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Constructing network models of biological systems is important for effective understanding and control of the biological systems.
For the construction of biological networks, a stochastic approach for link weights has been recently developed by using
experimental data and belief propagation on a factor graph.The linkweightswere variable nodes of the factor graph anddetermined
from their marginal probability mass functions which were approximated by using an iterative scheme. However, there is no
convergence analysis of the iterative scheme. In this paper, at first, we present a detailed explanation of the complicated multistep
process step by step with a network of small size and artificial experimental data, and then we show a sufficient condition for the
convergence of the iterative scheme. Numerical examples are given to illustrate the whole process and to verify our result.

1. Introduction

Systems of mathematical equations have been used for mod-
eling interactions of genes or proteins in biological systems.
The modeling consists of two parts: one is to construct a
network of nodes and links, where nodes usually represent
genes or proteins and links denote interactions of nodes.
The second is to build a set of mathematical formulas for
governing the network dynamics, which might be expressed
as a system of differential equations or Boolean logic func-
tions [1, 2]. Modeling of a biological network has been
focused on the construction of a directed network for a given
biological system and its mathematical formulas, with which
biological phenomena and mechanisms have been explained
and controlled [3] and, furthermore, modeling of a biological
network is a useful tool for understanding and explaining the
distribution of the biological communities too [4]. However,
there are few researches on how to determine an optimal set
of nodes and links which are key components of networks for
biological phenomena.

There could be multiple networks for explaining a given
biological system. So, it would be meaningful to use a

probabilistic modeling approach which could yield multi-
ple networks for the biological system. One approach was
recently developed in [5, 6] for the construction of network
models of a melanoma cell line (SK-MEL-133), the most
serious skin cancer, in which each link weight was considered
as a discrete random variable and its marginal probability
mass function (PMF)was constructed by using a factor graph
and a belief propagation (BP) algorithm. Themarginal PMFs
were used to choose multiple weights of high-probability
values and then to construct multiple networks for the
biological system. The initial step of the approach was to
determine a prior knowledge network (PKN) for melanoma
and its mathematical formula structure. Nodes were chosen
for representing some drugs (drug nodes) for melanoma
or proteins (measured nodes) which take important roles
in melanoma. The drug nodes had outgoing links to each
measured node without incoming links. Eachmeasured node
had an outgoing link to each other measured node and an
incoming link from each other measured node. Each link
weight in the mathematical formulas was not determined
in the initial step. Next, each protein concentration was
measured at steady state before and after treatment of the
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drugs, which produced experimental data for determining
the link weights. Then, the joint PMF of link weights was
defined as the Boltzmann/Gibbs form [7] for the factorization
of the joint PMF. The form contained a cost function of
the experimental data and the simulated values of measured
nodes at steady state, where the simulated values were not
constants for undetermined linkweights. So, the factorization
of the joint PMF directly led to the factor graph which is a
bipartite graph consisting of variable nodes (link weights in
the network) and factor nodes (factors in the factorization).
Finally, the marginal PMFs were approximated with an iter-
ative scheme constructed from belief (message) propagation
on the factor graph.

In general, computation time could be high to directly
compute marginal distributions from a joint probability
distribution. So, factor graphs and BP have been applied
to infer marginals in diverse problems [8–12]. It is known
that a marginal obtained from applying BP becomes the
true marginal for an acyclic factor graph and BP could be
successfully applied to a cyclic graph [13–18]. There have
been many researches on conditions for the convergence of
beliefs, which can be applied for computing marginals from
a Gaussian joint probability density function (PDF) [19, 20].
However, the convergence conditions cannot be applied to
the convergence of beliefs (messages) in [5, 6], since the
joint random variable is discrete. And the authors [5, 6]
did not analyze the convergence. As far as we know, there
is no framework for the inference of marginal PMFs based
on both BP and perturbation data except the approach in
[5, 6]. For the use of the stochastic approach [5] in the
construction of networks based on BP as well as perturbation
data, a sufficient condition for the convergence of messages is
necessary. Under such a sufficient condition marginal PMFs
can be identified and, as a result, multiple network models for
the given biological system can be constructed.

In this paper, with our simple network, we present a
detailed explanation of the long and intricate process of con-
structing a system of equations with messages from variable
nodes to factor nodes, and vice versa for the approximation
of marginal PMFs. Since approximate marginal PMFs are
defined with the solution of the system of equations, we
identify recursive relations for the solution of the system
of equations and construct iterative schemes for solving the
recursive relations. Finally we show a sufficient condition for
the convergence of the schemes by using a Banach fixed-point
theorem (see, e.g., [21, 22]). Numerical examples are given to
illustrate the process in Section 4 and to verify our results.

2. Preliminaries

For a clear explanation of the convergence of the iterative
schemes mentioned in the Introduction section, we make a
simple network of three nodes and four links (see Figure 1(a)),
which is assumed to be a PKN. Since the simple network
has key components necessary for determining approximate
marginal PMFs, the simple network can be extended to any
network, including the biological network in [5]. So, our
convergence analysis in the Results section can be applied for
any network. The network has two measured nodes (𝑥1, 𝑥2)

and one drug node (𝑥3). We consider two treatments as the1𝑠𝑡 and 2𝑛𝑑 perturbations. Symbols 𝑥𝜐𝑖 (𝜐 = 1, 2, 𝑖 = 1, 2, 3)
in Figure 1(b) denote log2(𝑥𝜐,after𝑖 /𝑥𝜐,before𝑖 ), where𝑥𝜐,before𝑖 and𝑥𝜐,after𝑖 are the concentrations of 𝑥𝑖 at steady state before and
after the 𝜐𝑡ℎ perturbation, respectively. Since each drug node
has an outgoing link to eachmeasured node and no incoming
link to any node, drug node 𝑥3 has two outgoing links to𝑥1 and 𝑥2 with weights 𝑤1,3 and 𝑤2,3, respectively. Each
measured node has an outgoing link to each other measured
node and incoming links from each other nodes, and so,
measured node 𝑥1 has one outgoing link to 𝑥2 with weight𝑤2,1 and two incoming links from 𝑥2 and 𝑥3 with weights𝑤1,2
and 𝑤1,3, respectively. Similarly, measured node 𝑥2 has one
outgoing link to 𝑥1 with weight 𝑤1,2 and two incoming links
from 𝑥1 and 𝑥3 with weights 𝑤2,1 and 𝑤2,3, respectively.

As in [5], the dynamics of the given situation is modeled
with the mathematical formulas as in Figure 1(c). Simulated
values 𝑥𝜐,𝑠𝑖 at steady state under the 𝜐𝑡ℎ perturbation are
assumed to be the form𝑥𝜐,𝑠𝑖 = 𝜙( 3∑

𝑗=1,𝑗 ̸=𝑖

𝑤𝑖,𝑗𝑥𝜐𝑗) (𝑖 = 1, 2) , 𝑥𝜐,𝑠3 = 𝑥𝜐3, (1)

where 𝜙(𝑥) = tanh(𝑥). From now on, weights 𝑤𝑖,𝑗 are
considered as discrete random variables with three values𝑤 (-1, 0 and 1) and their PMFs are denoted as follows: for𝑤 ∈ {−1, 0, 1} 𝑃 (𝑤1,2 = 𝑤) ,𝑃 (𝑤1,3 = 𝑤) ,𝑃 (𝑤2,1 = 𝑤) ,𝑃 (𝑤2,3 = 𝑤) ,

(2)

which are approximately calculated in the Results section
by using a factor graph and BP based on the factor graph.
In [3], discretization over the 3 weight values led to a
high rate of convergence and did not capture appropriate
uncertainty in a probability distribution and then 11 weight
values were used. However, our goals in this paper are to
find a convergence condition for messages and to explain the
complicated multistep process in [3] step by step by using a
prior knowledge network of small size. So, the three weight
values are enough for our goals. For the extension of our
results to networks of large size and real perturbation data,
some notations and mathematical expressions used in our
paper might be rather cumbersome in later sections.

3. Results

In this section, we present a system of equations for each
marginal PMF, iterative schemes for the solutions and a
sufficient condition for the convergence of the iterative
schemes.

3.1. System of Equations for Marginal PMFs. To define a joint
PMF of link weights based on the experimental data we
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(d)

Figure 1: Given information and our goal. (a) A prior knowledge network of two measured nodes 𝑥1 and 𝑥2, and one drug node 𝑥3. The
symbol 𝑤𝑖,𝑗 denotes the link weight from 𝑥𝑖 to 𝑥𝑗, which is a discrete random variable. (b) Experimental data. The 1𝑠𝑡 and 2𝑛𝑑 perturbations
mean the 1𝑠𝑡 and 2𝑛𝑑 experiments. Symbol 𝑥𝜐𝑖 (𝑖 = 1, 2, 3, 𝜐 = 1, 2) denotes the log 2-ratio concentration of 𝑥𝑖 at steady state before and after
the 𝜐𝑡ℎ perturbation. (c) Differential equation model for the 𝜐𝑡ℎ perturbation. Symbol 𝑥𝑖,𝜐(𝑡) denotes the relative change of 𝑥𝑖 at time 𝑡 in
the 𝜐𝑡ℎ perturbation. (d) Construction of approximate marginal PMFs from a joint PMF. Set {𝑤 | 𝑤 = −1, 0, 1} denotes the domain of each
marginal PMF.

consider the sum of squared errors between simulated values𝑥𝜐,𝑠𝑖 and experimental values 𝑥𝜐𝑖
3∑
𝑖=1

2∑
𝜐=1

(𝑥𝜐,𝑠𝑖 − 𝑥𝜐𝑖 )2 (3)

as well as the penalty

3∑
𝑖=1

3∑
𝑗=1,𝑗 ̸=𝑖

𝛿 (𝑤𝑖,𝑗) , 𝛿 (𝑤𝑖,𝑗 = 𝑤) = {{{0 (𝑤 = 0)1 (𝑤 ̸= 0) , (4)

which reflects the property that the total number of links
tends not to be large. Note that 𝑤3,𝑗 = 0 (𝑗 = 1, 2) due to
no incoming link to drug node 𝑥3. Then the cost function is
defined as

Cost = 𝛽 3∑
𝑖=1

2∑
𝜐=1

(𝑥𝜐,𝑠𝑖 − 𝑥𝜐𝑖 )2 + 𝜆 2∑
𝑖=1

3∑
𝑗=1,𝑗 ̸=𝑖

𝛿 (𝑤𝑖,𝑗) , (5)

where the error and penalty are weighted by positive con-
stants 𝛽 and 𝜆, respectively. Using (1), the cost is written as

Cost = 𝛽 2∑
𝑖=1

2∑
𝜐=1

{{{𝜙( 3∑
𝑗=1,𝑗 ̸=𝑖

𝑤𝑖,𝑗𝑥𝜐𝑗) − 𝑥𝜐𝑖}}}
2

+ 𝜆 2∑
𝑖=1

3∑
𝑗=1,𝑗 ̸=𝑖

𝛿 (𝑤𝑖,𝑗) . (6)

Posteriori probability (joint PMF) 𝑃(𝑊) = 𝑃(𝑤1,2, 𝑤1,3, 𝑤2,1,𝑤2,3) is defined as 𝑃 (𝑊) = 1𝑍 exp (−Cost) , (7)

where 𝑍 is the constant ensuring that the sum of the
probabilities over all model configurations is equal to one.
Let 𝑍 = 𝑍1𝑍2, where 𝑍1 and 𝑍2 are the constants ensuring
that the sums of probabilities 𝑃(𝑤1,2, 𝑤1,3) and 𝑃(𝑤2,1, 𝑤2,3)
over all model configurations are equal to one, respectively.
Substituting the cost (6) into 𝑃(𝑊) gives

𝑃 (𝑊)
= 1𝑍 exp[[[ 2∑𝑖=1(−𝛽 2∑𝜐=1{{{𝜙( 3∑

𝑗=1,𝑗 ̸=𝑖

𝑤𝑖,𝑗𝑥𝜐𝑗)
− 𝑥𝜐𝑖}}}

2 − 𝜆 3∑
𝑗=1,𝑗 ̸=𝑖

𝛿 (𝑤𝑖,𝑗))]]]
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= 2∏
𝑖=1

( 1𝑍𝑖 exp{{{−𝜆 3∑𝑗=1,𝑗 ̸=𝑖𝛿 (𝑤𝑖,𝑗)}}} 2∏𝜐=1 exp[[[−𝛽{{{𝜙( 3∑
𝑗=1,𝑗 ̸=𝑖

𝑤𝑖,𝑗𝑥𝜐𝑗) − 𝑥𝜐𝑖}}}
2]]])≡ 𝑃 (𝑤1,2, 𝑤1,3) 𝑃 (𝑤2,1, 𝑤2,3) ,

(8)

which implies that 𝑃(𝑤1,2, 𝑤1,3) and 𝑃(𝑤2,1, 𝑤2,3) can be
independently determined by using a similar approach. So,
we consider 𝑃(𝑤1,2, 𝑤1,3) to show the approximation of
marginal PMF 𝑃(𝑤1,2):𝑃 (𝑤1,2) = ∑

𝑤1,3

𝑃 (𝑤1,2, 𝑤1,3)
= 1𝑍1∑𝑤1,3𝑒−𝜆∑3𝑗=2 𝛿(𝑤1,𝑗) 2∏𝜐=1𝑒−𝛽{𝜙(∑3𝑗=2 𝑤1,𝑗𝑥𝜐𝑗 )−𝑥𝜐1}2 . (9)

It is not efficient to calculate the exact marginal with the
enumeration in the cases where the numbers of nodes in a
network or experimental perturbations become large. There-
fore, the process to approximate the marginal is presented
step by step by using a factor graph and BP on the factor
graph.

Step 1 (introduction of a factor graph and BP on the factor
graph). Using the factorization in (9), factor nodes 𝐹𝜐1 (𝜐 =1, 2) are defined as

𝐹𝜐1 (𝑤1,2, 𝑤1,3) = exp[[[−𝛽{{{𝜙( 3∑𝑗=2𝑤1,𝑗𝑥𝜐𝑗) − 𝑥𝜐1}}}
2]]] (10)

and then marginal 𝑃(𝑤1,2) in (9) can be written as follows:𝑃 (𝑤1,2) = 1𝑍1∑𝑤1,3𝑒−𝜆∑3𝑗=2 𝛿(𝑤1,𝑗) 2∏𝜐=1𝐹𝜐1 (𝑤1,2, 𝑤1,3) , (11)

which yields the factor graph of two variable nodes (𝑤1,2 , 𝑤1,3)
and two factor nodes (𝐹11 , 𝐹21 ) as in Figure 2. Following BP on
the factor graph, message 𝑃𝜐(𝑤1,𝑗) from variable node𝑤1,𝑗 to
factor node 𝐹𝜐1 (𝑤1,2, 𝑤1,3) is defined as𝑃𝜐 (𝑤1,𝑗) = 1𝑍𝜐1,𝑗 𝑒−𝜆𝛿(𝑤1,𝑗) 2∏𝜇=1,𝜇 ̸=𝜐𝜌𝜇 (𝑤1,𝑗)(𝜐 = 1, 2, 𝑗 = 2, 3) , (12)

where 𝑍𝜐1,𝑗 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one and 𝜌𝜇(𝑤1,𝑗) is the message from 𝐹𝜇1 (𝑤1,2, 𝑤1,3) to 𝑤1,𝑗
defined as𝜌𝜇 (𝑤1,𝑗)= ∑

{𝑤1,2,𝑤1,3}−{𝑤1,𝑗}

𝐹𝜇1 (𝑤1,2, 𝑤1,3) 3∏
2≤ℓ≤3,ℓ ̸=𝑗

𝑃𝜇 (𝑤1,ℓ) . (13)

Using message 𝜌𝜐(𝑤1,𝑗), marginal PMF 𝑃(𝑤1,𝑗) in (11) can be
approximated as

𝑃 (𝑤1,𝑗) = 1𝑍1,𝑗 𝑒−𝜆𝛿(𝑤1,𝑗) 2∏𝜐=1𝜌𝜐 (𝑤1,𝑗) , (14)

where 𝑍1,𝑗 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one.

Step 2 (approximation of the summation (13)). The process
of the approximation used in [5] can be divided into two
parts: the first is to change multiple summations into a single
summation by introducing a new random variable. The next
is to change the single summation into an integral.

Step 2-1. Since 𝜌𝜐 in (13) is a function of 𝑤1,𝑗, all random
variables in 𝐹𝜐1 (𝑤1,2, . . . , 𝑤1,𝑛), which are in (13), can be
divided into two type of random variables: one is𝑤1,𝑗 and the
other is 𝑠𝜐1,𝑗 = ∑𝑛𝜉 ̸=1,𝑗 𝑤1,𝜉𝑥𝜐𝜉 (𝑛 = 3), which becomes the linear
combination of random variables 𝑤1,𝜉 in the cases where the
number 𝑛 of nodes becomes large. Using the definitions of 𝑠𝜐1,𝑗
and 𝐹𝜐1 (𝑤1,2, . . . , 𝑤1,𝑛) in (10), we can write 𝐹𝜐1 in (13) as

𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) = exp {−𝛽 (𝜙 (𝑠𝜐1,𝑗 + 𝑤1,𝑗𝑥𝜐𝑗) − 𝑥𝜐1)2} , (15)

which is a function of random variables 𝑠𝜐1,𝑗 and 𝑤1,𝑗. Then
(13) becomes𝜌𝜐 (𝑤1,𝑗)= ∑

𝑤1,𝜉(1<𝜉≤𝑛,𝜉≠𝑗)

{{{𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) ∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)}}} . (16)

Letting

{{{ ∑
1<𝜉≤𝑛,𝜉≠𝑗

𝑤1,𝜉𝑥𝜐𝜉 | 𝑤1,𝜉 ∈ {−1, 0, 1} , 1 < 𝜉 ≤ 𝑛, 𝜉
̸= 𝑗}}} = {𝑠𝜐1,𝑗,𝑘 | 1 ≤ 𝑘 ≤ 𝑚} (17)
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Figure 2: Two representations of the factor graph: bipartite graph (a) and cyclic graph (b).The factor graph contains a cycle.The connection
of factor node 𝐹11 to variable nodes 𝑤1,2 and 𝑤1,3 denotes the dependence of 𝐹11 on 𝑤1,2 and 𝑤1,3 since 𝐹11 is a function of 𝑤1,2 and 𝑤1,3.
for some positive integer 𝑚, message 𝜌𝜐 in (16) becomes

𝜌𝜐 (𝑤1,𝑗) = 𝑚∑
𝑘=1

∑
𝑤1,𝜉=𝑤1,𝜉(1<𝜉≤𝑛,𝜉≠𝑗)

∑1<𝜉≤𝑛,𝜉≠𝑗 𝑤1,𝜉𝑥
𝜐
𝜉=𝑠
𝜐
1,𝑗,𝑘

{{{𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗)
⋅ ∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)}}} = 𝑚∑
𝑘=1

𝐹𝜐1 (𝑠𝜐1,𝑗,𝑘, 𝑤1,𝑗)
⋅ {{{{{{{{{ ∑
𝑤1,𝜉=𝑤1,𝜉(1<𝜉≤𝑛,𝜉≠𝑗)

∑1<𝜉≤𝑛,𝜉≠𝑗 𝑤1,𝜉𝑥
𝜐
𝜉=𝑠
𝜐
1,𝑗,𝑘

∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)}}}}}}}}} .
(18)

Note that

𝑚∑
𝑘=1

{{{{{{{{{ ∑
𝑤1,𝜉=𝑤1,𝜉(1<𝜉≤𝑛,𝜉≠𝑗)

∑1<𝜉≤𝑛,𝜉≠𝑗 𝑤1,𝜉𝑥
𝜐
𝜉=𝑠
𝜐
1,𝑗,𝑘

∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)}}}}}}}}}= ∑
𝑤1,𝜉

(1<𝜉≤𝑛,𝜉≠𝑗)

∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)
= ∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

{∑
𝑤1,ℓ

𝑃𝜐 (𝑤1,ℓ)} = 1,
(19)

which implies that the following can be a PMF of 𝑠𝜐1,𝑗𝑃𝜐𝑠 (𝑠𝜐1,𝑗 = 𝑠𝜐1,𝑗,𝑘) = ∑
𝑤1,𝜉=𝑤1,𝜉(1<𝜉≤𝑛,𝜉≠𝑗)

∑1<𝜉≤𝑛,𝜉≠𝑗 𝑤1,𝜉𝑥
𝜐
𝜉=𝑠
𝜐
1,𝑗,𝑘

∏
2≤ℓ≤𝑛,ℓ ̸=𝑗

𝑃𝜐 (𝑤1,ℓ)
(1 ≤ 𝑘 ≤ 𝑚) . (20)

So, message 𝜌𝜐 in (18) can be written as a single summation𝜌𝜐 (𝑤1,𝑗) = ∑
𝑠𝜐1,𝑗

𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) 𝑃𝜐𝑠 (𝑠𝜐1,𝑗) . (21)

Step 2-2. Note that 𝑠𝜐1,𝑗 is a sum of random variables 𝑤1,𝜉 (1 <𝜉 ≤ 𝑛, 𝜉 ̸= 𝑗), which are assumed to be independent.
Even though 𝑠𝜐1,𝑗 is not identically distributed, the authors [5]
invoked the central limit theorem to approximate the PMF
of 𝑠𝜐1,𝑗 as a Gaussian with reference to [23], where there was

no explicit justification for the application of this theorem.
Since sums of independent random variables converge in
distribution to the standard normal as long as some condition
(e.g., the Lindeberg Condition [24]) is satisfied, we think that
such a condition might be implicitly assumed in [24]. So, the
approximate PMF of 𝑠𝜐1,𝑗 becomes

𝑃𝜐𝑠 (𝑠𝜐1,𝑗) = 1√2𝜋Δ𝜐1,𝑗 exp[[−(𝑠𝜐1,𝑗 − 𝑠𝜐1,𝑗)22Δ𝜐1,𝑗 ]] , (22)

where average 𝑠𝜐1,𝑗 and variance Δ𝜐1,𝑗 of 𝑠𝜐1,𝑗 are defined as

𝑠𝜐1,𝑗 = 𝐸 (𝑠𝜐1,𝑗) = 𝐸( 3∑
ℓ ̸=1,𝑗

𝑤1,ℓ𝑥𝜐ℓ) = 3∑
ℓ ̸=1,𝑗

𝑤1,ℓ𝑥𝜐ℓ , (23)

Δ𝜐1,𝑗 = 𝑉 (𝑠𝜐1,𝑗) = 𝑉( 3∑
ℓ ̸=1,𝑗

𝑤1,ℓ𝑥𝜐ℓ)
= 3∑
ℓ ̸=1,𝑗

𝑉(𝑤1,ℓ) (𝑥𝜐ℓ)2
= 3∑
ℓ ̸=1,𝑗

(𝑤1,ℓ2 − 𝑤1,ℓ2) (𝑥𝜐ℓ)2 .
(24)

Symbols𝑤1,ℓ and𝑤1,ℓ2 denote the averages of𝑤1,ℓ and (𝑤1,ℓ)2,
respectively: 𝑤1,ℓ = ∑

𝑤

𝑤𝑃𝜐 (𝑤1,ℓ = 𝑤) ,𝑤1,ℓ2 = ∑
𝑤

𝑤2𝑃𝜐 (𝑤1,ℓ = 𝑤) (25)

and then the sum over configurations {𝑤1,ℓ | 2 ≤ ℓ ≤ 3, ℓ ̸=𝑗} in (19) is approximated with a Gaussian integration:𝜌𝜐 (𝑤1,𝑗) ≈ ∫∞
−∞
𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) 𝑃𝜐𝑠 (𝑠𝜐1,𝑗) 𝑑𝑠𝜐1,𝑗. (26)

Step 3 (approximation of the improper integral (26)). For
the calculation of the improper integral (26), error 𝜙(𝑠𝜐1,𝑗 +𝑤1,𝑗𝑥𝜐𝑗) −𝑥𝜐𝑗 is linearized with respect to the maximization of
the fitness in (15). Note that the equality𝜙 (𝑠𝜐1,𝑗 + 𝑤1,𝑗𝑥𝜐𝑗) − 𝑥𝜐1 = 0, (27)
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can be written as𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗 = 0, (28)

under the assumption that

experimental data 𝑥𝜐1 are contained in the codomain of 𝜙. (29)

Then error 𝜙(𝑠𝜐1,𝑗 + 𝑤1,𝑗𝑥𝜐𝑗 ) − 𝑥𝜐1 in (15) is approximated by𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗, (30)

which yields𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) = exp {−𝛽 (𝜙 (𝑠𝜐1,𝑗 + 𝑤1,𝑗𝑥𝜐𝑗) − 𝑥𝜐1)2}≈ exp {−𝛽 (𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗)2} . (31)

Hence we have𝜌𝜐 (𝑤1,𝑗) ≈ ∫∞
−∞
𝐹𝜐1 (𝑠𝜐1,𝑗, 𝑤1,𝑗) 𝑃𝜐𝑠 (𝑠𝜐1,𝑗) 𝑑𝑠𝜐1,𝑗≈ ∫∞

−∞
exp {−𝛽 (𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗)2}

⋅ 1√2𝜋Δ𝜐1,𝑗 exp[[−(𝑠𝜐1,𝑗 − 𝑠𝜐1,𝑗)22Δ𝜐1,𝑗 ]]𝑑𝑠𝜐1,𝑗= 1(1 + 2𝛽Δ𝜐1,𝑗)1/2⋅ exp[[−𝛽{𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗}21 + 2𝛽Δ𝜐1,𝑗 ]] ,
(32)

where the last equality is obtained both by the identity

− 𝛽 (𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗)2
− (𝑠𝜐1,𝑗 − 𝑠𝜐1,𝑗)22Δ𝜐1,𝑗 = −12 (1 + 2𝛽Δ𝜐1,𝑗) [𝑠𝜐1,𝑗 − (𝑠𝜐1,𝑗 + 𝛽 {𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗} 2Δ𝜐1,𝑗) / (1 + 2𝛽Δ𝜐1,𝑗)]2Δ𝜐1,𝑗
− 𝛽{𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗}21 + 2𝛽Δ𝜐1,𝑗

(33)

and the property of a PDF (the integral of a PDF over its
domain is equal to 1). Therefore adopting the final approxi-
mation of 𝜌𝜐 in [5], approximate marginal PMF 𝑃(𝑤1,𝑗 = 𝑤)
in (14) can be obtained by solving the system of equations

𝜌𝜐 (𝑤1,𝑗 = 𝑤) = exp[[−𝛽{𝜙−1 (𝑥𝜐1) − 𝑤𝑥𝜐𝑗 − 𝑠𝜐1,𝑗}21 + 2𝛽Δ𝜐1,𝑗 ]] , (34)

𝑃𝜐 (𝑤1,𝑗 = 𝑤) = 1𝑍𝜐1,𝑗 𝑒−𝜆𝛿(𝑤1,𝑗=𝑤)𝜌3−𝜐 (𝑤1,𝑗 = 𝑤) , (35)

where 𝜐 = 1, 2, 𝑗 = 2, 3, 𝑤 = −1, 0, 1, 𝑠𝜐1,𝑗 and Δ𝜐1,𝑗 are in
(23)–(25).

Remark 1. Since the approximation (34) was used in [5] and
our goal in this paper is to find a convergence condition for
the algorithm in [5], we also use (34) instead of𝜌𝜐 (𝑤1,𝑗) = 1(1 + 2𝛽Δ𝜐1,𝑗)1/2

⋅ exp[[−𝛽{𝜙−1 (𝑥𝜐1) − 𝑤1,𝑗𝑥𝜐𝑗 − 𝑠𝜐1,𝑗}21 + 2𝛽Δ𝜐1,𝑗 ]] .
(36)

Even when using (36) instead of (34), the convergence
analysis in the later subsections could be applied (we do not
show it in this paper).

Remark 2. Similarly approximate marginal PMF 𝑃(𝑤2,𝑗) can
be obtained by replacing subscripts 1 and 𝑗 = 2, 3, relatedwith
node 𝑥1, in𝑤1,𝑗, 𝑠𝜐1,𝑗,Δ𝜐1,𝑗, and𝑤1,ℓ in (34), (35), and (23)–(25)
with 2 and 𝑗 = 1, 3, related with node 𝑥2: for 𝜐 = 1, 2,𝑗 = 1, 3:

𝑃 (𝑤2,𝑗) = 1𝑍2,𝑗 𝑒−𝜆𝛿(𝑤2,𝑗) 2∏𝜐=1𝜌𝜐 (𝑤2,𝑗) , (37)

𝜌𝜐 (𝑤2,𝑗) = exp[[−𝛽{𝜙−1 (𝑥𝜐2) − 𝑤2,𝑗𝑥𝜐𝑗 − 𝑠𝜐2,𝑗}21 + 2𝛽Δ𝜐2,𝑗 ]] , (38)

𝑃𝜐 (𝑤2,𝑗) = 1𝑍𝜐2,𝑗 𝑒−𝜆𝛿(𝑤2,𝑗)𝜌3−𝜐 (𝑤2,𝑗) , (39)

where 𝑍𝜐2,𝑗 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one and
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𝑠𝜐2,𝑗 = 3∑
ℓ ̸=2,𝑗

{∑
𝑤

𝑤𝑃𝜐 (𝑤2,ℓ = 𝑤)}𝑥𝜐ℓ , (40)

Δ𝜐2,𝑗 = 3∑
ℓ ̸=2,𝑗

{(∑
𝑤

𝑤2𝑃𝜐 (𝑤2,ℓ = 𝑤))
− (∑
𝑤

𝑤𝑃𝜐 (𝑤2,ℓ = 𝑤))2} (𝑥𝜐ℓ)2 . (41)

3.2. Iterative Schemes for Solving the System of Equations.
In this subsection, we construct sequences {𝜌𝜐1,𝑗,𝑛(𝑤)} and{𝑃𝜐1,𝑗,𝑛(𝑤)} (𝜐 = 1, 2, 𝑗 = 2, 3, 𝑤 = −1, 0, 1) by using (34) and
(35). In the next subsection we present a sufficient condition
for the convergence of the two sequences, which implies that
the two limits satisfy (34) and (35). So, the limit of {𝜌𝜐1,𝑗,𝑛(𝑤)}
becomes value 𝜌𝜐(𝑤1,𝑗 = 𝑤), leading to the construction of
approximate marginal PMF 𝑃(𝑤1,𝑗) in (14). We assume that

initial terms 𝜌𝜐1,𝑗,0 (𝑤) of {𝜌𝜐1,𝑗,𝑛 (𝑤)} are given as positive numbers (42)

and initial terms of {𝑃𝜐1,𝑗,𝑛(𝑤)} are defined as

𝑃𝜐1,𝑗,0 (𝑤) = 1𝑍𝜐1,𝑗,0 𝑒−𝜆𝛿(𝑤)𝜌3−𝜐1,𝑗,0 (𝑤) , (43)

where 𝑍𝜐1,𝑗,0 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one. The 1𝑠𝑡 iterations 𝜌𝜐1,𝑗,1(𝑤) and 𝑃𝜐1,𝑗,1(𝑤) are defined
similarly to (34) and (35) and so we need to define 𝑠𝜐1,𝑗,0 andΔ𝜐1,𝑗,0 by using (23) and (24):

𝑠𝜐1,𝑗,0 = 3∑
ℓ ̸=1,𝑗

𝑤1,ℓ,0𝑥𝜐ℓ = 3∑
ℓ ̸=1,𝑗

{ ∑
𝑤∈{−1,0,1}

𝑤𝑃𝜐1,ℓ,0 (𝑤)}𝑥𝜐ℓ
= 3∑
ℓ ̸=1,𝑗

{−𝑃𝜐1,ℓ,0 (−1) + 𝑃𝜐1,ℓ,0 (1)} 𝑥𝜐ℓ
= {{{(−𝑃𝜐1,3,0 (−1) + 𝑃𝜐1,3,0 (1)) 𝑥𝜐3 (𝑗 = 2)(−𝑃𝜐1,2,0 (−1) + 𝑃𝜐1,2,0 (1)) 𝑥𝜐2 (𝑗 = 3)= 𝑒−𝜆𝑍𝜐1,5−𝑗,0 {−𝜌3−𝜐1,5−𝑗,0 (−1) + 𝜌3−𝜐1,5−𝑗,0 (1)} 𝑥𝜐5−𝑗,

(44)

and

Δ𝜐1,𝑗,0 = 3∑
ℓ ̸=1,𝑗

(𝑤1,ℓ,02 − 𝑤1,ℓ,02) (𝑥𝜐ℓ)2
= 3∑
ℓ ̸=1,𝑗

{(∑
𝑤

𝑤2𝑃𝜐1,ℓ,0 (𝑤)) − (∑
𝑤

𝑤𝑃𝜐1,ℓ,0 (𝑤))2}
⋅ (𝑥𝜐ℓ)2= 3∑
ℓ ̸=1,𝑗

{(𝑃𝜐1,ℓ,0 (−1) + 𝑃𝜐1,ℓ,0 (1)) − (−𝑃𝜐1,ℓ,0 (−1) + 𝑃𝜐1,ℓ,0 (1))2}
⋅ (𝑥𝜐ℓ)2= 𝑒−𝜆𝑍𝜐1,5−𝑗,0
⋅ [{𝜌3−𝜐1,5−𝑗,0 (−1) + 𝜌3−𝜐1,5−𝑗,0 (1)} − 𝑒−𝜆𝑍𝜐1,5−𝑗,0 {−𝜌3−𝜐1,5−𝑗,0 (−1) + 𝜌3−𝜐1,5−𝑗,0 (1))}2] (𝑥𝜐5−𝑗)2 .

(45)
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So, the 1𝑠𝑡 iteration is defined as

𝜌𝜐1,𝑗,1 (𝑤) = exp[[−𝛽{𝜙−1 (𝑥𝜐1) − 𝑤𝑥𝜐𝑗 − 𝑠𝜐1,𝑗,0}21 + 2𝛽Δ𝜐1,𝑗,0 ]] ,𝑃𝜐1,𝑗,1 (𝑤) = 1𝑍𝜐1,𝑗,1 𝑒−𝜆𝛿(𝑤)𝜌3−𝜐1,𝑗,1 (𝑤) , (46)

where 𝑍𝜐1,𝑗,1 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one. Similarly the (𝑛 + 1)𝑡ℎ iteration is defined as

𝜌𝜐1,𝑗,𝑛+1 (𝑤) = Φ𝜐1,𝑗,𝑤 (𝜌3−𝜐1,5−𝑗,𝑛 (−1) , 𝜌3−𝜐1,5−𝑗,𝑛 (1))(𝑛 ≥ 0) , (47)

𝑃𝜐1,𝑗,𝑛+1 (𝑤) = 1𝑍𝜐1,𝑗,𝑛+1 𝑒−𝜆𝛿(𝑤)𝜌3−𝜐1,𝑗,𝑛+1 (𝑤) , (48)

for 𝜐 = 1, 2, 𝑗 = 2, 3 and 𝑤 = −1, 0, 1. Here 𝑍𝜐1,𝑗,𝑛+1
is the normalization constant ensuring that the sum of the
probabilities over all model configurations is equal to one and

Φ𝜐1,𝑗,𝑤 (𝜌3−𝜐1,5−𝑗,𝑛 (−1) , 𝜌3−𝜐1,5−𝑗,𝑛 (1))
= exp[[[−𝛽 {𝜙−1 (𝑥𝜐1) − 𝑤𝑥𝜐𝑗 − (𝑒−𝜆/𝑍𝜐1,5−𝑗,𝑛) (−𝜌3−𝜐1,5−𝑗,𝑛 (−1) + 𝜌3−𝜐1,5−𝑗,𝑛 (1)) 𝑥𝜐5−𝑗}21 + 2𝛽 (𝑒−𝜆/𝑍𝜐1,5−𝑗,𝑛) {(𝜌3−𝜐1,5−𝑗,𝑛 (−1) + 𝜌3−𝜐1,5−𝑗,𝑛 (1)) − (𝑒−𝜆/𝑍𝜐1,5−𝑗,𝑛) (−𝜌3−𝜐1,5−𝑗,𝑛 (−1) + 𝜌3−𝜐1,5−𝑗,𝑛 (1))2} (𝑥𝜐5−𝑗)2]]] . (49)

Therefore the desired iterative schemes consist of (42), (43),
(47), (48), and (49) under the assumption (29).

Remark 3. Since 𝑃𝜐1,𝑗,𝑛+1(𝑤1,𝑗) defined in (48) is a PMF due to
(47) and (49), we have

0 < 𝑒−𝜆𝑍𝜐1,5−𝑗,𝑛𝜌3−𝜐1,5−𝑗,𝑛 (−1) < 1,
0 < 𝑒−𝜆𝑍𝜐1,5−𝑗,𝑛𝜌3−𝜐1,5−𝑗,𝑛 (1) < 1, (50)

which gives the positivity of the following term in (49)

𝜌3−𝜐1,5−𝑗,𝑛 (−1) + 𝜌3−𝜐1,5−𝑗,𝑛 (1)− 𝑒−𝜆𝑍𝜐1,5−𝑗,𝑛 (−𝜌3−𝜐1,5−𝑗,𝑛 (−1) + 𝜌3−𝜐1,5−𝑗,𝑛 (1))2 > 0. (51)

So, we obtain a lower bound of 𝜌𝜐1,𝑗,𝑛+1(𝑤)
𝜌𝜐1,𝑗,𝑛+1 (𝑤)≥ exp [−𝛽 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐1)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 2 󵄨󵄨󵄨󵄨󵄨𝑥𝜐5−𝑗󵄨󵄨󵄨󵄨󵄨}2] . (52)

Therefore we obtain an upper bound𝑒−𝜆𝑍𝜐1,𝑗,𝑛 = 𝑒−𝜆𝑒−𝜆𝜌𝜐1,𝑗,𝑛 (−1) + 𝜌𝜐1,𝑗,𝑛 (0) + 𝑒−𝜆𝜌𝜐1,𝑗,𝑛 (1)≤ 𝑒−𝜆𝑈𝜐𝑗,𝛽,𝜆,𝑈𝜐𝑗,𝛽,𝜆= 11 + 2𝑒−𝜆 exp [𝛽 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐1)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 2 󵄨󵄨󵄨󵄨󵄨𝑥𝜐5−𝑗󵄨󵄨󵄨󵄨󵄨}2] ,
(53)

which is used in the proof of Lemma 8.

Remark 4. Note that sequence {𝜌𝜐1,𝑗,𝑛(𝑤)} in the recursive
relation (47) contains no 𝑃𝜐1,𝑗,𝑛(𝑤). Then, in the next subsec-
tion, we present a sufficient condition for the convergence of
sequence {𝜌𝜐1,𝑗,𝑛(𝑤)} without using {𝑃𝜐1,𝑗,𝑛(𝑤)} and, as a result,
the limit of {𝜌𝜐1,𝑗,𝑛(𝑤)} is used to define the message 𝜌𝜐(𝑤1,𝑗 =𝑤).
Remark 5. Similarly, to define messages 𝜌𝜐(𝑤2,𝑗 = 𝑤) (𝜐 =1, 2, 𝑗 = 1, 3, 𝑤 = −1, 0, 1), we use the following sequences:𝜌𝜐2,𝑗,𝑛+1 (𝑤) = Φ𝜐2,𝑗,𝑤 (𝜌3−𝜐2,4−𝑗,𝑛 (−1) , 𝜌3−𝜐2,4−𝑗,𝑛 (1))(𝑛 ≥ 0) , (54)

𝑃𝜐2,𝑗,𝑛+1 (𝑤) = 1𝑍𝜐2,𝑗,𝑛+1 𝑒−𝜆𝛿(𝑤)𝜌3−𝜐2,𝑗,𝑛+1 (𝑤) , (55)

where𝑍𝜐2,𝑗,𝑛+1 is the normalization constant ensuring that the
sumof the probabilities over all model configurations is equal
to one and
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Φ𝜐2,𝑗,𝑤 (𝜌3−𝜐2,4−𝑗,𝑛 (−1) , 𝜌3−𝜐2,4−𝑗,𝑛 (1))
= exp[[[−𝛽 {𝜙−1 (𝑥𝜐2) − 𝑤𝑥𝜐𝑗 − (𝑒−𝜆/𝑍𝜐2,4−𝑗,𝑛) (−𝜌3−𝜐2,4−𝑗,𝑛 (−1) + 𝜌3−𝜐2,4−𝑗,𝑛 (1)) 𝑥𝜐4−𝑗}21 + 2𝛽 (𝑒−𝜆/𝑍𝜐2,4−𝑗,𝑛) {(𝜌3−𝜐2,4−𝑗,𝑛 (−1) + 𝜌3−𝜐2,4−𝑗,𝑛 (1)) − (𝑒−𝜆/𝑍𝜐2,4−𝑗,𝑛) (−𝜌3−𝜐2,4−𝑗,𝑛 (−1) + 𝜌3−𝜐2,4−𝑗,𝑛 (1))2} (𝑥𝜐4−𝑗)2]]] . (56)

3.3. A Sufficient Condition for the Convergence of the Iterative
Schemes. Let

X(𝑛)1 =( 𝑋(𝑛)1,1, 𝑋(𝑛)1,2, 𝑋(𝑛)1,3,𝑋(𝑛)1,4, 𝑋(𝑛)1,5, 𝑋(𝑛)1,6,𝑋(𝑛)1,7, 𝑋(𝑛)1,8, 𝑋(𝑛)1,9,𝑋(𝑛)1,10, 𝑋(𝑛)1,11, 𝑋(𝑛)1,12)

=(𝜌11,2,𝑛 (−1) , 𝜌11,2,𝑛 (0) , 𝜌11,2,𝑛 (1) ,𝜌11,3,𝑛 (−1) , 𝜌11,3,𝑛 (0) , 𝜌11,3,𝑛 (1) ,𝜌21,2,𝑛 (−1) , 𝜌21,2,𝑛 (0) , 𝜌21,2,𝑛 (1) ,𝜌21,3,𝑛 (−1) , 𝜌21,3,𝑛 (0) , 𝜌21,3,𝑛 (1)) ∈ 𝑅12
(57)

and

Φ1 =( Φ1,1, Φ1,2, Φ1,3,Φ1,4, Φ1,5, Φ1,6,Φ1,7, Φ1,8, Φ1,9,Φ1,10, Φ1,11, Φ1,12)
=(Φ11,2,−1, Φ11,2,0, Φ11,2,1,Φ11,3,−1, Φ11,3,0, Φ11,3,1,Φ21,2,−1, Φ21,2,0, Φ21,2,1,Φ21,3,−1, Φ21,3,0, Φ21,3,1),

(58)

where the subscript 1 of X1 and Φ1 represents node 𝑥1. The(𝑛 + 1)𝑡ℎ iteration in (47) is written as

X(𝑛+1)1 = Φ1 (X(𝑛)1 ) . (59)

It follows from (47), (57), and (58) that Φ1,𝜃 (1 ≤ 𝜃 ≤ 12) are
functions of two independent variables: for X ∈ 𝑅12
Φ1 (X)
= (Φ1,1 (𝑋10, 𝑋12) , Φ1,2 (𝑋10, 𝑋12) , Φ1,3 (𝑋10, 𝑋12) ,Φ1,4 (𝑋7, 𝑋9) , Φ1,5 (𝑋7, 𝑋9) , Φ1,6 (𝑋7, 𝑋9) ,Φ1,7 (𝑋4, 𝑋6) , Φ1,8 (𝑋4, 𝑋6) , Φ1,9 (𝑋4, 𝑋6) ,Φ1,10 (𝑋1, 𝑋3) , Φ1,11 (𝑋1, 𝑋3) , Φ1,12 (𝑋1, 𝑋3) ) . (60)

We use Banach fixed-point theorem [21] for the convergence
of the sequence (59) to prove Theorem 9, which is our main
result.
Theorem6. Let𝐷 be a closed subset of𝑅𝑚 for a positive integer𝑚. If a function Ψ : 𝐷 󳨀→ 𝐷 satisfies that for a constant 𝑘 ∈(0, 1) and all x, y in𝐷󵄩󵄩󵄩󵄩Ψ (x) − Ψ (y)󵄩󵄩󵄩󵄩 ≤ 𝑘 󵄩󵄩󵄩󵄩x − y󵄩󵄩󵄩󵄩 , (61)

then there exists a unique fixed point x∗ ∈ 𝐷 such thatΨ(x∗) =
x∗, which is the limit of sequence x(𝑛+1) = Ψ(x(𝑛)) (𝑛 ≥ 0) for
any x(0) ∈ 𝐷.

For the application ofTheorem 6 to the proof of our main
result we need the following lemmas.

Lemma 7. Assume that experimental data 𝑥𝜐1 are contained
in the codomain of 𝜙. Assume that positive constants 𝛽 and𝜆 satisfy inequalities 1 − 2𝛽(𝑒−𝜆𝑈𝜐𝑗,𝛽,𝜆)2(𝑥𝜐𝑗)2 > 0 for 𝜐 =1, 2, 𝑗 = 2, 3 and 𝑈𝜐𝑗,𝛽,𝜆 defined in (53). Then Φ1 defined in
(49) and (57)–(60) becomes a function from domain [0, 1]12 to
codomain [0, 1]12.
Proof. It follows from (49) and (57)–(60) that for (𝜃, 𝑤) =(1, −1), (2, 0), (3, 1)Φ1,𝜃 (X) = Φ11,2,𝑤 (𝑋10, 𝑋12) ,

X = (𝑋1, . . . , 𝑋12) ∈ [0, 1]12 (62)

and

Φ11,2,𝑤 (𝑋10, 𝑋12) = exp[[−𝛽 {𝜙−1 (𝑥11) − 𝑤𝑥12 − (𝑒−𝜆/𝑍11,3,𝑛) (−𝑋10 + 𝑋12) 𝑥13}21 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) ((𝑋10 + 𝑋12) − (𝑒−𝜆/𝑍11,3,𝑛) (−𝑋10 + 𝑋12)2) (𝑥13)2]] . (63)
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We have that for 𝛽 > 0, 𝜆 > 0 and {𝑋10, 𝑋12} ⊂ [0, 1]
1 + 2𝛽 𝑒−𝜆𝑍11,3,𝑛 ((𝑋10 + 𝑋12) − 𝑒−𝜆𝑍11,3,𝑛 (−𝑋10 + 𝑋12)2)⋅ (𝑥13)2 ≥ 1 − 2𝛽 (𝑒−𝜆𝑈13,𝛽,𝜆)2 (𝑥13)2 > 0, (64)

and for 𝛽 > 0
− 𝛽{𝜙−1 (𝑥11) − 𝑤𝑥12 − 𝑒−𝜆𝑍11,3,𝑛 (−𝑋10 + 𝑋12) 𝑥13}2≤ 0, (65)

and so, we obtain

0 < Φ1,𝜃 (X) ≤ 1 (1 ≤ 𝜃 ≤ 3) . (66)

Similarly, under the same condition, we can obtain

0 < Φ1,𝜃 (X) ≤ 1 (4 ≤ 𝜃 ≤ 12) , (67)

which are desired results.

Lemma 8. Assume that experimental data 𝑥𝜐1 are contained
in the codomain of 𝜙. Assume that positive constants 𝛽 and 𝜆
satisfy inequalities 1− 2𝛽(𝑒−𝜆𝑈𝜐𝑗,𝛽,𝜆)2(𝑥𝜐𝑗)2 > 0 for 𝜐 = 1, 2, 𝑗 =2, 3 and𝑈𝜐𝑗,𝛽,𝜆 defined in (53). Then forΦ1 defined in (49) and
(57)–(60) and {X,Y} ⊂ [0, 1]12
󵄩󵄩󵄩󵄩Φ1 (X) −Φ1 (Y)󵄩󵄩󵄩󵄩≤ √6max {𝐶𝜐𝑗,𝛽,𝜆 | 𝜐 = 1, 2, 𝑗 = 2, 3} 𝛽𝑒−𝜆 ‖X − Y‖ , (68)

where𝐶𝜐𝑗,𝛽,𝜆 = [2 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐1)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐5−𝑗󵄨󵄨󵄨󵄨󵄨}⋅ 𝑈𝜐5−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐5−𝑗󵄨󵄨󵄨󵄨󵄨× [1 + 2𝛽𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆 (2 + 𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆) (𝑥𝜐5−𝑗)2]+ {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐1)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐5−𝑗󵄨󵄨󵄨󵄨󵄨}2× 2𝛽𝑈𝜐5−𝑗,𝛽,𝜆 (1 + 2𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆) (𝑥𝜐5−𝑗)2]× {1 − 2𝛽 (𝑒−𝜆𝑈𝜐5−𝑗,𝛽,𝜆)2 (𝑥𝜐5−𝑗)2}−2 .
(69)

Proof. Using (62) and (63), we have that for {X,Y} ⊂ [0, 1]12Φ1,1 (X) − Φ1,1 (Y) = Φ11,2,−1 (𝑋10, 𝑋12)− Φ11,2,−1 (𝑌10, 𝑌12) (70)

= exp [𝑓 (𝑋10, 𝑋12)]− exp [𝑓 (𝑌10, 𝑌12)] , (71)

where {𝑋10, 𝑋12, 𝑌10, 𝑌12} ⊂ [0, 1] and function𝑓 : [0, 1]2 󳨀→[0, 1]2 is defined as follows: for 𝜁, 𝜂 ∈ [0, 1]𝑓 (𝜁, 𝜂) = −𝛽
⋅ {𝜙−1 (𝑥11) − (−1) 𝑥12 − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂) 𝑥13}21 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) ((𝜁 + 𝜂) − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂)2) (𝑥13)2 . (72)

Due to the mean value theorem there exists a constant c in
(0,1) such that

exp [𝑓 (𝑋10, 𝑋12)] − exp [𝑓 (𝑌10, 𝑌12)]= {∇ exp [𝑓 {(1 − 𝑐) (𝑋10, 𝑋12) + 𝑐 (𝑌10, 𝑌12)}]}⋅ (𝑋10 − 𝑌10, 𝑋12 − 𝑌12) . (73)

Note that 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜕𝜁 exp [𝑓 (𝜁, 𝜂)]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜕𝜁𝑓 (𝜁, 𝜂)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (74)

where

𝜕𝜕𝜁𝑓 (𝜁, 𝜂) = −𝛽
[[[[[[[[
2 {𝜙−1 (𝑥11) + 𝑥12 − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂) 𝑥13} (𝑒−𝜆/𝑍11,3,𝑛) 𝑥13× [1 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) ((𝜁 + 𝜂) − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂)2) (𝑥13)2]− {𝜙−1 (𝑥11) + 𝑥12 − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂) 𝑥13}2×2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) (1 − 2 (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂) (−1)) (𝑥13)2

]]]]]]]][1 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) ((𝜁 + 𝜂) − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂)2) (𝑥13)2]2 . (75)
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Using {𝜁, 𝜂} ⊂ [0, 1], we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜕𝜁𝑓 (𝜁, 𝜂)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽
[[[[[[[[
2 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥11)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥12󵄨󵄨󵄨󵄨󵄨 + (𝑒−𝜆/𝑍11,3,𝑛) 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨} (𝑒−𝜆/𝑍11,3,𝑛) 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨× [1 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) (2 + 𝑒−𝜆/𝑍11,3,𝑛) (𝑥13)2]+ {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥11)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥12󵄨󵄨󵄨󵄨󵄨 + (𝑒−𝜆/𝑍11,3,𝑛) 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨}2×2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) (1 + 2 (𝑒−𝜆/𝑍11,3,𝑛)) (𝑥13)2

]]]]]]]][1 + 2𝛽 (𝑒−𝜆/𝑍11,3,𝑛) ((𝜁 + 𝜂) − (𝑒−𝜆/𝑍11,3,𝑛) (−𝜁 + 𝜂)2) (𝑥13)2]2 .
(76)

Using the given condition in this lemma and (53), we have the
positive lower bound

1 + 2𝛽 𝑒−𝜆𝑍11,3,𝑛 ((𝜁 + 𝜂) − 𝑒−𝜆𝑍11,3,𝑛 (−𝜁 + 𝜂)2)(𝑥13)2≥ 1 − 2𝛽 (𝑒−𝜆𝑈13,𝛽,𝜆)2 (𝑥13)2 > 0, (77)

which gives that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜕𝜁𝑓 (𝜁, 𝜂)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝑒−𝜆

⋅
[[[[[[[[
2 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥11)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥12󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈13,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨} 𝑈13,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨× [1 + 2𝛽𝑒−𝜆𝑈13,𝛽,𝜆 (2 + 𝑒−𝜆𝑈13,𝛽,𝜆) (𝑥13)2]+ {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥11)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥12󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈13,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥13󵄨󵄨󵄨󵄨󵄨}2×2𝛽𝑈13,𝛽,𝜆 (1 + 2𝑒−𝜆𝑈13,𝛽,𝜆) (𝑥13)2

]]]]]]]][1 − 2𝛽 (𝑒−𝜆𝑈13,𝛽,𝜆)2 (𝑥13)2]2= 𝛽𝑒−𝜆𝐶12,𝛽,𝜆.
(78)

Similarly,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜕𝜂𝑓 (𝜁, 𝜂)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝑒−𝜆𝐶12,𝛽,𝜆. (79)

Substituting (73), (74), (78), and (79) into (70), we have

󵄨󵄨󵄨󵄨Φ1,1 (X) − Φ1,1 (Y)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨Φ11,2,−1 (X) − Φ11,2,−1 (Y)󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨exp [𝑓 (𝑋10, 𝑋12)] − exp [𝑓 (𝑌10, 𝑌12)]󵄨󵄨󵄨󵄨≤ 𝐶12,𝛽,𝜆𝛽𝑒−𝜆 {󵄨󵄨󵄨󵄨𝑋10 − 𝑌10󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑋12 − 𝑌12󵄨󵄨󵄨󵄨} . (80)

Following the calculations for obtaining (80), we can obtain
that for the 1𝑠𝑡 perturbation󵄨󵄨󵄨󵄨Φ1,𝜃 (X) − Φ1,𝜃 (Y)󵄨󵄨󵄨󵄨≤ 𝐶12,𝛽,𝜆𝛽𝑒−𝜆 {󵄨󵄨󵄨󵄨𝑋10 − 𝑌10󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑋12 − 𝑌12󵄨󵄨󵄨󵄨} (𝜃 = 2, 3) ,󵄨󵄨󵄨󵄨Φ1,𝜃 (X) − Φ1,𝜃 (Y)󵄨󵄨󵄨󵄨≤ 𝐶13,𝛽,𝜆𝛽𝑒−𝜆 {󵄨󵄨󵄨󵄨𝑋7 − 𝑌7󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑋9 − 𝑌9󵄨󵄨󵄨󵄨} (𝜃 = 4, 5, 6) ,

(81)

where 𝐶13,𝛽,𝜆 is defined in Lemma 8.
Similarly we can have that for the 2𝑛𝑑 perturbation󵄨󵄨󵄨󵄨Φ1,𝜃 (X) − Φ1,𝜃 (Y)󵄨󵄨󵄨󵄨≤ 𝐶22,𝛽,𝜆𝛽𝑒−𝜆 {󵄨󵄨󵄨󵄨𝑋4 − 𝑌4󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑋6 − 𝑌6󵄨󵄨󵄨󵄨} (𝜃 = 7, 8, 9) ,󵄨󵄨󵄨󵄨Φ1,𝜃 (X) − Φ1,𝜃 (Y)󵄨󵄨󵄨󵄨≤ 𝐶23,𝛽,𝜆𝛽𝑒−𝜆 {󵄨󵄨󵄨󵄨𝑋1 − 𝑌1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑋3 − 𝑌3󵄨󵄨󵄨󵄨}(𝜃 = 10, 11, 12) ,

(82)

where 𝐶2𝑗,𝛽,𝜆 (𝑗 = 2, 3) are defined in Lemma 8. Therefore, it
follows from (80)–(82) that󵄩󵄩󵄩󵄩Φ1 (X) −Φ1 (Y)󵄩󵄩󵄩󵄩2 = 12∑

𝜃=1

(Φ1,𝜃 (X) − Φ1,𝜃 (Y))2
≤ 6max
𝜐=1,2
𝑗=2,3

(𝐶𝜐𝑗,𝛽,𝜆)2 𝛽2𝑒−2𝜆 ‖X − Y‖2 , (83)

which gives the desired result.

UsingTheorem 6 and Lemmas 7 and 8, we can obtain our
main result.
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Theorem 9. Assume that the experimental data 𝑥𝜐1 (𝜐 = 1, 2)
are contained in the codomain of 𝜙. Suppose that positive
constants 𝛽 and 𝜆 satisfy1 − 2𝛽 (𝑒−𝜆𝑈1𝑗,𝛽,𝜆)2 (𝑥𝜐𝑗)2 > 0 (84)

and √6max {𝐶𝜐𝑗,𝛽,𝜆 | 𝜐 = 1, 2, 𝑗 = 2, 3} 𝛽𝑒−𝜆 < 1, (85)

for 𝜐 = 1, 2, 𝑗 = 2, 3,𝑈𝜐𝑗,𝛽,𝜆 defined in (53) and 𝐶𝜐𝑗,𝛽,𝜆 defined in
Lemma 8. Then sequence X(𝑛+1)1 = Φ1(X(𝑛)1 ) (𝑛 ≥ 0) converges
for any X(0)1 ∈ [0, 1]12.
Proof. Let𝐷 be the closed subset [0, 1]12 of 𝑅12 and𝑘 = √6max {𝐶𝜐𝑗,𝛽,𝜆 | 𝜐 = 1, 2, 𝑗 = 2, 3} 𝛽𝑒−𝜆. (86)

Then Lemmas 7 and 8 give thatΦ1 : 𝐷 󳨀→ 𝐷 and󵄩󵄩󵄩󵄩Φ1 (X) −Φ1 (Y)󵄩󵄩󵄩󵄩 ≤ 𝑘 ‖X − Y‖ . (87)

Therefore we can applyTheorem 6 and so we obtain a unique
fixed point X∗1 ∈ 𝐷 such that Φ1(X∗1 ) = X∗1 , which implies
the convergence of sequence X(𝑛+1)1 = Φ1(X(𝑛)1 ) (𝑛 ≥ 0) for
any X(0)1 ∈ [0, 1]12 with limit X∗1 .

Remark 10. We define

(𝜌1 (𝑤1,2 = −1) , 𝜌1 (𝑤1,2 = 0) , 𝜌1 (𝑤1,2 = 1) ,𝜌1 (𝑤1,3 = −1) , 𝜌1 (𝑤1,3 = 0) , 𝜌1 (𝑤1,3 = 1) ,𝜌2 (𝑤1,2 = −1) , 𝜌2 (𝑤1,2 = 0) , 𝜌2 (𝑤1,2 = 1) ,𝜌2 (𝑤1,3 = −1) , 𝜌2 (𝑤1,3 = 0) , 𝜌2 (𝑤1,3 = 1))
=(𝜌11,2,−1, 𝜌11,2,0, 𝜌11,2,1,𝜌11,3,−1, 𝜌11,3,0, 𝜌11,3,1,𝜌21,2,−1, 𝜌21,2,0, 𝜌21,2,1,𝜌21,3,−1, 𝜌21,3,0, 𝜌21,3,1),

(88)

where the vector in the right side denotes limit X∗1 in
Theorem 9. Since {X(𝑛)1 } in (57)–(59) converges, {𝑃𝜐1,𝑗,𝑛(𝑤)} in
(48) also converges to limit 𝑒−𝜆𝛿(𝑤)𝜌3−𝜐1,𝑗,𝑤. Therefore, 𝜌𝜐(𝑤1,𝑗)
in (88) and 𝑃𝜐(𝑤1,𝑗) = 𝑒−𝜆𝛿(𝑤1,𝑗)𝜌3−𝜐1,𝑗,𝑤1,𝑗 satisfy the system of
equations in (34) and (35), which give approximate marginal
PMFs 𝑃(𝑤1,𝑗) = (1/𝑍1,𝑗)𝑒−𝜆𝛿(𝑤1,𝑗)∏2𝜐=1𝜌𝜐(𝑤1,𝑗) in (14) as
follows:𝑃 (𝑤1,𝑗 = 𝑤) = 1𝑍1,𝑗 𝑒−𝜆𝛿(𝑤1,𝑗=𝑤) 2∏𝜐=1𝜌𝜐1,𝑗,𝑤(𝑗 = 2, 3, 𝑤 = −1, 0, 1) . (89)

Remark 11. When using the sequences in (54)–(56) instead
of the sequences in (47)–(49), we can obtain the limits
of the sequences in (54)–(56) under conditions similar to

those in Theorem 9: assume that experimental data 𝑥𝜐2 (𝜐 =1, 2) are contained in the codomain of 𝜙. Let 𝑈𝜐𝑗,𝛽,𝜆 =(1/(1 + 2𝑒−𝜆)) exp[𝛽{|𝜙−1(𝑥𝜐2)| + |𝑥𝜐𝑗 | + 2|𝑥𝜐4−𝑗|}2] (𝑗 = 1, 3).
Suppose that positive constants 𝛽 and 𝜆 satisfy that 1 −2𝛽(𝑒−𝜆𝑈1𝑗,𝛽,𝜆)2(𝑥𝜐𝑗)2 > 0 and√6max {𝐶𝜐𝑗,𝛽,𝜆 | 𝜐 = 1, 2, 𝑗 = 1, 3} 𝛽𝑒−𝜆 < 1, (90)

where𝐶𝜐𝑗,𝛽,𝜆 = [2 {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐2)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈𝜐4−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐4−𝑗󵄨󵄨󵄨󵄨󵄨}⋅ 𝑈𝜐4−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐4−𝑗󵄨󵄨󵄨󵄨󵄨× [1 + 2𝛽𝑒−𝜆𝑈𝜐4−𝑗,𝛽,𝜆 (2 + 𝑒−𝜆𝑈𝜐4−𝑗,𝛽,𝜆) (𝑥𝜐4−𝑗)2]+ {󵄨󵄨󵄨󵄨󵄨𝜙−1 (𝑥𝜐2)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝜐𝑗 󵄨󵄨󵄨󵄨󵄨 + 𝑒−𝜆𝑈𝜐4−𝑗,𝛽,𝜆 󵄨󵄨󵄨󵄨󵄨𝑥𝜐4−𝑗󵄨󵄨󵄨󵄨󵄨}2× 2𝛽𝑈𝜐4−𝑗,𝛽,𝜆 (1 + 2𝑒−𝜆𝑈𝜐4−𝑗,𝛽,𝜆) (𝑥𝜐4−𝑗)2] × {1− 2𝛽 (𝑒−𝜆𝑈14−𝑗,𝛽,𝜆)2 (𝑥𝜐4−𝑗)2}−2 .
(91)

We can define the messages as in Remark 4

(𝜌1 (𝑤2,1 = −1) , 𝜌1 (𝑤2,1 = 0) , 𝜌1 (𝑤2,1 = 1) ,𝜌1 (𝑤2,3 = −1) , 𝜌1 (𝑤2,3 = 0) , 𝜌1 (𝑤2,3 = 1) ,𝜌2 (𝑤2,1 = −1) , 𝜌2 (𝑤2,1 = 0) , 𝜌2 (𝑤2,1 = 1) ,𝜌2 (𝑤2,3 = −1) , 𝜌2 (𝑤2,3 = 0) , 𝜌2 (𝑤2,3 = 1))
=(𝜌12,1,−1, 𝜌12,1,0, 𝜌12,1,1,𝜌12,3,−1, 𝜌12,3,0, 𝜌12,3,1,𝜌22,1,−1, 𝜌22,1,0, 𝜌22,1,1,𝜌22,3,−1, 𝜌22,3,0, 𝜌22,3,1)

(92)

and then obtain the approximate marginal PMFs

𝑃 (𝑤2,𝑗 = 𝑤) = 1𝑍2,𝑗 𝑒−𝜆𝛿(𝑤2,𝑗=𝑤) 2∏𝜐=1𝜌𝜐2,𝑗,𝑤(𝑗 = 1, 3, 𝑤 = −1, 0, 1) . (93)

4. Numerical Examples

In this section, we verify our main result and show its
application.

Step 1 (generation of artificial experimental data). We ran-
domly generate 100 sets of artificial experimental data, where
each set consists of the six values of 𝑥𝜐𝑗 (𝜐 = 1, 2, 𝑗 = 1, 2, 3)
as in Figure 3(a). Every randomly generated experimental
data has a value contained in the open interval (−1, 1), the
codomain of 𝜙(𝑥) = tanh(𝑥), and so the condition on the
experimental data inTheorem 9 is satisfied.
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(a) 100 sets of 6 experimental data (x𝜐𝑖, 𝜐 = 1, 2, 𝑖 = 1, 2, 3)
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Data set
(b) Cost parameters (𝛽, 𝜆)

Figure 3: Experimental data and cost parameters. (a) Each of 100 color matrices denotes the values of 6 artificial experimental data 𝑥𝜐𝑖 (𝜐 =1, 2, 𝑖 = 1, 2, 3). Values of the 𝑥- and 𝑦-axis in each color matrix denote the values of 𝑖 and 𝜐, respectively, where the color in the entry (𝑖, 𝜐)
denotes the value of 𝑥𝜐𝑖 . (b) A value on the 𝑥-axis denotes an experimental data set in Figure 3(a). The data set at entry (𝑖, 𝑗) in Figure 3(a) is
represented as the 10(𝑖 − 1) + 𝑗𝑡ℎ data set in Figure 3(b). There are few values of 𝛽 and 𝜆 greater than 0.1 and we do not show them here.

Step 2 (determination of cost parameters). We find a pair
of positive cost parameters (𝛽, 𝜆) as in Figure 3(b) for each
experimental data set, which satisfy the condition on (𝛽, 𝜆)
in Theorem 9.

Step 3 (generation of values of initial terms in sequences). We
randomly generate initial values of 24 terms 𝜌𝜐𝑖,𝑗,0(𝑤) (𝜐 =1, 2, 𝑖 = 1, 2, 𝑗 ̸= 𝑖, 1 ≤ 𝑗 ≤ 3, 𝑤 = −1, 0, 1) for each
experimental data set, which satisfy the condition on initial
values in Theorem 9 (see Figure 4).

Step 4 (convergence of the sequences). We obtain the con-
vergence of all sequences 𝜌𝜐𝑖,𝑗,𝑛(𝑤) (𝜐 = 1, 2, 𝑖 = 1, 2, 𝑗 ̸=𝑖, 1 ≤ 𝑗 ≤ 3, 𝑤 = −1, 0, 1) for each experimental data
set in Figure 3(a), (𝛽, 𝜆) in Figure 3(b), and initial values in
Figure 4, where every sequence converges within 14 iterations
(see Figure 5). Due to the recursive relations in (47), (48),
(49), (53), (54), (55), and (56), we can divide all sequences
into four groups ({𝜌11,2,𝑛(𝑤), 𝜌21,3,𝑛(𝑤)}, {𝜌11,3,𝑛(𝑤), 𝜌21,2,𝑛(𝑤)},{𝜌12,1,𝑛(𝑤), 𝜌22,3,𝑛(𝑤)}, and {𝜌12,3,𝑛(𝑤), 𝜌22,1,𝑛(𝑤)}) and show their
convergences as in Figure 5.

Step 5 (approximation of marginal PMFs). Substituting the
limits (Figure 6(c)) of the sequences for the 1𝑠𝑡 experimental
data set (Figure 6(a)) and its corresponding cost parameters(𝛽, 𝜆) (Figure 6(a)) into (89) and (93), we obtain the approxi-
mate marginal PMFs 𝑃(𝑤1,2 = 𝑤), 𝑃(𝑤1,3 = 𝑤), 𝑃(𝑤2,1 = 𝑤),

and 𝑃(𝑤2,3 = 𝑤) as in Figure 6(d), where the maximum value
of each PMF is marked as red.

Step 6 (construction of multiple networks and their mathe-
matical formulas from the approximate marginal PMFs). We
can use the maximum values of four link weights to make
a network and its corresponding mathematical formulas
(Figure 6(d), first grey box), which could be considered as
the most possible network model of the artificial biological
system. In addition, since value 𝑃(𝑤2,1 = 0) is almost equal
to value 𝑃(𝑤2,1 = 1), we can also consider the network
with 𝑤2,1 = 0 and its mathematical formula as in the
second grey box in Figure 6(d). We present two networks
and their mathematical formulas in the two grey boxes to
show that there could be multiple networks for explaining
the artificial biological system by using the approach in [5].
Similarly, in cases where a given PKN has more nodes and
discrete values of link weights, we could obtain multiple
networks and their corresponding mathematical formulas,
where probability 𝑃(𝑤𝑖,𝑗 = 𝑤) is high.
5. Conclusions and Future Work

In this paper, using a simple network with artificial experi-
mental data, we have presented a detailed explanation of the
whole process for determining approximate marginal PMFs
of link weights in a prior knowledge network based on BP
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(a) 100 sets of 12 initial values (𝜌𝜐1,𝑗,0(w), 𝜐 = 1, 2, 𝑗 =
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Figure 4: Initial values for the sequences. Due to the recursive relations in (47), (48), (54), and (55), it is enough to independently consider
the convergences of the two types of the sequences 𝜌𝜐1,𝑗,𝑛(𝑤) (𝜐 = 1, 2, 𝑗 = 2, 3, 𝑤 = −1, 0, 1) and 𝜌𝜐2,𝑗,𝑛(𝑤) (𝜐 = 1, 2, 𝑗 = 1, 3, 𝑤 = −1, 0, 1).
(a) Each set contains values of 12 initial terms 𝜌𝜐1,𝑗,0(𝑤) (𝜐 = 1, 2, 𝑗 = 2, 3, 𝑤 = −1, 0, 1) for each experimental data set. (b) Each set contains
values of 12 initial terms 𝜌𝜐2,𝑗,0(𝑤) (𝜐 = 1, 2, 𝑗 = 1, 3, 𝑤 = −1, 0, 1) for each experimental data set.

15

10

5

1ＮＢ 50ＮＢ 100ＮＢ

Ite
ra

tio
n 

nu
m

be
r

fo
r t

he
 co

nv
er

ge
nc

e

Data set

{1
1,2,Ｈ(Ｑ)}, {2

1,3,Ｈ(Ｑ)}

(a)

15

10

5

1ＮＢ 50ＮＢ 100ＮＢ

Ite
ra

tio
n 

nu
m

be
r

fo
r t

he
 co

nv
er

ge
nc

e

Data set

{1
1,3,Ｈ(Ｑ)}, {2

1,2,Ｈ(Ｑ)}

(b)

15

10

5

1ＮＢ 50ＮＢ 100ＮＢ

Ite
ra

tio
n 

nu
m

be
r

fo
r t

he
 co

nv
er

ge
nc

e

Data set

{1
2,1,Ｈ(Ｑ)}, {2

2,3,Ｈ(Ｑ)}

(c)

15

10

5

1ＮＢ 50ＮＢ 100ＮＢ

Ite
ra

tio
n 

nu
m

be
r

fo
r t

he
 co

nv
er

ge
nc

e

Data set

{1
2,3,Ｈ(Ｑ)}, {2

2,1,Ｈ(Ｑ)}

(d)

Figure 5: Iteration number for the convergence. (a) The system of recursive relations for 𝜌𝜐1,2,𝑛(𝑤) and 𝜌𝜐1,3,𝑛(𝑤) (𝜐 = 1, 2, 𝑤 = −1, 0, 1)
converges within 10 iterations for tolerance 10−10. Symbols and data in Figures 5(b), 5(c), and 5(d) have similar meanings as in Figure 5(a).

on the factor graph. For the factorization of the joint PMF of
link weights, the Boltzmann/Gibbs form has been used. And
we have shown a sufficient condition for the convergence of
beliefs, which leads to determining the approximatemarginal
PMFs. Since our simple PKN and experimental data have
key components necessary for the application of BP in
determining approximate marginal PMFs, our results can be
extended to any PKN with perturbation data, including the
PKN in [5], which is our future study.
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=

12 limits of the sequences {1,Ｄ,Ｈ(Ｑ)} (=1,2, j=2,3,w=-1,0,1) 12 limits of the sequences{2,Ｄ,Ｈ(Ｑ)} (=1,2, j=2,3,w=-1,0,1)
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Figure 6: Approximate marginal PMFs. (a) The experimental data and cost parameters (𝛽, 𝜆) are the 61𝑡ℎ data set and its corresponding
values of (𝛽, 𝜆) in Figures 3(a) and 3(b), respectively. (b) 12 initial values in the left and right denote the values in the 61𝑡ℎ initial data set
in Figures 4(a) and 4(b), respectively. (c) 12 limit values in the top and bottom are obtained for Figures 6(a) and 6(b). (d) The approximate
marginal PMFs are obtained from (89) and (93). The red numbers denote the maximum values of the marginal PMFs.The first network and
its mathematical model in the right denote those in Figures 1(a) and 1(c) with link weights of maximum values. Replacing𝑤12 = 1 in the first
network with 𝑤12 = 0 gives the second network and its mathematical model.
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