𝑇𝑦𝑝𝑒 2 links are consid-
ered. The capacity is relevant to the number of flights
passing over this link.

(vi) The ticket price at each fare class 𝑘 is given.
(vii) The booking limit of tickets for the fare class 𝑘 is

related to uncertain demand and the protection level
of tickets. Once the protection level is set, upgrading
to a higher fare class or changing to a later or earlier
flight shouldn’t be allowed. Demand for different
types of fares should be independent. The arrival
order of demand is not considered.

(viii) Cancellations and no-shows are not considered.
(ix) Cost discount factor 𝛼 reflects the economies of scale

on unit cost on 𝑇𝑦𝑝𝑒 2 link.
3.1. Notations. The definitions of parameters and decision
variables are summarized as follows:

Indices

𝑖,𝑚: indices for nodes.
𝑗: index for hubs.
𝑠: index for scenarios.
𝑘: index for fare classes.

Parameters

𝐼: set of nodes in the network.
𝑃: the number of hubs located in the network.
𝑆: set of scenarios captured by uncertain demand.
𝐾: set of fare classes.
𝑤1: weight of the average-case value over all scenarios𝑆, where 𝜔1 ∈ [0, 1], 𝜔1 + 𝜔2 = 1.
𝑤2: weight of the worst-case value over all scenarios𝑆, where 𝜔2 ∈ [0, 1], 𝜔1 + 𝜔2 = 1.
𝑓𝑖𝑗: distance from non-hub 𝑖 to hub 𝑗, for 𝑖 ∈ 𝐼 and
𝑗 ∈ 𝐼.
𝑓𝑗0: distance from hub 𝑗 to central hub 0, for 𝑗 ∈ 𝐼.
𝐶1𝑘: transfer cost (per unit distance in a flight) on
𝑇𝑦𝑝𝑒 1 link at fare class 𝑘, where 𝑘 ∈ 𝐾.
𝐶2𝑘: transfer cost (per unit distance in a flight) on
𝑇𝑦𝑝𝑒 2 link at fare class 𝑘, where 𝑘 ∈ 𝐾. In addition,
𝐶2𝑘 = 𝛼𝐶1𝑘,𝛼 is a discount factor to describe the effect
of economies of scale, 𝛼 ∈ [0, 1].
𝑑𝑠𝑖𝑚𝑘: demand onO&Dpair between origin node 𝑖 and
destination node 𝑚 at fare class 𝑘 under scenario 𝑠,
where 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,𝑚 ∈ 𝐼 and 𝑘 ∈ 𝐾.
𝑝𝑠𝑖𝑚𝑘: the probability of scenario 𝑠 under the average
case on O&D pair between origin 𝑖 and destination 𝑚
at fare class 𝑘, where 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,𝑚 ∈ 𝐼 and 𝑘 ∈ 𝐾.
𝑟𝑖𝑚𝑘: ticket price on O&D pair between origin 𝑖 and
destination 𝑚 at fare class 𝑘, where 𝑖 ∈ 𝐼, 𝑚 ∈ 𝐼 and
𝑘 ∈ 𝐾.
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𝑁𝑜𝑖𝑗: capacity on 𝑇𝑦𝑝𝑒 1 link. That is, the number of
flights can pass over 𝑇𝑦𝑝𝑒 1 link, where 𝑖 ∈ 𝐼 and 𝑗 ∈
𝐼.
𝑁𝑜𝑗0: capacity on 𝑇𝑦𝑝𝑒 2 link. That is, the number of
flights can pass over 𝑇𝑦𝑝𝑒 2 link, where 𝑗 ∈ 𝐼.
𝑄1: the transport capacity of a specific aircraft on
𝑇𝑦𝑝𝑒 1 link is 𝑄1.
𝑄2: an aircraft’s capacity on 𝑇𝑦𝑝𝑒 2 link is limited to a
certain amount 𝑄2 referring to passengers volume.

𝐹𝑗: fixed cost for installing a hub 𝑗, for 𝑗 ∈ 𝐼.
𝐹󸀠: fixed cost for installing a central hub 0.

𝑀: a very large integer.

Variables

𝑦𝑠𝑖𝑚𝑘: booking limit of tickets at each fare class 𝑘 on
O&D pair between origin 𝑖 and destination 𝑚 under
scenario 𝑠.
𝑧𝑖𝑚𝑘: protection level of tickets at each fare class 𝑘 on
O&D pair between origin 𝑖 and destination 𝑚.
𝑥𝑗𝑗: binary decision variable. 𝑥𝑗𝑗 equals to 1 if node 𝑗
is a hub node and 0 otherwise.

𝑥𝑖𝑗: binary decision variable. If non-hub 𝑖 is routed to
hub 𝑗, 𝑥𝑖𝑗 equals to 1. Otherwise, 𝑥𝑖𝑗 = 0.

3.2. A Weight-Based Two-Stage Model. This paper proposes
a two-stage formulation for the integrated problem of hub
location and revenue management. The first stage decision is
the location of the hub, routing the links and the protection
level of airline tickets for different fare classes. In the second
stage, the booking limit of tickets is employed in response
to the arrivals of customers orders. Uncertain demand is
captured by 𝑆 scenarios. In the average case, the probability
under every scenario 𝑠 is 𝑝𝑠𝑖𝑚𝑘. 𝜔1 and 𝜔2 represent the
weights of the average-case value and the worst-case value,
respectively, where 𝜔1, 𝜔2 ∈ [0, 1] and 𝜔1 + 𝜔2 = 1.

Amodel with combining the average-case and worst-case
values via a pair of weights based on two-stage stochastic
programming is presented. This model is as follows:

max 𝜔1{{
{
∑
𝑖∈𝐼

∑
𝑚∈𝐼

∑
𝑘∈𝐾

∑
𝑠∈𝑆

𝑝𝑠𝑖𝑚𝑘𝑦𝑠𝑖𝑚𝑘𝑟𝑖𝑚𝑘

−∑
𝑖∈𝐼

∑
𝑚𝜖𝐼/{𝑖}

∑
𝑗∈𝐼

∑
𝑘∈𝐾

∑
𝑠∈𝑆

𝐶1𝑘 (𝑝𝑠𝑖𝑚𝑘𝑓𝑖𝑗𝑦
𝑠
𝑖𝑚𝑘

𝑄1 + 𝑝
𝑠
𝑚𝑖𝑘𝑓𝑗𝑖

⋅ 𝑦
𝑠
𝑚𝑖𝑘

𝑄1 ) 𝑥𝑖𝑗 −∑𝑖∈𝐼 ∑𝑚𝜖𝐼/{𝑖}∑𝑗∈𝐼∑𝑘∈𝐾∑𝑠∈𝑆𝐶2𝑘 (𝑝
𝑠
𝑖𝑚𝑘𝑓𝑗0𝑦

𝑠
𝑖𝑚𝑘

𝑄2

+ 𝑝𝑠𝑚𝑖𝑘𝑓0𝑗𝑦
𝑠
𝑚𝑖𝑘

𝑄2 ) [𝑥𝑖𝑗 (1 − 𝑥𝑚𝑗)]
}
}}
+ 𝜔2

⋅min
𝑠∈𝑆

{
{{
∑
𝑖∈𝐼

∑
𝑚∈𝐼

∑
𝑘∈𝐾

𝑦𝑠𝑖𝑚𝑘𝑟𝑖𝑚𝑘 −∑
𝑖∈𝐼

∑
𝑚𝜖𝐼/{𝑖}

∑
𝑗∈𝐼

∑
𝑘∈𝐾

𝐶1𝑘

⋅ (𝑓𝑖𝑗𝑦
𝑠
𝑖𝑚𝑘

𝑄1 + 𝑓𝑗𝑖
𝑦𝑠𝑚𝑖𝑘
𝑄1 )𝑥𝑖𝑗 −∑𝑖∈𝐼 ∑𝑚𝜖𝐼/{𝑖}∑𝑗∈𝐼∑𝑘∈𝐾𝐶2𝑘

⋅ (𝑓𝑗0 𝑦
𝑠
𝑖𝑚𝑘

𝑄2 + 𝑓0𝑗
𝑦𝑠𝑚𝑖𝑘
𝑄2 ) [𝑥𝑖𝑗 (1 − 𝑥𝑚𝑗)]

}
}}

−∑
𝑗∈𝐼

𝐹𝑗𝑥𝑗𝑗 − 𝐹󸀠

(1)

Subject to ∑
𝑗∈𝐼

𝑥𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐼 (2)

∑
𝑗∈𝐼

𝑥𝑗𝑗 = 𝑃 (3)

𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗 ∀𝑖, 𝑗 ∈ 𝐼 (4)

𝑦𝑠𝑖𝑚𝑘 ≤ 𝑑𝑠𝑖𝑚𝑘 ∀𝑖,𝑚 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆 (5)

𝑦𝑠𝑖𝑚𝑘 ≤ 𝑍𝑖𝑚𝑘 ∀𝑖,𝑚 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆 (6)

∑
𝑚∈𝐼

∑
𝑘∈𝐾

𝑍𝑖𝑚𝑘
𝑄1 + ∑𝑚∈𝐼∑𝑘∈𝐾

𝑍𝑚𝑖𝑘
𝑄1 ≤ ∑𝑗∈𝐼𝑁𝑜𝑖𝑗𝑥𝑖𝑗 +𝑀𝑥𝑖𝑖

∀𝑖 ∈ 𝐼
(7)

∑
𝑖∈𝐼

∑
𝑚∈𝐼/{𝑖}

∑
𝑘∈𝐾

𝑍𝑖𝑚𝑘
𝑄2 𝑥𝑖𝑗 (1 − 𝑥𝑚𝑗)

+∑
𝑖∈𝐼

∑
𝑚∈𝐼/{𝑖}

∑
𝑘∈𝐾

𝑍𝑚𝑖𝑘
𝑄2 𝑥𝑖𝑗 (1 − 𝑥𝑚𝑗) ≤ 𝑁𝑜𝑗0𝑥𝑗𝑗

∀𝑗 ∈ 𝐼

(8)

𝑥𝑖𝑗, 𝑥𝑗𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐼 (9)

𝑦𝑠𝑖𝑚𝑘, 𝑍𝑖𝑚𝑘 ∈ 𝑍+ ∀𝑖,𝑚 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆 (10)

The objective function (1) is to maximize a weighted sum
of average and worst case profits. The first term represents
the average of: (a) the revenue from tickets sales for different
fare classes on O&D pair between origin 𝑖 and destination
𝑚, (b) the transportation cost on 𝑇𝑦𝑝𝑒 1 link, and (c)
the transportation cost on 𝑇𝑦𝑝𝑒 2 link, with a weight 𝜔1.
The second term represents the minimum profit over all 𝑆
scenarios with an associated weight 𝜔2. The profits include
the revenue on O&D pairs, and the transportation costs on
𝑇𝑦𝑝𝑒 1 and 𝑇𝑦𝑝𝑒 2 links. The last two terms represent the
installation cost of the hubs and the central hub. Here the
profit can be determined by putting relative emphasis on the
values of weights𝜔1 and𝜔2. Constraint (2) indicates that each
non-hub must be allocated to one hub. Constraint (3) defines
the number of the hubs in this star-star network. Constraint
(4) assures that node 𝑖 can be allocated to hub 𝑗 only when 𝑗 is
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selected as a hub.That is to say, all flows are sent and received
via the hubs to avoid direct connections among non-hubs.
Constraint (5) and Constraint (6) specify that the booking
limit of the tickets for each fare class 𝑘 is not over the demand
and the protection level. Constraint (7) and Constraint (8)
limit the flow on 𝑇𝑦𝑝𝑒 1 link and 𝑇𝑦𝑝𝑒 2 link, respectively.
In our problem, the flow can be interpreted as the number
of the flights. 𝑍𝑖𝑚𝑘/𝑄1 and 𝑍𝑚𝑖𝑘/𝑄1 indicate the number of
the flights on 𝑇𝑦𝑝𝑒 1 link used by O&D pairs 𝑖𝑚 and 𝑚𝑖.
The number of the flights can be described as 𝑍𝑖𝑚𝑘/𝑄2 and𝑍𝑚𝑖𝑘/𝑄2 on 𝑇𝑦𝑝𝑒 2 link. Constraint (7) indicates that the
protection level of the flights on 𝑇𝑦𝑝𝑒 1 link used by O&D
pair 𝑖𝑚 and𝑚𝑖 can’t overpass its fixed capacity𝑁𝑜𝑖𝑗. A large-
valued integer 𝑀 on the right-hand side of Constraint (7)
is used for ensuring this inequality meaningful even when
𝑥𝑖𝑗 = 0 and 𝑥𝑖𝑖 = 1. Constraint (8) describes the capacity
restriction of 𝑇𝑦𝑝𝑒 2 link. The protection level of the flights
on 𝑇𝑦𝑝𝑒 2 link used by O&D pair 𝑖𝑚 and 𝑚𝑖 should be less
than fixed capacity 𝑁𝑜𝑗0. In our network, 𝑥𝑖𝑗(1 − 𝑥𝑚𝑗) = 1 if𝑇𝑦𝑝𝑒 2 link is used by O&D pair 𝑖𝑚 and 𝑥𝑖𝑗(1 − 𝑥𝑚𝑗) = 0
otherwise. For 𝑥𝑖𝑗(1 − 𝑥𝑚𝑗) = 1, 𝑥𝑖𝑗 = 1 and 𝑥𝑚𝑗 = 0
is the only case satisfying this equation. In this case, this
O&D pair comprises 𝑇𝑦𝑝𝑒 1 link and 𝑇𝑦𝑝𝑒 2 link when the
origin node 𝑖 and the destination node 𝑚 haven’t routed to
the same hub 𝑗. Constraint (9) and Constraint (10) identify
that 𝑥𝑖𝑗 and 𝑥𝑗𝑗 are binary variables and 𝑦𝑠𝑖𝑚𝑘 and 𝑍𝑖𝑚𝑘 are
integers.

We can further simplify objective (1) by introducing an
auxiliary variable Ψ (Ψ ≥ 0). Then new model will be

max 𝜔1{{{
∑
𝑖∈𝐼

∑
𝑚∈𝐼

∑
𝑘∈𝐾

∑
𝑠∈𝑆

𝑝𝑠𝑖𝑚𝑘𝑦𝑠𝑖𝑚𝑘𝑟𝑖𝑚𝑘

−∑
𝑖∈𝐼

∑
𝑚𝜖𝐼/{𝑖}

∑
𝑗∈𝐼

∑
𝑘∈𝐾

∑
𝑠∈𝑆

𝐶1𝑘 (𝑝𝑠𝑖𝑚𝑘𝑓𝑖𝑗𝑦
𝑠
𝑖𝑚𝑘

𝑄1 + 𝑝
𝑠
𝑚𝑖𝑘𝑓𝑗𝑖

⋅ 𝑦
𝑠
𝑚𝑖𝑘

𝑄1 )𝑥𝑖𝑗 −∑𝑖∈𝐼 ∑𝑚𝜖𝐼/{𝑖}∑𝑗∈𝐼 ∑𝑘∈𝐾∑𝑠∈𝑆𝐶2𝑘 (𝑝
𝑠
𝑖𝑚𝑘𝑓𝑗0 𝑦

𝑠
𝑖𝑚𝑘

𝑄2

+ 𝑝𝑠𝑚𝑖𝑘𝑓0𝑗𝑦
𝑠
𝑚𝑖𝑘

𝑄2 ) [𝑥𝑖𝑗 (1 − 𝑥𝑚𝑗)]
}
}
}
+ 𝜔2Ψ

−∑
𝑗∈𝐼

𝐹𝑗𝑥𝑗𝑗 − 𝐹󸀠

(11)

Subject to (2)-(10) Ψ ≤ ∑
𝑖∈𝐼

∑
𝑚∈𝐼

∑
𝑘∈𝐾

𝑦𝑠𝑖𝑚𝑘𝑟𝑖𝑚𝑘

−∑
𝑖∈𝐼

∑
𝑚𝜖𝐼/{𝑖}

∑
𝑗∈𝐼

∑
𝑘∈𝐾

𝐶1𝑘 (𝑓𝑖𝑗𝑦
𝑠
𝑖𝑚𝑘

𝑄1 + 𝑓𝑗i
𝑦𝑠𝑚𝑖𝑘
𝑄1 )𝑥𝑖𝑗

−∑
𝑖∈𝐼

∑
𝑚𝜖𝐼/{𝑖}

∑
𝑗∈𝐼

∑
𝑘∈𝐾

𝐶2𝑘 (𝑓𝑗0𝑦
𝑠
𝑖𝑚𝑘

𝑄2 + 𝑓0𝑗
𝑦𝑠𝑚𝑖𝑘
𝑄2 ) [𝑥𝑖𝑗 (1

− 𝑥𝑚𝑗)] ∀𝑠 ∈ 𝑆

(12)

Ψ ≥ 0 (13)

4. Genetic Algorithms

When the network size increases, the computational time
will largely increase until finding the best solution. In this
paper, we introduce a GA, which is proposed by [3]. GA
introduced by [41] is based on natural biological evolution
and has been successfully applied to various combinatorial
optimization problems in hub location problem ([42–52]).
After generating a feasible solution of 𝑥𝑖𝑗 and 𝑥𝑗𝑗 based on
proposedmodel in Section 3.2 byGA, the other descisions are
obtained by using CPLEX.This algorithm avoids introducing
more variables and constraints induced by the linearization
process and effectively reduces the computation time.

The main components of implementing the GA are given
as follows:

(A) Initial Population Generation. The genetic code of each
individual in our problem is a𝑁-dimensionmatrix generated
by a uniform distribution over [0, 1], where𝑁 is the number
of the nodes. We name this matrix as Matrix 𝐴. 𝑃 highest
entries from the diagonal of Matrix 𝐴 need to be turned into
1 and the other entries on this diagonal can be rewritten as
0. The entries equalling 1 indicate the locations of the hubs,
namely 𝑥𝑗𝑗 = 1 and the other entries 0 indicates otherwise,
𝑥𝑗𝑗 = 0. Next, we replace the entries on the overlaps between
the columns where the entries of this diagonal equal to 1
and the rows where the entries of this diagonal equal to 0.
Comparing the overlaps in the same row, the highest entry
needs to be rewritten as 1 which means 𝑥𝑖𝑗 = 1. Beyond that,
other entries in addition to the ones 𝑥𝑖𝑗 = 1, 𝑥𝑗𝑗 = 1 and𝑥𝑗𝑗 = 0 need to be rewritten as 0 which mean 𝑥𝑖𝑗 = 0. In
addition, if the overlaps in the same row have the same values,
we choose the first highest one as 𝑥𝑖𝑗 = 1. According to the
above principles, we obtain a 0-1 matrix as Matrix 𝐵. Here
Matrix 𝐵 represents the network structure. The size of initial
population stays the same from generation to generation.

(B) Fitness Value. The fitness value of each individual is
obtained by calculating the reciprocal of the profit obtained
from the model in Section 3.2.

(C) Selection Operation. In order to reproduce the offspring,
a selection process aims to choose the parents who will mate.
The parents can be chosen from the generation by random
selection.

(D) Crossover Operator. The offspring can be generated by
applying a crossover operator to the selected parents. The
crossover procedure is as follows:

𝑃𝑛𝑒𝑤1 = 𝑏𝑃𝑓 + (1 − 𝑏) 𝑃𝑚 (14)

𝑃𝑛𝑒𝑤2 = (1 − 𝑏) 𝑃𝑓 + 𝑏𝑃𝑚 (15)

where 𝑃𝑛𝑒𝑤1 and 𝑃𝑛𝑒𝑤2 are the offsprings. 𝑃𝑓 and 𝑃𝑚 represent
the two parents. 𝑏 is a random𝑁-dimensional matrix chosen
uniformly over the interval [0, 1], where𝑁 is the number of
the nodes. The same 𝑏 is used in every combination.
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(E) Mutation Operator. Premature convergence to subopti-
mal solutions may occur because some genetic codes are lost
or unexplored from the above steps. To avoid this problem,
mutation process is needed. Mutation can perform sporadic
and random changes in offsprings’ genetic codes with a
mutation probability. There are three mutation operators:
Elimination, Transposition and Conversion. Only one of
these three operators can be selected randomly in each
iteration. The details of all the operators are as follows:

(a) Elimination. The hubs need to be relocated by sub-
tracting the highest entry on the same diagonal of Matrix 𝐴
from 1.

(b) Transposition. The assignment between the non-hubs
and the hubs can be recaptured by transposing Matrix 𝐴.

(c) Conversion. The network structure can be redesigned.
A 𝑙-dimension matrix (𝑙 < 𝑁) is removed from the bottom-
right corner of Matrix 𝐴. This random integer 𝑙 is generated
from the multiplication of the nodes 𝑁 and a random
number drawn from a uniform distribution [0, 0.5]. A new 𝑙-
dimension matrix uniformly distributed between 0 and 1 can
refill the empty space of Matrix 𝐴.

After the above mentioned, new individual can be pro-
duced. The values 𝑥𝑖𝑗 and 𝑥𝑗𝑗 of each individual can be
inputted into the simplified model in Section 3.2 as the
parameters. We use CPLEX to obtain other values 𝑦𝑠𝑖𝑚𝑘
and 𝑧𝑖𝑚𝑘. This process is iteratively repeated until a suitable
stopping criterion can be met.

(F) Stopping Criterion. This hybrid algorithm can be termi-
nated when any of the following conditions is satisfied:

(i) The best solution hasn’t been changed after 10 itera-
tions;

(ii) The running time is over 8 hours.

5. Computational Study

In this section, we perform extensive computational experi-
ments to analyze the performance of the proposedmathemat-
ical model.The parameter settings are provided in Section 5.1
and the solutions are analyzed in Section 5.2.

5.1. Test Bed. We use the data set from [3]. The values of
(𝑁, 𝑃) are set at (5, 2), (10, 3), (10, 5), (15, 3), (15, 5), (15, 7),
(20, 3), (20, 5), (20, 7), (25, 3), (25, 5) and (25, 7). The cost
of installing hub 𝐹𝑗 or a central hub 𝐹󸀠 is drawn from
𝑈(1200000, 2400000). Two fare classes (𝐾 = 2) provide a
business class 𝑘 = 1 and an economic class 𝑘 = 2. For
𝑇𝑦𝑝𝑒 1 link, the transportation cost 𝐶11 per unit distance per
flight on the class 𝑘 = 1 is drawn from 𝑈(7, 14) and the
transportation cost 𝐶12 per unit distance per flight for 𝑘 = 2
is 𝛾𝐶11, where 𝛾 ∼ 𝑈(0.5, 1). We consider 𝐶21 = 𝛼𝐶11 and𝐶22 = 𝛼𝐶12, where 𝛼 ∈ {0.2, 0.4, 0.6}. Since [3] does not
provide any information regarding the distance, we set𝑓𝑖𝑗 = 1
and 𝑓𝑗0 = 1. The capacity 𝑁𝑜𝑖𝑗 on 𝑇𝑦𝑝𝑒 1 link is drawn from
a discrete uniform distribution𝐷𝑈(1, 3). For𝑇𝑦𝑝𝑒 2 link, the
capacity𝑁𝑜𝑗0 is drawn from𝐷𝑈(3, 6).The capacity 𝑄1 of the
aircraft used on 𝑇𝑦𝑝𝑒 1 link and 𝑄2 on 𝑇𝑦𝑝𝑒 2 link are 100
and 200, respectively.The ticket price at 𝑘 = 2 is drawn from a

continuous distribution 𝑈(600, 3600). And the price at 𝑘 = 1
is 1.5 higher than the one at 𝑘 = 2. We set𝑀 = 100000.

We set 𝑆 = 10 and the probability of all the scenarios is the
same, namely 1/𝑆. The demand for each fare class is drawn
from the interval between low demand and high demand
[3.75, 6.25]. 80% of the demand come from the economic
class and 20% are from the business class. We also test six
weight vectors (𝜔1, 𝜔2), such that (0, 1), (0.2, 0.8), (0.4, 0.6),
(0.6, 0.4), (0.8, 0.2) and (1, 0). Note that the weight combi-
nation (1, 0) represents that the objective of our problem
is to maximize the average profit over all scenarios. The
weight (0, 1) stands for maximizing the worst-case profit.
Themixed weight combinations (0.2, 0.8), (0.4, 0.6), (0.6, 0.4)
and (0.8, 0.2) mean maximizing a weighted sum of average
and worst case profits over all scenarios. In addition, the
probability of crossover is 0.8 and the probability of mutation
is 0.15. The maximum number of generation is 50 and the
population size is 20. We extend the number of scenarios
to 10. When the number of scenarios is three times more
than the number used in [3], our problem becomes more
challenging if the population size is still set 50 as in [3].
Therefore, we reduce the population size to 20 so that this
process can continue in limited iterative.

5.2. Results. This hybrid algorithm was implemented in
Matlab R2017b using Yalmip R20171121 and IBM ILOGCplex
Optimization Studio 12.8.0. All runswere done on aMacBook
Pro with an Intel Core i7 CPU 3GHz processor at 8GB of
RAM under macOS High Sierra 10.13.3 operating system.
To demonstrate good performance of our mathematical
formulation, we conducted 216 computational experiments
considering 6 weight vectors with varying 12 network sizes
as well as 3 discount factors.

The organization of this section is as follows: First, we
report computational results under different parameter val-
ues𝑁 and 𝑃, weight vector (𝜔1, 𝜔2) and discount factor 𝛼 in
Tables 1 and 2. Especially, the results under (0, 1) and (1, 0) are
shown in Table 1 and the results under the mixed weight
combinations are presented in Table 2. Second, Figure 2 is
used for comparing the performance of our proposed model
and the model in [3]. The impact of 𝛼 on the profits can also
be illustrated in Figure 2. Finally, we present the results of the
worst-case values in Table 3 and investigate the correlation
between the worst-case value and the profit in Table 4.

We initially observe the profits under weight combina-
tions (0, 1) and (1, 0). The results obtained from solving the
simplified model (11)-(13) and (2)-(10) are summarized in
Table 1. The first three columns report the values of discount
factor 𝛼, the number of the nodes 𝑁 and the number of the
hubs 𝑃. The columns, under the heading of (𝜔1, 𝜔2), give the
profits under the weight combinations (0, 1) and (1, 0). The
last column shows the deviation between these two values
under (0, 1) and (1, 0). This deviation has been computed as
“profit under (0, 1) - profit under (1, 0)”.

Observe from Table 1 that the profit differs a lot depend-
ing on different node number 𝑁 existed in the network. The
highest profit is achieved at 𝑁 = 15 and the lowest profit is
obtained at 𝑁 = 25. The values in the column labeled ‘Dev’
indicate that the profit under (0, 1) is higher than the one
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Table 1: Profits under (0, 1) and (1, 0).
𝛼 𝑁 𝑃 (𝜔1, 𝜔2) 𝐷𝑒V(0, 1) (1, 0)

0.2

5 2 5442266.67 5423379.87 18886.80
10 3 4918937.71 4887976.87 30960.84
10 5 8293400.06 8262616.21 30783.85
15 3 4160728.26 4137520.58 23207.68
15 5 7562556.80 7534413.37 28143.43
15 7 11755282.60 11720169.74 35112.86
20 3 2360179.15 2300020.24 60158.91
20 5 5759796.83 5512755.65 247041.18
20 7 8522527.33 8486613.75 35913.58
25 3 892883.30 879578.93 13304.37
25 5 4080747.68 4063431.36 17316.32
25 7 8384020.92 8053287.16 330733.76

0.4

5 2 5442267.26 5423380.53 18886.73
10 3 4918942.44 4890648.04 28294.40
10 5 8293404.64 8262621.05 30783.59
15 3 4160738.83 4137529.01 23209.82
15 5 7562570.08 7534424.29 28145.79
15 7 11850706.76 11720184.41 130522.35
20 3 2486257.40 2400330.06 85927.34
20 5 5550614.23 5512778.82 37835.41
20 7 8522586.77 8486633.64 35953.13
25 3 892917.49 879603.28 13314.21
25 5 4080550.59 4063463.12 17087.47
25 7 8089252.79 8053316.86 35935.93

0.6

5 2 5442267.86 5442301.65 -33.79
10 3 4922407.92 4904121.97 18285.95
10 5 8294319.76 8275448.45 18871.31
15 3 4202882.06 4217080.62 -14198.56
15 5 7585948.98 7603389.82 -17440.84
15 7 11764264.73 11613095.26 151169.47
20 3 2540668.89 2489654.33 51014.56
20 5 5946942.46 6018106.15 -71163.69
20 7 9494836.41 8683483.27 811353.14
25 3 1039461.55 1263250.70 -223789.15
25 5 4208509.22 4489668.85 -281159.63
25 7 8208922.00 8439144.76 -230222.76

under (1, 0) for a given node number 𝑁 in almost all cases.
As can be seen, the deviation between profit (0, 1) and (1, 0)
is insensitive to an increase in𝑁.We next observe the effect of
hub number 𝑃 on the results presented in Table 1.The highest
profit is produced when 𝑃 = 7, whereas the lowest profit
is obtained at 𝑃 = 3. When 𝑃 increases, the deviation also
increases in the majority of cases. For a given 𝑁, the profit
increases as 𝑃 increases in all cases. Besides, for a given 𝑃, an
increase in node number𝑁 yields to a decrease in profit.The
largest deviation always can be obtained at 𝑁 = 20. We also
test all instances with three different levels of discount. When
the level of discount is increased from 𝛼 = 0.2 to 𝛼 = 0.6,
higher profit can be resulted in for most cases. In particular,
the profit stands out significantly when 𝛼 = 0.6, whereas only

a few instances don’t justify this point. The profit under (0, 1)
is higher than the one under (1, 0) along with an increasing
discount.

Table 2 provides the solutions by solving our model
optimally under mixed weight vectors. The discount factor,
node number, and hub number are shown in the first three
columns labeled as 𝛼, 𝑁 and 𝑃. The next four columns
represent the profits under different weight vectors, (0.2, 0.8),
(0.4, 0.6), (0.6, 0.4) and (0.8, 0.2). To demonstrate the results
with different levels of discount, Table 2 is split horizontally
into three parts for 𝛼 = 0.2, 𝛼 = 0.4 and 𝛼 = 0.6.

Regarding the factor of node number𝑁, the highest profit
can be provided within the instances with 𝑁 = 15 and the
lowest profit always can be reported at 𝑁 = 25. We observe
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Table 2: Profits under mixed weight combinations.

𝛼 𝑁 𝑃 (𝜔1, 𝜔2)
(0.2, 0.8) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2)

0.2 5 2 5438489.31 5434711.95 5430934.59 5427157.23
10 3 4913467.23 4907997.64 4900371.10 4894182.34
10 5 8287303.68 8281207.29 8275110.91 8269014.53
15 3 4158103.96 4154727.13 4150791.16 4145561.69
15 5 7558990.36 7554668.13 7550225.45 7544160.12
15 7 11750609.00 11745627.15 11739865.46 11731346.52
20 3 2329636.54 2358141.43 2356525.42 2311386.40
20 5 5756168.69 5541820.03 5534669.13 5525588.27
20 7 8518495.08 8512989.30 8506425.30 8498186.76
25 3 892821.19 892421.61 891341.44 888308.81
25 5 4080580.66 4080098.79 4077652.35 4073697.67
25 7 8087887.20 8383805.11 8382705.01 8070721.25

0.4 5 2 5438489.92 5434712.57 5430935.22 5427157.88
10 3 4913472.45 4908002.46 4900375.65 4897055.01
10 5 8287308.31 8281211.98 8275115.64 8269019.31
15 3 4158123.59 4154780.97 4150767.12 4145572.12
15 5 7559010.28 7554681.63 7550236.36 7544173.58
15 7 11848845.27 11745641.74 11739880.18 11731361.18
20 3 2485358.09 2483758.63 2481010.23 2412575.20
20 5 5547325.79 5541841.01 5534690.21 5525611.37
20 7 8518582.62 8513134.96 8506445.13 8498206.57
25 3 892825.69 892446.01 891519.07 888333.16
25 5 4080612.63 4080130.36 4077683.94 4073694.68
25 7 8087920.51 8085342.31 8080574.24 8070745.42

0.6 5 2 5438605.23 5434908.81 5431212.39 5427515.97
10 3 4917136.78 4920304.97 4917254.78 4913525.68
10 5 8291540.99 8288510.64 8284498.40 8280123.99
15 3 4207659.77 4211795.89 4215598.76 4217939.77
15 5 7591518.47 7596498.75 7600645.46 7603957.17
15 7 11770077.05 11780236.43 11775541.08 11782141.51
20 3 2448689.50 2462337.45 2475390.84 2614576.61
20 5 5964606.93 5638808.22 5658492.99 5676115.37
20 7 8620303.58 8639383.51 8656293.84 8671485.14
25 3 1086566.93 1133431.06 1179989.42 1224327.94
25 5 4267896.78 6606733.17 5333392.58 4439826.92
25 7 8260241.17 8310382.27 8358821.16 8403406.83

that the profit is not proportional to the network size. When
the network becomes larger over a perfect structure (e.g. it’s
𝑁 = 15 in our paper), the profit can’t be higher. In other
words, not all the demand can be satisfied and some of the
O&D pairs are unprofitable in a larger network with over
15 nodes. We also analyze the impact of hub number 𝑃 on
profits. The minimum profit is at 𝑃 = 3 and the maximum
profit is at 𝑃 = 7. This is reasonable because the effect of the
hub can not only largely reduce the links but also can bring
economic benefits as a transportation and business center.
Hence, more hubs can attract more business opportunities.
Besides, the profit tends to be lower when the proportion of
hub 𝑃 and node 𝑁 is less than 20%. The proportion of over

35% can result in higher profit. As can be seen, the profit
changes significantly with discount factor 𝛼. It is clear that
profits increase along with increasing 𝛼, for a given𝑁, 𝑃 and
(𝜔1, 𝜔1). For a given 𝑁, 𝑃 and 𝛼, the profit reduces along
with increasing 𝜔1 and decreasing 𝜔2 in almost all cases.
For example, the maximum profit is at (0.2, 0.8) and the
minimum is at (0.8, 0.2).

Figure 2 provides an insight into the change in profits
under different parameter values. Each subgraph presented
in Figure 2 refers to one specific network. For each network,
we depict different profits under different discount factor 𝛼.
The x-axis lists the values of weight vectors (𝜔1, 𝜔2) and the
y-axis shows the profit. To justify the priority of the proposed
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Table 3: Results of Ψ under all weight combinations.

𝛼 𝑁 𝑃 Ψ(𝑤1,𝑤2)(0, 1) (0.2, 0.8) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2) (1, 0)
0.2 5 2 224589.93 224589.93 224589.93 224589.93 224589.93 0

10 3 1027541.72 1027542.16 1027541.72 1027542.06 1027542.06 0
10 5 1027540.54 1027541.86 1027541.86 1027541.86 1027541.86 0
15 3 2205498.61 2204915.80 2204727.56 2202259.72 2195477.81 0
15 5 2273547.74 2273392.94 2272551.04 2272551.04 2261676.91 0
15 7 2311447.10 2311137.58 2311095.56 2306936.05 2294650.48 0
20 3 3588267.13 3938882.22 3587185.19 3584464.32 3925765.50 0
20 5 3939207.08 3938719.34 4055035.41 4051068.03 4042096.26 0
20 7 3731104.38 3730388.83 3729155.46 3724789.92 3715758.04 0
25 3 5431526.32 5431334.97 5430280.84 5428905.69 5413902.00 0
25 5 5804793.44 5804580.58 5802449.29 5800139.55 5788545.96 0
25 7 5263624.74 5502366.53 5262415.20 5256008.24 5469477.79 0

0.4 5 2 224589.34 224589.34 224589.34 224589.34 224589.34 0
10 3 1027536.99 1027536.99 1027536.99 1027537.68 1026879.10 0
10 5 1027537.28 1027537.28 1027537.28 1027537.28 1027537.28 0
15 3 2205488.04 2204717.21 2204669.98 2201115.95 2195467.39 0
15 5 2273534.46 2272920.82 2272537.49 2272540.05 2261663.43 0
15 7 2216022.94 2215966.32 2311081.02 2306921.27 2294635.80 0
20 3 3699820.06 3699182.19 3698340.30 3695085.61 3774691.16 0
20 5 4059318.54 4058552.83 4055014.52 4051047.01 4042073.30 0
20 7 3731044.95 3730490.30 3729225.35 3724770.15 3715738.48 0
25 3 5431492.12 5431330.48 5430256.40 5428029.34 5413877.78 0
25 5 5804990.52 5804548.54 5802417.79 5800108.08 5788548.96 0
25 7 5503524.93 5502643.11 5500729.01 5492950.94 5469453.84 0

0.6 5 2 224554.95 224554.95 224554.95 224554.95 224554.95 0
10 3 1024071.51 1026667.22 1020713.87 1018697.17 1017440.43 0
10 5 1026622.16 1026622.16 1025421.48 1023320.27 1023320.27 0
15 3 2163344.81 2163058.34 2162344.63 2160215.98 2152309.47 0
15 5 2250155.56 2249725.99 2248005.32 2247607.11 2239913.46 0
15 7 2302464.96 2302116.69 2298189.51 2302116.69 2285669.98 0
20 3 3645408.58 3513526.93 3512307.10 3510255.47 3629509.85 0
20 5 3925221.98 3924681.23 4011560.44 4007231.48 3998353.17 0
20 7 3902333.95 3652923.24 3649362.17 3645532.56 3638103.70 0
25 3 5284948.07 5284697.67 5284412.47 5280823.21 5270077.06 0
25 5 5677031.89 5676600.82 5353469.83 5549252.16 5661697.15 0
25 7 5383855.72 5383293.86 5380626.84 5373180.31 5351349.29 0

model, we analyze the computational results compared to [3].
The solutions in [3] correspond to the profits under weights
(1, 0) in our experiments. As mentioned before, the profits
under weight vector (0, 1) result in the best profit in most
cases. In other words, the values in (0, 1) provide an upper
bound for almost all the cases.The lowest profits are achieved
when the weight combination is (1, 0) for each network
size in the majority of cases. Besides, the profits under all
weights (0.2, 0.8), (0.4, 0.6), (0.6, 0.4) and (0.8, 0.2) are higher
than the ones under (1, 0) in most cases. We believe that
these results provide a good indication of the added benefit
of a combined average-case and worst-case analysis for the
integrated problem. We also conclude from Figure 2 that

when the discount factor 𝛼 is higher, the decision maker can
significantly obtain more profit. Hence, the discount factor
is an important indicator in designing and operating a hub
network.

The value of Ψ is listed in Table 3. In addition to the
columns in Table 2, the columns labeled ‘Ψ(𝜔1,𝜔2)’ report
the values of Ψ under six weight vectors. As noted in the
problem definition, Ψ indicates the worst-case value over all
the scenarios. We would like to note that the value of Ψ in
column (1, 0) is 0 in any case because the experiment under
(1, 0) aims to maximize the average profit. In other words,
Ψ is absent from objective function (11). For a given 𝑁, 𝑃
and 𝛼,Ψ reduces along with increasing 𝜔1 and decreasing 𝜔2.
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Table 4: Worst-case value ratios.

𝛼 𝑁 𝑃 (𝑤1, 𝑤2)
(0, 1) (0.2, 0.8) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2)

0.2 5 2 0.04 0.04 0.04 0.04 0.04
10 3 0.21 0.21 0.21 0.21 0.21
10 5 0.12 0.12 0.12 0.12 0.12
15 3 0.53 0.53 0.53 0.53 0.53
15 5 0.30 0.30 0.30 0.30 0.30
15 7 0.20 0.20 0.20 0.20 0.20
20 3 1.52 1.69 1.52 1.52 1.70
20 5 0.68 0.68 0.73 0.73 0.73
20 7 0.44 0.44 0.44 0.44 0.44
25 3 6.08 6.08 6.08 6.09 6.09
25 5 1.42 1.42 1.42 1.42 1.42
25 7 0.63 0.68 0.63 0.63 0.68

0.4 5 2 0.04 0.04 0.04 0.04 0.04
10 3 0.21 0.21 0.21 0.21 0.21
10 5 0.12 0.12 0.12 0.12 0.12
15 3 0.53 0.53 0.53 0.53 0.53
15 5 0.30 0.30 0.30 0.30 0.30
15 7 0.19 0.19 0.20 0.20 0.20
20 3 1.49 1.49 1.49 1.49 1.56
20 5 0.73 0.73 0.73 0.73 0.73
20 7 0.44 0.44 0.44 0.44 0.44
25 3 6.08 6.08 6.08 6.09 6.09
25 5 1.42 1.42 1.42 1.42 1.42
25 7 0.68 0.68 0.68 0.68 0.68

0.6 5 2 0.04 0.04 0.04 0.04 0.04
10 3 0.21 0.21 0.21 0.21 0.21
10 5 0.12 0.12 0.12 0.12 0.12
15 3 0.51 0.51 0.51 0.51 0.51
15 5 0.30 0.30 0.30 0.30 0.29
15 7 0.20 0.20 0.20 0.20 0.19
20 3 1.43 1.43 1.43 1.42 1.39
20 5 0.66 0.66 0.71 0.71 0.70
20 7 0.41 0.42 0.42 0.42 0.42
25 3 5.08 4.86 4.66 4.48 4.30
25 5 1.35 1.33 0.81 1.04 1.28
25 7 0.66 0.65 0.65 0.64 0.64

The highest worst-case values are obtained with the weight
vector (0, 1) in the majority of the cases, whereas the lowest
worst-case values are achieved with the weight vector (0.8,
0.2) in most cases. Similar conclusions from Table 3 can also
be drawn as from Tables 1 and 2.

We want to explore the effect of the worst-case value on
the profit in Table 4. The ratio is computed as “Worst-case
valueΨ / Profit”. It is clear that the worst-case value is usually
lower than the profit in the majority of cases. However, the
ratio over 1 indicates that the worst-case value is higher than
the profit as increasing network size for a given 𝛼. In addition,
the value of the ratio is insensitive to 𝛼, for the given 𝑁, 𝑃
and (𝜔1, 𝜔2). Under different weight combinations, the ratio
is usually the same for the same network size.

6. Conclusions

This paper focused on the integrated problem of an uncapac-
itated single allocation 𝑝-hub median location problem and
a revenue management problem.We optimized the decisions
about hub locations, routing links and the protection levels
of airline tickets for multiple fare classes in the first stage
and the booking limits of tickets in the second stage. We
formulated a two-stage stochastic programming framework
and considered a weighted sum of average and worst case
profits. The proposed model could give the flexibilities of
the decisions on network configuration and tickets sales by
putting the emphasis on the importance of the average and
worst case values over all scenarios.
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Figure 2: Profits comparison under different parameter values.

In addition, a GA was applied to solve our problem.
We performed 216 computational experiments, including 6
weight vectors with varying 12 network sizes as well as 3
discount factors under 10 scenarios. We analyzed the profits
under different weight vectors, the performance compared
to the consideration in [3] and the effect of the worst-
case on profits. The results demonstrated that the proposed
formulation outperformed the model in [3]. The largest
profits were obtained at weight combination (0, 1), whereas
the lowest profits were achieved at the weight combination
(1, 0). The profit decreased along with increasing 𝜔1 and
decreasing 𝜔2. Moreover, the discount factor was also an

important indicator in designing and operating a hub net-
work.

Future studies could be enriched to considering capac-
itated hubs in this integrated problem. For shortening the
computation time, more efficient meta-heuristic algorithms
could be developed. Using the robust controller to deal with
the uncertainty could be a better solution, e.g. [53].

Data Availability

The data used to support the findings of this study are
included within the article.
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genetic algorithms for solving the uncapacitated single alloca-
tion p-hub median problem,” European Journal of Operational
Research, vol. 182, no. 1, pp. 15–28, 2007.

[48] L. S. Pessoa, A. C. Santos, and M. . Resende, “A biased random-
key genetic algorithm for the tree of hubs location problem,”
Optimization Letters, vol. 11, no. 7, pp. 1371–1384, 2017.

[49] K. Takano and M. Arai, “A genetic algorithm for the hub-
and-spoke problem applied to containerized cargo transport,”
Journal of Marine Science and Technology, vol. 14, no. 2, pp. 256–
274, 2009.

[50] H. Topcuoglu, F. Corut, M. Ermis, and G. Yilmaz, “Solving the
uncapacitated hub location problem using genetic algorithms,”
Computers & Operations Research, vol. 32, no. 4, pp. 967–984,
2005.

[51] J. Kratica, Parallelization of genetic algorithms for solving some
NP-complete problems [Ph. D. thesis], Faculty of Mathematics,
University of Belgrade, Beograd, Serbia, 2000.

[52] T. Dunker, G. Radons, and E. Westkämper, “Combining evo-
lutionary computation and dynamic programming for solving
a dynamic facility layout problem,” European Journal of Opera-
tional Research, vol. 165, no. 1, pp. 55–69, 2005.

[53] S. Zhang, X. Li, and C. Zhang, “A fuzzy control model for
restraint of bullwhip effect in uncertain closed-loop supply
chain with hybrid recycling channels,” IEEE Transactions on
Fuzzy Systems, vol. 25, no. 2, pp. 475–482, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

