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In this paper, we investigate the existence of solutions for a class of fractional boundary value problems with anti-periodic boundary 
value conditions with �-Caupto fractional derivative. By means of some standard �xed point theorems, su�cient conditions for 
the existence of solutions for the fractional di�erential inclusions with �-Caputo derivatives are presented. Our result generalizes 
the known special case if �(�) = � and single known results to the multi-valued ones.

1. Introduction

Fractional calculus is a generalization of the ordinary di�eren-
tiation and integration to arbitrary noninteger order [1, 2], 
which is a wonderful technique to understand of memory and 
hereditary properties of materials and processes. Some recent 
contributions to fractional di�erential equations have been 
carried out, see the monographs [3–6], and the references cited 
therein. Much attention has been focused on the study of 
anti-periodic boundary conditions, which are applied in di�er-
ent �elds, such as blood �ow problems, chemical engineering, 
underground water �ow, populations dynamics, and so on, see 
the references ([7–9]) and paper cited therein. In 2009, Ahamad 
and Otero-Espinar [7] investigated the following fractional 
inclusions with anti-periodic boundary conditions

where ����(�) is the standard Caputo derivative of order 
�, � : [0, �] × �→ �(�) is a multivalued map, P(�) is the 
family of all subsets of �. Some su�cient conditions for the 
existence of solutions are given by means of Bohnenblust-
Karlin �xed point theorem.

�ere are several de�nitions of fractional di�erential 
derivatives and integrals, such like Caputo type, Rimann–
Liuville type, Hadamard type, and Erdelyi-Kober type and so 
on. In order to develop the fractional calculus, special kernels 

and some form of di�erential operator are chosen, see [10–16]. 
�e �-Caputo fractional derivative of order �, was �rst intro-
duced by Almeida in [4]. Some properties, like semigroup law, 
Taylor’s �eorem, Fermat’s �orem, etc., were presented. �is 
new de�ned fractional derivative could model more accurately 
the process using di�erential kernels for the fractional 
operator.

In 2018, Samet and Aydi in [17] considered the following 
fractional di�erential boundary value problem with anti-pe-
riodic boundary conditions:

where (�, �) ∈ �2, � < �, 1 < � < 2, � ∈ �2([�, �]),
��(�) > 0, � ∈ [�, �]���,� is the �-Caputo fractional derivative 
of order �, and � : [�, �] × �→ � is a given function. A 
Lyapunov-type inequality is established. �e authors also give 
some examples to illustrate the applications of their main 
results.

Inspired by the above works, we investigate the following 
anti-periodic fractional inclusions with �-Caputo 
derivatives:

where (�, �) ∈ �2, � < �, 1 < � < 2, � ∈ �2([�, �]),
��(�) > 0, � ∈ [�, �]. ���,� is the �-Caputo fractional 

(1){
����(�) ∈ �(�, �(�)), � ∈ [0, �], 1 < � ≤ 2,
�(0) = −�(�), ��(0) = −��(�).

(2){
���,��(�) + �(�, �(�)) = 0, � < � < �,
�(�) + �(�) = 0, ��(�) + ��(�) = 0.

(3){ ��
�,��(�) ∈ �(�, �(�)), � < � < �,
�(�) + �(�) = 0, ��(�) + ��(�) = 0.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2019, Article ID 9824623, 8 pages
https://doi.org/10.1155/2019/9824623

https://orcid.org/0000-0002-8056-6973
mailto:
https://orcid.org/0000-0002-4831-3511
mailto:
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9824623


Discrete Dynamics in Nature and Society2

derivative of order �, and � : [�, �] × �→P(�) is a multival-
ued map, P(�) is the family of all subsets of �. Su�cient 
conditions for the existence of solutions are given in view of 
the �xed point theorems for multi-valued mapping. �e expo-
sition in the framework of problem is new. If taking � = 0,
� = �,�(�) = �, the fractional di�erential inclusions (3) 
reduces to the fractional di�erential inclusions (1). If we take 
�(�, �) = {�(�, �)}, where � : [�, �] × �→ � is a given con-
tinuous function, then the problem (3) corresponds to the 
single-valued problem (2). �e rest of this paper is organized 
as follows. We �rst present some basic de�nitions of fractional 
calculus, �-Caputo derivative and multi-valued maps. In 
Section 3, the main results on the existence of solutions for 
integral boundary value problem (3) are presented. An exam-
ple is given to illustrate our main result in the last section.

2. Preliminaries

In this section, we recall some notations, de�nitions and pre-
liminaries about fractional calculus [18–20], and �-Caputo 
fractional calculus [4, 17, 21–23].

De�nition 1 [9]. �e Caputo fractional integral order � of a 
function � ∈ �2([0, �]) is given by

that is,

Let � ∈ �2([0, �]) be a given function such that

De�nition 2 [18]. �e factional integral of order � > 0 of a 
function � ∈ �([0, �]) with respect to � is de�ned by

De�nition 3 [4]. �e �-Caputo fractional derivative of order 
� of a function � ∈ �2([0, �]) is de�ned as

Remark 1. Similarly, for � ∈ �2([�, �]) and ��(�) > 0,
� ≤ � ≤ �, the de�nition of �-Caputo fractional derivative of 
order � of a function � ∈ �2([�, �]) could be given as follows:

(4)��0+�(�) = (�2−�0+ ���)(�), 0 < � < �,

(5)

��0+�(�) =
1
Γ(2 − �)∫

�

0
(� − �)(1−�)���(�)��, 0 < � < �,

(6)��(�) > 0, 0 ≤ � ≤ �.

(7)
(��,�0+ )�(�) =

1
Γ(�)∫

�

0
��(�)(�(�) − �(�))�−1�(�)��, 0 ≤ � ≤ 
.

(8)

���,�0+ �(�) =
1
Γ(2 − �)∫

�

0
��(�)(�(�) − �(�))1−�

⋅ ( 1
��(�)

�)
2

�(�)�, 0 < � < �.

(9)

���,��+ �(�) =
1
Γ(2 − �)∫

�

�
��(�)(�(�) − �(�))1−�

⋅ ( 1
��(�)

�)
2

�(�)�, 
 < � < �.

�e following are de�nitions and properties concerning 
multi-valued maps [9, 24, 25] which will be used in the 
remainder. A multivalued map � : �→P(�):

(i)   Is called upper semicontinuous(u.s.c.) on �, if for 
each �0 ∈ �, the set �(�0) is a nonempty closed sub-
set of �, and for each open set � of � containing 
�(�0), there exists an open neighborhood �0 of �0
such that �(�0) ⊂ �.

(ii)   �e graph of � is de�ned by the set 
��(�) = {(�, �) ∈ � × �, � ∈ �(�)}.

(iii)  � is said to be measurable if for every � ∈ �, the 
function

is measurable.

(iv)   If � : �→P��(�) is called �-Lipschitz if and only 
if there exists � > 0 such that

(v)  If � : �→P��(�) is called contraction if and only 
if it is �-Lipschitz with � < 1.

Let � be a separable metric space and let � : �→P(�1(�, �))
be a multivalued operator. We call � has a property (BC) if �
is lower semi-continuous (l.s.c.) and has nonempty closed and 
decomposable values. Let � : � × �→P(�) be a multivalued 
map with nonempty compact values. De�ne a multivalued 
operator F : �(� × �)→P(�1(�, �)) associated with � as

for a.e. � ∈ �, which is called the Nemyskii operator associated 
with �. Let � : � × �→P(�) be a multivalued function with 
nonempty compact values. We say � is of lower semi-contin-
uous type (l.s.c. type) if its associated Nemytskii operator F  
is lower semi-continuous and has nonempty closed and 
decomposable values. Let � be a subset of � × �. A is L ×B
measurable if � belongs to the �-algebra generated by all sets 
of the form J ⊗D , where J  is the Lebesgue measurable in 
� and D  is Borel measurable in �. A subset A  of �1(�, �) is 
decomposable if for all �, v ∈ A  and measurable 
J ⊂ � = [�, �], the function �XJ + vX�−J ∈ A , where XJ

stands for the characteristic function of J . If the multi-valued 
map � is completely continuous with nonempty compact val-
ues , then T is U.s.c. if and only if � has a closed graph. For 
each � ∈ �(�, �),� := [�, �] is a closed interval from � to �,
denote the selection set of � as

Let �, � ∈P��(�.) �e Pompeiu-Hausdor� distance of �, �
is de�ned by

where �(�, �) = inf�∈��(�, �), �(�, �) = inf�∈��(�, �).

(10)� �→ �(�, �(�)) = inf{����� − ����� : � ∈ �(�)},

(11)��(�(�),�(�)) ≤ ��(�, �), for each �, � ∈ �.

(12)F (�) = {w ∈ �1(�, �) : w(�) ∈ �(�, �(�))},

(13)��,� := {� ∈ �1(�, �) : �(�) ∈ �(�, �(�)) �.�.� ∈ �}.

(14)��(�, �) = max{sup�∈��(�, �), sup�∈��(�, �)},



3Discrete Dynamics in Nature and Society

For convenience, we present the following notations.

To set the frame for our main results, we introduce the follow-
ing lemmas.

Lemma 1 [26]. Let (�, �) be a complete metric space. If 
� : �→P��(�) is a contraction, then ���� ̸= Ø.

Lemma 2 [27]. (Nonlinear alternative for Kakutani maps). 
Let � be a Banach space, � a closed convex subset of �, � an 
open subset of � and 0 ∈ �. Suppose that � : �→P�,�v(�) is 
a upper semicontinuous compact map; here P�,�v(�) denotes 
the family of nonempty, compact convex subsets of �. �en 
either

(i)   � has a �xed point in �, or
(ii)   there is a � ∈ �� and � ∈ (0, 1) such that � ∈ ��(�).

Lemma 3 [28]. Let � be a Banach space, and 
� : � ×�→ (�)(�) be a �1-Carathédory set-valued 

(15)���(�) = {Y ∈P(�) : � is closed}, ��(�)
= {� ∈P(�) : � is bounded}.

(16)
���(�) = {� ∈P(�) : � is compact}, ���,�(�)
= {� ∈P(�) : � is convex and compact}.

map with �� ̸= Ø and let Θ : �1(�, �)→ �(�,�) be a 
linear continuous mapping. �en the set-valued map 
Γ ∘ �� : �(�, �)→P(�(�, �)) de�ned by

is a closed graph operator in �(�,�) × �(�,�).
Lemma 4 [24]. Let � be a separable metric space and 
� : �→P(�1(�, �)) be a multivalued operator satisfying the 
property (BC). �en � has a continuous selection, that is, there 
exists a continuous function (single-valued)g : �→ �1(�, �)
such that g(�) ∈ �(�) for every � ∈ �.

Lemma 5 [29]. Let ℎ ∈ �([�, �]), (�, �) ∈ �2,� < �. �en 
� ∈ �2([�, �]) is a solution to

if and only if

where

(17)
(Θ ∘ ��)(�) : �(� × �) →P��,�(�(�, �)),
� �→ (Θ ∘ ��)(�) = Θ(��,�),

(18){(
�����)(�) = ℎ(�), � ∈ (�, �),
�(�) + �(�) = 0, ��(�) + ��(�) = 0.

(19)�(�) = ∫
�

�
(� − �)�−2�(�, �)ℎ(�)��, � ≤ � ≤ �,

(20)�(�, �) =
{{{{{{{

1
Γ(�)[(
� − 
4 −
� − 
2 )(� − 1) −

� − �
2 +
(� − �)�−1
(� − �)�−2],  ≤ � ≤ � < �,1

Γ(�)[(
� − 
4 −
� − 
2 )(� − 1) −

� − �
2 ],  ≤ � ≤ � < �.

�at is,

Lemma 6 [17]. If � : [�, �] × �→ �, the problems

could be transformed into the following problems

where v ∈ �2[�, �], (�, �) = (�(�), �(�)). A nontrivial solu-
tion to (22) is given by

(21)
�(�) = 1Γ(�)∫

�

�
[(� − �4 −

� − �
2 )(� − 1)(� − �)�−2

− (� − �)�−22 ]ℎ(�)�� +
1
Γ(�)∫

�

�
(� − �)�−1ℎ(�)��.

(22){
���,��(�) = �(�, �(�)), � < � < �,
�(�) + �(�) = 0, ��(�) + �(�) = 0.

(23)

{(
����(�)v)(�) = �(�−1(�), v(�)), (�) < � < �(�),
v(�(�)) + v(�(�)) = 0, v

�(�(�)) + v�(�(�)) = 0,

(24)
v(�) = ∫

�

�
(� − �)�−2�(�, �)�(�−1(�), v(�))��, � ≤ � ≤ �.

i.e.,

From Lemma 6, we can easily know that

3. Main Results

Now we are in the position to state our main results.

(25)

v(�) = 1Γ(�)∫
�

�
[(� − �4 −

� − �
2 )(� − 1)(� − )�−2

− (� − )�−12 ]�(	−1(), v())�
+ 1Γ(�)∫

�

�
(� − )�−1�(	−1(), v())�.

(26)

�(�) = 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]
⋅ ��(�)�(�, �(�))�� + 1Γ(�)∫

�

�
(�(�) − �(�))�−1

⋅ ��(�)�(�, �(�))��.
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�us, ℎ ∈ �(�).
Next, we will show there exists � < 1 such that

In fact, let �, � ∈ �([�, �], �) and ℎ1 ∈ �(�). �ere exists 
v1(�) ∈ �(�, �(�)) such that for each � ∈ [�, �],

From (�2), we obtain

�us, there exists w ∈ �(�, �(�)) such that

De�ne � : [�, �]→P(�) by

Since the multivalued operator �(�) ∩ �(�, �(�)) is measurable, 
there exists a function v2(�), which is a measurable selection 
for �. So v2(�) ∈ �(�, �(�)) and for each � ∈ [�, �], we have

For each � ∈ [�, �], de�ne

and one has

(31)

ℎ�(�) → ℎ(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(
))�−2 − (�(�) − �(
))
�−1

2 ]

⋅ ��(
)v(
)�
 + 1Γ(�)∫
�

�
(�(�) − �(
))�−1

⋅ ��(
)v(
)�
.

(32)��(�(�, �), �(�, �)) ≤ �‖� − �‖.

(33)

ℎ1(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)v1(�)�� +
1
Γ(�)∫

�

�
(�(�) − �(�))�−1

⋅ ��(�)v1(�)��.

(34)��(�(�, �), �(�, �)) ≤ �(�)|� − �|,∀�, � ∈ �.

(35)����v1(�) − w(�)���� ≤ �(�)|�(�) − �(�)|, � ∈ [�, �].

(36)�(�) := {w ∈ � : ����v1(�) − w(�)|≤ �(�)|�(�) − �(�)
����}.

(37)����v1(�) − v2(�)|≤ �(�)|�(�) − �(�)
����.

(38)

ℎ2(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)v2(�)�� +
1
Γ(�)∫

�

�
(�(�) − �(�))�−1

⋅ ��(�)v2(�)��,

3.1. �e Lipschitz Case. (�1)� : [�, �] × �→P��(�) is such 
that, for every � ∈ �,�(⋅, �) is measurable.
(�2) �ere exists � ∈ �1([�, �], �+) for almost all � ∈ [�, �],

such that

with �(0, �(�, 0)) ≤ �(�) for almost all � ∈ [�, �].
(�3)1 < � < 2,� ∈ �2([�, �]),��(�) > 0,� ∈ [�, �].
(�4)��(�) = ��(�).

Theorem 1. Suppose that (�1) − (�4). If

then problem (3) has at least a solution in [�, �].
Proof. By Lemma 6, we de�ne the operator 
� : �([�, �], �)→P(�[�, �], �) as follows:

We shall prove that the operator � satis�es all the conditions 
in Lemma 1, thus � has a �xed point that is a solution to the 
antiperiodic problem (3). First of all, for each ℎ ∈ �([�, �], �)
the operator � is closed. Let {ℎ�}�≥0 ∈ �(�) be such that 
ℎ� → (�→∞) in �([�, �], �). �en ℎ ∈ �([�, �], �), and there 
exists v� ∈ ��,� such that for each � ∈ [�, �],

As � has compact values, we pass onto a subsequence to get 
that v� converges to v ∈ �1([�, �], , �). �us, v ∈ ��,�, and for 
each � ∈ [�, �], we have

(27)��(�(�, �), �(�, �)) ≤ �(�)|� − �|,∀�, � ∈ �,

(28)

[(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �(�))�−2��(�)�(�)��

+ 32Γ(�)∫
�

�
(�(�) − �(�))�−1��(�)�(�)��] < 1,

(29)

�(�) = {ℎ ∈ C([�, �], �) : ℎ(�)
= 1Γ()∫

�

�
[(	(�) − 	(�)4 − 	(�) − 	(�)2 )

⋅ ( − 1)(	(�) − 	(�))�−2 − (	(�) − 	(�))
�−1

2 ]	�(�)�(�)��
+ 1Γ()∫

�

�
(	(�) − 	(�))�−1	�(�)�(�)��, � ∈ ��,�}.

(30)

ℎ�(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)v�(�)�� +
1
Γ(�)∫

�

�
(�(�)) − (�(�))�−1

⋅ ��(�)v�(�)��.
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Hence, we have

�e same arguments discussed as (40), interchanging � and �
yields

By (28), � is a contraction. �us, by Lemma 1, we conclude 
that � admits a �xed point which is a solution to problem (3). 
It completes the proof. ☐

3.2. �e Carathéodory Case. (�5)� : [�, �] × �→P(�) is 
Carathéodory and has nonempty compact and convex values;
(�6) there exist a continuous nondecreasing function 
� : [0,∞)→ [0,∞) and a function � ∈ �([�, �], �+) such that

Theorem 2. Assume that (�3) − (�6) hold. Moreover, if 
there exists a constant � > 0, such that

(40)

����ℎ1 − ℎ2���� ≤ [(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �(�))�−2��(�)�(�)��

+ 32Γ(�)∫
�

�
(�(�) − �(�))�−1��(�)�(�)��]‖	 − 	‖.

(41)

���(�, �), �(�, �) ≤ [(�(�) − �(�))(� − 1)4Γ(�)
⋅ ∫�
�
(�(�) − �(
))�−2��(
)	(
)�
 + 32Γ(�)

⋅ ∫�
�
(�(�) − �(
))�−1��(
)	(
)�
]‖� − �‖,

≤ ‖� − �‖.

(42)
‖�(�, �)‖ := sup{��������� : � ∈ �(�, �)} ≤ �(�)�(‖�‖),
for each (�, �) ∈ [�, �] × 	.

(43)
�

�(�)[(�(�) − �(�))(� − 1)/(4Γ(�))∫��(�(�) − �(�))
�−2��(�)(�)�� + 3/(2Γ(�))∫��(�(�) − �(�))

�−2��(�)(�)��]
< 1.

(39)

����ℎ1(�) − ℎ2(�)
���� ≤
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(
))�−2 − (�(�) − �(
))
�−1

2 ]

⋅ ��(
)����v1(
) − v2(
)
�����
 +
1
Γ(�)∫

�

�
(�(�) − �(
))�−1

⋅ ��(
)����v1(
) − v2(
)
�����


≤ (�(�) − �(�))(� − 1)4Γ(�) ∫
�

�
(�(�) − �(
))�−2

⋅ ��(
)����v1(
) − v2(
)
�����


+ 12Γ(�)∫
�

�
(�(�) − �(
))�−1��(
)����v1(
) − v2(
)

�����


+ 1Γ(�)∫
�

�
(�(�) − �(
))�−1��(
)����v1(
) − v2(
)

�����


≤ (�(�) − �(�))(� − 1)‖� − �‖4Γ(�)

⋅ ∫
�

�
(�(�) − �(
))�−2��(
)�(
)�


+ ‖� − �‖2Γ(�) ∫
�

�
(�(�) − �(
))�−1��(
)�(
)�


+ ‖� − �‖Γ(�) ∫
�

�
(�(�) − �(
))�−1��(
)�(
)�


≤ (�(�) − �(�))(� − 1)‖� − �‖4Γ(�)

⋅ ∫
�

�
(�(�) − �(
))�−2��(
)�(
)�


+ 3‖� − �‖2Γ(�) ∫
�

�
(�(�) − �(
))�−1��(
)�(
)�
.

�en the problem (3) has at least one solution on [�, �].
Proof. De�ne the operator � : �([�, �], �) →P(�[�, �], �)
as follows:

We shall show that � satis�es all the assumptions of Lemma 2. 
�e proof is divided into 5 steps.

(44)

�(�) = {ℎ ∈ C([�, �], �) : ℎ(�)
= 1Γ()∫

�

�
[(	(�) − 	(�)4 − 	(�) − 	(�)2 )

⋅ ( − 1)(	(�) − 	(�))�−2 − (	(�) − 	(�))
�−1

2 ]	�(�)�(�)��
+ 1Γ()∫

�

�
(	(�) − 	(�))�−1	�(�)�(�)��, � ∈ ��,�}.

Step 1. � is convex for each � ∈ �([�, �], �). Since ��,� is 
convex, so it is obvious that this step is true.

Step 2. � maps the bounded sets into bounded sets of 
�([�, �], �). For a positive � > 0, let 
�� = {v ∈ �([�, �], �) : ‖v‖ ≤ �} be a bounded ball in 
�([�, �], �), then for ℎ ∈ �(�),� ∈ ��, there exists � ∈ ��,� such 
that

It follows that
(45)

ℎ(�) = 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)�(�)�� + 1Γ(�)∫
�

�
(�(�) − �(�))�−1

⋅ ��(�)�(�)��.
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�us, it su�ces to show that there exists �∗ ∈ ��,�∗ , such that 
for each � ∈ [�, �],

Consider the continuous linear the operator 
Φ : �1([�, �], �)→ �([�, �], �) as follows:

Notice that ����ℎ� − ℎ����→ 0, as �→∞. �us, by Lemma 2, Φ ∘ ��
is a closed graph operator. Moreover, we have ℎ�(�) ∈ Φ(��,��).  
By �� → �∗, we get

for some �∗ ∈ ��,�∗ .
Step 5. We show that there exists a open set � ⊂ �([�, �], �), 

with � ∉ �(�) for any � ∈ (0, 1) and all � ∈ ��. Let � ∈ (0, 1),
� ∈ ��(�). �en for � ∈ [�, �], there exists � ∈ ��,� such that

Similar to the discussion of Step 2, we have

which leads to

(50)

ℎ∗(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)�∗(�)�� +
1
Γ(�)∫

�

�
(�(�) − �(�))�−1��(�)�∗(�)��.

(51)

� �→ Φ(�)(�) = 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)�(�)�� + 1Γ(�)∫
�

�
(�(�) − �(�))�−1

⋅ ��(�)�(�)��.

(52)

ℎ∗(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)�∗(�)�� +
1
Γ(�)∫

�

�
(�(�) − �(�))�−1��(�)�∗(�)��.

(53)

ℎ(�) = 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)�(�)�� + 1Γ(�)∫
�

�
(�(�) − �(�))�−1��(�)�(�)��.

(54)

‖ℎ‖ ≤ �(‖�‖)[(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �(�))�−2��(�)�(�)
�

+ 32Γ(�)∫
�

�
(�(�) − �(�))�−1��(�)�(�)
�]

≤ �(�)[(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �(�))�−2��(�)�(�)
�

+ 32Γ(�)∫
�

�
(�(�) − �(�))�−1��(�)�(�)
�],

By (�6), we obtain

Step 3. � maps bounded set into equicontinuous sets. Let 
�1, �2 ∈ [�, �], and �1 < �2,� ∈ ��, where �� is a bounded set in 
�([�, �], �), for � ∈ �(�), we have

the right side hand of above inequality tends to 0 independent 
of v ∈ �� as �1 → �2. By means of Ascoli-Arzelá �eorem, � is 
completely continuous.

Step 4. � has a closed graph. Set �� → �∗,ℎ� ∈ �(��) and 
ℎ� → ℎ∗. �en, we shall show that ℎ∗ ∈ �(�∗). For ℎ� ∈ �(��), 
there exist �� ∈ ��,�� such that

(46)

|ℎ(�)| ≤ 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(
))�−2 + (�(�) − �(
))
�−1

2 ]

⋅ ��(
)�����(
)
�����
 +
1
Γ(�)∫

�

�
(�(�) − �(
))�−1��(
)�����(
)

�����
.

(47)

‖ℎ‖ ≤ (�(�) − �(�))(� − 1)�(‖�‖)4Γ(�) ∫�
�
(�(�) − �())�−2��()�()�

+ �(‖�‖)2Γ(�) ∫
�

�
(�(�) − �())�−1��()�()�

+ �(‖�‖)Γ(�) ∫
�

�
(�(�) − �())�−1��()�()�

≤ �(‖�‖)[(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �())�−2��()�()�

⋅ + 32Γ(�)∫
�

�
(�(�) − �())�−1��()�()�],

≤ �(�)[(�(�) − �(�))(� − 1)4Γ(�) ∫�
�
(�(�) − �())�−2��()�()�

⋅ + 32Γ(�)∫
�

�
(�(�) − �())�−1��()�()�].

(48)

����ℎ(�2) − ℎ(�1)
���� ≤
�(�)
Γ(�)∫

�

�

�(�2) − �(�1)
2

⋅ (� − 1)(�() − �(�))�−2��(�)�(�)
�

+ �(�)Γ(�)∫
�1

�
[(�(�2) − �(�))

�−1 − (�(�1) − �(�))
�−1]

⋅ ��(�)�(�)
�

+ �(�)Γ(�)∫
�2

�1
[(�(�2) − �(�))

�−1 − (�(�1) − �(�))
�−1]

⋅ ��(�)�(�)
�,

(49)

ℎ�(�) =
1
Γ(�)∫

�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(�))�−2 − (�(�) − �(�))
�−1

2 ]

⋅ ��(�)��(�)�� +
1
Γ(�)∫

�

�
(�(�) − �(�))�−1

⋅ ��(�)��(�)��.
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It is clear that T  is continuous and completely continuous. 
�e remaining part of the proof is similar to that of �eorem 2, 
so we omit it here. �e proof is complete. ☐

Remark 4. If taking � = 0,.  � = �,�(�) = �, the fractional 
di�erential inclusions (3) reduce to the fractional di�erential 
inclusions (1).

Remark 5. we take �(�, �) = {�(�, �)}, where 
� : [�, �] × �→ � is a given continuous function, then the 
problem (3) corresponds to the single-valued problem (2).

4. Application

Example 1. Consider the fractional di�erential inclusion 
involving �-Caputo derivative with anti-periodic boundary 
value conditions

where �(�) = sinh(�),−1 ≤ � ≤ 1.� = 3/2. Obviously, condi-
tion (�3) is satis�ed. Observe that � ∈ �2([−1, 1]),
��(�) = cosh(�) > 0,−1 ≤ � ≤ 1. Moreover, we have

Which implies condition (�4) holds.

and

where �(�) = 1,�(‖�‖) = 5, we can �nd a positive constant �
such that

(59){
��3/2,��(�) ∈ �(�, �(�)),
�(−1) + �(1) = 0, ��(−1) + �(1) = 0.

(60)��(−1) = cosh(−1) = cosh(1) = ��(1).

(61)

�→ �(�, �(�)) := [ |�|5|�|5 + 3 + �2 + 3,
|�|
|�| + 1 + �3 + 2], � ∈ �,

(62)
‖�(�, �)‖ := sup|v| : v ∈ �(�, �) ≤ 5 := �(�)�(‖�‖)� ∈ �,

(63)
�

5[(sinh (1) − sinh (−1))/4�(3/2)(1/2)∫
1

−1
(sinh (1) − sinh (�))(3/2)−2 cosh (�)�� + 3/(2�(3/2))∫

1

−1
(sinh (1) − sinh (�))(3/2) − 2 cosh (�)��]

< 1,

By (42), there exist � such that ‖�‖ ̸=�. Let

Note that the operator � : �→P(�([�, �], �)) is upper sem-
icontinuous and completely continuous. By the choice of �, 
there is no � ∈ �� such that � ∈ ��(�) for some � ∈ (0, 1).
�us, by means of Lemma 2, we can get the conclusion that 
there exists a �xed point � ∈ �, that is, it is a solution of 
 problem (3). We complete the proof. ☐

3.3. �e Lower Semicontinuous Case

Theorem 3. Assume that (�3) − (�6) and the following 
condition holds:

(�7) � : [�, �] × �→P(�) is a nonempty compact-valued 
multivalued map such that
(�) (�, �) �→ �(�, �) is L ⊗B is measurable,
(�) � �→ �(�, �) is lower semicontinuous for each � ∈ [�, �],
then the anti-periodic boundary problem (1.3) has at least 

one solution on [�, �].
Proof. By (�7), � is of l.s.c. type. �en from Lemma 4, there 
exists a continuous function � : �(�, �)→ �1(�, �) such that 
�(�) ∈ F (�) for all � ∈ �(�, �). Consider the following problem

If � ∈ �2([�, �], �) is a solution to (57), then � is a solution to 
the problem (3). In order to transform the problem (57) into 
a �xed point problem, we de�ne the operator T  as

(55)

�
�(�)[(�(�) − �(�))(� − 1)/(4Γ(�))∫�

�
(�(�) − �(�))�−2��(�)(�)�� + 3/(2Γ(�))∫�

�
(�(�) − �(�))�−1��(�)(�)��]

≤ 1.

(56)� = {� ∈ �([�, �], �) : ‖�‖ <�}.

(57){(�
�
�(�)�)(�) = �(�(�)), �(�) < � < �(�),
�(�(�)) + �(�(�)) = 0, ��(�(�)) + ��(�(�)) = 0.

(58)

T �(�) == 1Γ(�)∫
�

�
[(�(�) − �(�)4 − �(�) − �(�)2 )

⋅ (� − 1)(�(�) − �(
))�−2 − (�(�) − �(
))
�−1

2 ]

⋅ ��(
)�(�(
))�
 + 1Γ(�)∫
�

�
(�(�) − �(
))�−1

⋅ ��(
)�(�(
))�
.

that is, � > 25.4125. All the conditions in �eorem 2 are 
 satis�ed. �erefore, fractional di�erential inclusion with 
anti-periodic boundary value conditions (59) has at least one 
solution.
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