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In recent years, queueing models with service interruption
have been studied extensively due to their widespread ap-
plications. -is paper is devoted to the study of an M/M/1
queue with a particular service interruption discipline under
two types of the maintenance activities, namely the reactive
maintenance and the plannedmaintenance. In the process of
serving customers, when the system receives a negative
feedback from customers, and in the next N customers to be
served, if a negative feedback from the next N customers is
received again, the service is interrupted and a reactive
maintenance will be triggered immediately; otherwise, if all
of the next certain amount of feedbacks are positive, the
system administrator has a reason to believe that the oc-
currence of the negative feedback is an accidental phe-
nomenon, and the reactive maintenance will not be initiated.
By using the matrix analytic approach and spectral ex-
pansion method, we derive the steady-state probabilities,
which are then used to compute the performance measures
of the queueing system. Sensitivity analyses of parameters
are included in this work for illustrative purposes, and from
the perspective of queueing model, we also show that de-
signing the queue size in terms of the steady-state proba-
bilities is a more reasonable and rational method than the
expected queue length.

1. Introduction

Queueing models with service interruption have been
studied extensively due to their widespread applications
including production systems, transportation systems,

complex modern communication systems and service sys-
tems. So far, according to the emerged reasons, the literature
on the service interruption can be roughly divided into two
categories, depending on whether the interruption is caused
by external factors (e.g., due to unexpected failures) or if it is
caused by internal factors (e.g., due to the gradual deteri-
oration of the servers (facilities)).

-e category of service interruption, due to external
factors, occurs in queueing systems that are subject to un-
expected failure or breakdown. In previous studies, a large
number of queueing researchers have investigated the
queueing systems with repairable servers, where the
maintenance action is carried out once the systems are
breakdown. For example, Wartenhorst [1] considered an N

parallel queueing system with server breakdown and repair.
Gray et al. [2] studied a queueing model with multiple types
of server breakdowns. Lam et al. [3] discussed a geometric
process model for an M/M/1 queueing system with a re-
pairable service station. By using the supplementary variable
technique, the authors obtained some queueing character-
istics as well as reliability measures of the service station.
Yechiali [4] studied a queueing system with system disasters
and impatient customers when the system is down. For more
complex queueing systems with breakdown, Li et al. [5]
studied a BMAP/G/1 retrial queue with a server subject to
breakdowns and maintenances and derived the stationary
availability, failure frequency, and queue length. Liu et al. [6]
studied an M/G/1 retrial G-queue with preemptive resume
and feedback under N-policy, where the server subjects to
breakdowns and repairs. Cordeiro and Kharoufeh [7]
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examined an M/M/1 retrial queue with an unreliable server
whose arrival, service, failure, repair, and retrial rates are all
modulated by an exogenous random environment. Jain et al.
[8] studied a fault-tolerant system with general distributed
repair time, server vacation, and server breakdown. Ammar
et al. [9] provided the transient analysis of impatient cus-
tomers in an M/M/1 disasters queue in random environ-
ment. Recently, while the server in a queueing system suffers
from unexpected failures and becomes defective, the system
can be equipped with a substitute server which continues to
provide service for the arriving customers, instead of
stopping service completely. -is phenomenon is also re-
ferred to working breakdown. Kalidass and Kasturi [10] first
introduced the concept and applied the strategy to the fa-
cility replacement problems. Later, a variety of research
efforts have contributed to the topic and its applications in
manufacturing systems. For example, Kim and Lee [11]
investigated an M/G/1 queue with disasters and working
breakdown, where the system can provide service by an
auxiliary machine while the main machine is in maintenance
period. Liu and Song [12], Jiang and Liu [13], respectively,
considered a batch arrival M[X]/M/1 queueing system and a
GI/M/1 queueing system with working breakdown. Mean-
while, in [13], the authors gave the applications of working
breakdown in an unreliable multiproduct manufacturing
network and the wireless sensor networks. Recently, Yang
and Wu [14] investigated a finite-capacity Markovian
queueing system with working breakdowns, reneging, and
retention of impatient customers. Ye and Liu [15] studied an
MAP/M/1 queue with working breakdowns. Jiang and Xin
[16] investigated a queueing system with working break-
downs and delaying repair under a Bernoulli-schedule-
controlled policy by the matrix analytic method and the
spectral expansion method. Ammar and Rajadurai [17]
investigated a preemptive priority retrial queueing system
with disaster under working breakdown services.

-e category of service interruption, due to internal
factors, is triggered by the gradual deterioration of the
servers. In this category, the so-called condition-based
maintenance, which utilizes the finished item quality as the
intermediate to monitor the server condition, is often used
in the production systems. Under the condition-based
maintenance, maintenance action is implemented by setting
a control chart to monitor the operating condition of the
servers. Once a defective item is detected, the control chart
will generate an alert signal; then, the service is interrupted
and the server will experience a maintenance period im-
mediately. In recent decades, this type of service interruption
with condition-based maintenance has been extensively
investigated in the literature. For example, Zhou and Zhu
[18] gave an economic design of the integrated model of the
control chart and maintenance management. Liu et al. [19]
applied the condition-based maintenance to give the eco-
nomic and economic-statistical designs of a control chart for
two-unit series systems. Zhou et al. [20] considered two
types of maintenance activities and studied a trade-off be-
tween energy consumption and customer delay based on the
queueing approach. For more related papers on the main-
tenance method, the interested readers are referred to Cha

et al. [21], Yang et al. [22], and Alaswad and Xiang [23], and
the references therein.

-e underlying queueing model is motivated by a
problem that involves the maintenance planning in real
service systems. For example, in some consulting service
centers, customers may be asked for taking a fewmoments of
their time to fill out a Customer Service Feedback Form
about their service. If a customer is satisfied with the service,
he/she will respond positively; otherwise, he/she will make a
negative response. If the consulting service center receives a
negative response on the service, in order to ensure whether
the negative response is an accidental phenomenon or not,
the consulting service center should continue to check the
next certain amount of responses from customers. During
the next certain amount of responses, if a negative response
appears again, the consulting service center will do some
adjustments and a reactive maintenance should be sched-
uled; otherwise, if all of the next certain amount of responses
are positive, the consulting service center has a reason to
believe that the occurrence of the negative response is an
accidental phenomenon, and the adjustments will not be
initiated. In addition, the underlying queueing model can be
also applied to production systems. For example, in a real
production system, equipment may deteriorate gradually
due to the accumulation of wear and corrosion. In order to
identify the operating condition of the facility, the system
usually employs the quality characteristic of items as the
intermediate to monitor the facility condition. -en, the
system is equipped with a quality control detector and
monitored using the Shewhart control charts to check the
quality of the finished items. If the quality characteristic of a
finished item falls outside the so-called “in-control” region,
i.e., a defective item is detected, then, the control chart will
generate an alert signal. However, in order to ensure the
efficiency of the system, the inspector should estimate the
defective item is whether an accidental phenomenon or not,
i.e., the inspector should continue to check the next certain
amount of finished items. During the next certain amount of
finished items, if a defective item is detected again, it is
reasonable to believe that the operating condition of the
equipment is in a danger state and a reactive maintenance
should be scheduled; otherwise, if all of the next certain
amount of finished items are acceptable, the inspector has a
reason to believe that the occurrence of the defective item is
an accidental phenomenon, and the reactive maintenance
will not be initiated.

Different from a recent study [24], in which the author
considers a clearing queueing model with server mainte-
nance after N negative feedbacks, in this paper, we describe
the service process of the queueing system and the main-
tenance policies as a single-server queue with two types of
maintenance activities for the server, i.e., planned mainte-
nance and reactive maintenance. To the best of our
knowledge, the underlying queueing model with service
interruption has not appeared in the literature. -e derived
results of the queueing model could be applied to deal with
more practical queueing problems and provide important
reference value for system administrator to scientifically
design the scheduled maintenance policy. For more details
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of the common methods on solving the queueing models,
the interested readers are referred to [25, 26], which give a
detailed introduction on the idea and application of the
methods. Next, the main contributions of the paper are as
follows:

(i) Model: We consider a novel and special service
interruption discipline with two types of mainte-
nance activities for the underlying queueing system.
-e model is suitable for reflecting the character-
istics of customers’ services for the modern service
systems and production systems.

(ii) Methodology and results: -e matrix analytic ap-
proach and spectral expansion method are applied
to analyze the special service interruption discipline
in queueing problems. Compared to other methods
(e.g., probability generating functions), the two
methods could effectively give a detailed compu-
tational procedure to derive the steady-state prob-
abilities and the performance measures.
Furthermore, there are always finite number of
solution techniques for solving any given problem
mathematically; therefore, we feel that the consid-
ered model extends the analytical literature of
queueing theory by the intricate successful for-
mulation of the problem.

(iii) Numerical illustrations: Sensitivity analysis of pa-
rameters is included in this work for illustrative
purpose, and some qualitative take-away messages
are also provided and intuitively explained. More-
over, by some numerical examples, we show that
designing the queue size in terms of the steady-state
probabilities is a more reasonable and rational
method than the expected queue length.

-e underlying article is organized as follows. Section 2
describes the proposed queueing model. In Section 3, we
present the stability analysis of the underlying queueing
system. Some numerical examples are conducted to show the
impacts of system parameters on the performance measures
in Section 4. Section 5 concludes the paper.

2. Model Description

In practice, it is more common to model the queueing
system as a queue with multiple servers. To simplify the
model, in this paper, we will study the queueing model based
on anM/M/1 queue with two types of maintenance activities
for the server (the reactive maintenance and the planned
maintenance), where the reactive maintenance is triggered
by a particular service interruption discipline, which will be
described in the following section, and the frequency of
planned maintenance is determined by the system admin-
istrator, which can be represented by a proportion parameter
at the beginning of each idle period. We believe the sim-
plified model could also derive similar results. Below, we use
the related parameters of queueing system to describe the
underlying queueing model. Our assumptions are driven by

the actual problem that motivates the analysis and our desire
for keeping the model as simple as possible.

(i) Customers arrive according to a Poisson process
with rate λ and customers are served based on a
first-come, first-served (FCFS) discipline.

(ii) Uncertain service times at server are exponentially
distributed with parameter μ.

(iii) Once a customer is served, the served customer is
required to give a response (feedback) on the quality
of customer service. If he/she is satisfied with the
service, he/she will respond positively on his/her
service; otherwise, he/she will make a negative re-
sponse for his/her horrible or unpleasant service. To
this end, we consider p as the probability that a
served customer gives a negative feedback and q �

(1 − p) as the probability that a served customer
gives a positive feedback on the service. Next, we
describe the particular service interruption disci-
pline and show that when the reactive maintenance
will be triggered. In the process of serving cus-
tomers, when the system is in the normal working
state and a negative feedback is received from the
served customers, an alert signal is immediately
generated; meanwhile, the system goes into a
warning working state and checks the next N

customers to be served, so as to ensure the negative
feedback is whether an accidental phenomenon or
not. In the next N customers to be served, if a
negative feedback from the N customers is received
again, the reactive maintenance will be scheduled
immediately; otherwise, if the next N feedbacks
from the N customers are positive, the system
administrator believes that the occurrence of the
negative feedback in the normal working state is an
accidental phenomenon; therefore, the reactive
maintenance will not be initiated, and the system
returns to the normal working state.

(iv) Beside the reactive maintenance, planned mainte-
nance is also adopted according to a frequency
parameter at the beginning of an idle period to
ensure the system in the normal operation. For
analytical simplicity, we use a proportion parameter
β to denote the frequency parameter (i.e., β � 0.2
represents that the planned maintenance is carried
out every 5 idle periods). We also assume that if
there is no customer while the system is in the
warning working state, the server will also schedule
a planned maintenance.

(v) -e reactive maintenance time is assumed to follow
an exponential distribution with a rate ξ1, the
planned maintenance time is assumed to follow an
exponential distribution with a rate ξ2.

(vi) In addition, we further assume that the arrival
process, the service process, and the maintenance
process are mutually independent. Since the
checking time is relatively short compared with the
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expected service time, then the checking time can be
negligible.

3. Model Analysis

Based on the model description, we will first give the stability
analysis for the underlying queueing system, and then we use
the matrix analytic method and spectral expansion method
to analyze the queueing model. Actually, the other possible
method of analysis is via probability generating functions
which, in this case, will be more complex. Moreover, because
of the complicated structure of the queueing model, the
steady-state probability vector may be difficult to obtain in a
closed form. However, the two methods in consideration
could effectively give a detailed computational procedure to
derive the steady-state probabilities and the performance
measures of the underlying queueing model.

3.1. Stability Condition. Let N(t) denote the number of
customers in the system at time t, I(t) denotes the state of
the server at time t, which is defined as

I( t ) �

− 1, the server is in the reactivemaintenance state at time t,

0, the server is in the plannedmaintenance state at time t,

1, the server is in the normal working state at time t,

2, the server is in thewarningworking state at time t.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

As the server is in the warning state at time t, i.e.,
I(t) � 2, then, K(t) � k, 0≤ k≤N − 1 denotes that when the
system goes into the warning working state, the next k

feedbacks from customers are positive. Obviously,
(N(t), I(t), K(t)), t≥ 0{ } is a continuous-timeMarkov chain
with the state space

(n, − 1), n≥ 0{ }∪ (n, 0), n≥ 0{ }∪ (n, 1), n≥ 0{ }∪ (n, 2, k), n> 0, 0≤ k≤N − 1{ }. (2)

Considering the variety of system states, the transition
rate diagram of the continuous-time Markov chain is shown
in Figure 1.

Next, according to the transition rate diagram and using
the lexicographical sequence for the aforementioned states,
the infinitesimal generator matrix of the continuous-time
Markov chain in the block-partitioned form can be obtained
as follows:

Q �

C B0 0 0 · · ·

B2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A2 A1 · · ·

⋮ ⋮ ⋮ ⋱ ⋱

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where

C �

− λ + ξ1( 􏼁 0 ξ1
0 − λ + ξ2( 􏼁 ξ2
0 0 − λ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,B0 �

λ 0 0
0 λ 0
0 0 λ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

B2 �

0 0 0
0 0 0
0 μp + μqβ μq(1 − β)

μp μq 0
⋮ ⋮ ⋮
μp μq 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+3)×3

,

(4)

and the other partitioned matrices are square ones with
(N + 3) × (N + 3) orders,

A2 �

0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
0 0 μq μp 0 0 · · · 0
μp 0 0 0 μq 0 · · · 0
μp 0 0 0 0 μq · · · 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
μp 0 0 0 0 0 · · · μq

μp 0 μq 0 0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 � diag(λ, λ, . . . , λ),

A1 �

− λ + ξ1( 􏼁 0 ξ1 0 · · · 0
0 − λ + ξ2( 􏼁 ξ2 0 · · · 0
0 0 − (λ + μ) 0 · · · 0
0 0 0 − (λ + μ) · · · 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 · · · − (λ + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)
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In order to analyze the queueingmodel, we first study the
stability condition. According to the aforementioned state-
transition-rate matrix, the stability condition can be derived
in the following lemma.

Lemma 1. ,e underlying queueing system is stable if and
only if

λ<
2ξ1 − ξ1q

N
􏼐 􏼑μ

μp 1 − q
N

􏼐 􏼑 + 2ξ1 − ξ1q
N

⎛⎝ ⎞⎠. (6)

Proof. Based on -eorem 1.7.1 in Neuts [25], the under-
lying queueing system is stable if and only if

xA0e< xA2e, (7)

where x � (x0, x1, x2, x3, . . . , xN+2) is the invariant proba-
bility vector of A � A0 + A1 + A2, which satisfies xA � 0 and
xe � 1, e is a column vector with N + 3 dimensions and all its
elements are equal to one. From the expressions of matrices
A0,A1,A2, we find that

A � A0 + A1 + A2 �

− ξ1 0 ξ1 0 0 0 · · · 0

0 − ξ2 ξ2 0 0 0 · · · 0

0 0 − μp μp 0 0 · · · 0

μp 0 0 − μ μq 0 · · · 0

μp 0 0 0 − μ μq · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

μp 0 0 0 0 0 · · · μq

μp 0 μq 0 0 0 · · · − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

1, 2, N–1

1, 2, 1 2, 2, 1 3, 2, 1

1, 2, 0 2, 2, 0 3, 2, 0

1, 1 2, 1 3, 1

1, 0 2, 0 3, 0

1, –1

0, 1

0, 0

0, –1 2, –1 3, –1

2, 2, N–1 3, 2, N–1
μq μq

μqμq

μq μq

μqμqμq

μq

μqμq

μp

μp μp μp

μp

μp

μp μp

μp

μp μp
μq

λ λ

λ λ

λ λ

λλ λ

λλ λ

λλ λ

μp + μqβ

μq(1 – β)

ξ1 ξ1 ξ1 ξ1

ξ2 ξ2 ξ2 ξ2

Figure 1: Transition rate diagram of the queueing system.
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is irreducible, then, solving the equations xA � 0 and xe � 1,
we have

x0 �
μp 1 − q

N
􏼐 􏼑

ξ1
x2,

x1 � 0,

x2 �
ξ1

μp 1 − q
N

􏼐 􏼑 + 2ξ1 − ξ1q
N

,

x3 � px2, xN+2 � qxN+1 � q
2
xN � · · · � q

N− 1
x3.

(9)

-erefore, from xA0e< xA2e, the sufficient and neces-
sary stability condition can be further derived by

λ<
2ξ1 − ξ1q

N
􏼐 􏼑μ

μp 1 − q
N

􏼐 􏼑 + 2ξ1 − ξ1q
N

. (10)

Next, in order to analyze the queueing model in stability
condition, we first denote the steady-state vector of the
queueing model as π � (π0, π1, π2, . . . , ), where

π0 � π0,− 1, π0,0, π0,1􏼐 􏼑, πn � πn,− 1, πn,0, πn,1, πn,2,0, . . . , πn,2,N− 1􏼐 􏼑, n≥ 1,

π0,i � lim
t⟶∞

P(N(t) � 0, I(t) � i), i � − 1, 0, 1,

πn,2,k � lim
t⟶∞

P(N(t) � n, I(t) � 2, K(t) � k), k � 0, 1, . . . , N − 1, n≥ 1.

(11)

□
3.2. Matrix Analytic Method. From the special structure of
matrix Q, we find that (N(t), I(t), K(t)), t≥ 0{ } is a quasi-
birth-and-death (QBD) process, whose state-transition-rate
matrix is block tridiagonal. -erefore, in this subsection, we
first use the matrix analytic method to derive the steady-state
probabilities for the underlying queueing system. -e most
important step in applying this method is to obtain the rate
matrix R, which is the minimal nonnegative solution of

R2A2 + RA1 + A0 � 0. (12)

According to the structure of matrices A0,A1,A2, we find
that it is difficult to obtain the explicit expression of rate
matrix R. However, based on the theory in [25], the matrix
equation can be typically solved numerically using the fol-
lowing iteration procedure. Consider the sequence ofmatrices
R(n), n≥ 0{ }, obtained by successive substitutions, starting
with R(0) � 0 and then R(n) � − A2A− 1

1 − R2(n − 1)A2A− 1
1 .

If there exist ε> 0, such that ‖R(n) − R(n − 1)‖∞ < ε, then we
stop the iterative procedure. Because of the convergence of the
iterative algorithm, i.e., limn⟶∞R(n) � R, then the obtained
R(n) is approximately equal to R. After R is obtained,
according to the matrix analytic method, we have

πn � π1R
n− 1

, n≥ 2. (13)

Next, the boundary vector π0, π1 can be obtained by
solving the equations

π0,π1( 􏼁B[R] � 0,

π0e1 + π1(I − R)
− 1e � 1,

(14)

where

B[R] �
C B0

B2 A1 + RA2
􏼠 􏼡, e1 � (1, 1, 1)′. (15)

-en, the steady-state probabilities can be obtained by
the following theorem.

Theorem 1. If the stability condition is satisfied, then, the
steady-state probabilities can be obtained as follows

π0 � π0,− 1, π0,0, π0,1􏼐 􏼑 � − π1B2C
− 1

,

πn � πn,− 1, πn,0, πn,1, πn,2,0, . . . , πn,2,N− 1􏼐 􏼑 � π1R
n− 1

, n≥ 2,

(16)

where π1 satisfies the following set of equations:

π1 A1 + RA2 − B2C
− 1B0􏼐 􏼑 � 0,

π1(I − R)
− 1e − π1B2C

− 1e1 � 1.
(17)

3.3. Spectral Expansion Method. Next, we turn to use an
alternate method called spectral expansion method to derive
the steady-state probabilities for the underlying queueing
system. From πQ � 0, we have

πi− 1A0 + πiA1 + πi+1A2 � 0, i≥ 2, (18)

associated with it is the characteristic matrix polynomial,
which has the following structure:
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Q(x) � A0 + A1x + A2x
2

�

f01(x) 0 ξ1x 0 0 0 · · · 0

0 f11(x) ξ2x 0 0 0 · · · 0

0 0 f2(x) μpx
2 0 0 · · · 0

μpx
2 0 0 f3(x) μqx

2 0 · · · 0

μpx
2 0 0 0 f3(x) μqx

2
· · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

μpx
2 0 0 0 0 0 · · · μqx

2

μpx
2 0 μqx

2 0 0 0 · · · f3(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where

f01(x) � λ − λ + ξ1( 􏼁x,

f11(x) � λ − λ + ξ2( 􏼁x,

f2(x) � λ − (λ + μ)x + μqx
2
,

f3(x) � λ − (λ + μ)x.

(20)

From the expression of Q(x), we have the determinant
of Q(x):

|Q(x)| �f01(x)f11(x)f2(x) f3(x)( 􏼁
N

+(− 1)
N μpx

2
􏼐 􏼑 μqx

2
􏼐 􏼑

N
f01(x)f11(x)

+(ξx) μpx
2

􏼐 􏼑
2
f11(x) 􏽘

N− 1

i�0
(− 1)

i μqx
2

􏼐 􏼑
i

f3(x)( 􏼁
N− i− 1

.
(21)

Referring to Mitrani and Chakka [26], if the underlying
queueing system is stable, then the number of eigenvalues in
the unit disk of Q(x) is equal to the degree of Q(x); that is,
N + 3 eigenvalues should lie inside the unit disk. -en, the
steady-state probabilities have the following form:

πj � 􏽘
N+2

i�0
aix

j− 1
i ψi, j≥ 1, (22)

where xi(i � 0, 1, . . . , N + 2) are the eigenvalues inside the
unit disk, ψi(i � 0, 1, . . . , N + 2) are the corresponding left
eigenvectors, coefficients ai(i � 0, 1, . . . , N + 2) can be

determined from the balance equations, and the eigenvalue-
eigenvector pairs (xi,ψi) of Q(x) satisfy

ψiQ xi( 􏼁 � 0, det Q xi( 􏼁( 􏼁 � 0, i � 0, 1, . . . , N + 2. (23)

Solving the two matrix equations, the eigenvectors
corresponding to xi(i � 0, 1, 2, . . . , N + 2) can be obtained
as

ψi � ψi,0,ψi,1, 1,ψi,3, . . . ,ψi,N+2􏼐 􏼑, (24)

where

ψi,0 � −
μpx

2
i T( xi )( 1 − S( xi )( 􏼁

N
)

f01( xi )( 1 − S( xi ) )
􏼠 􏼡 � −

f2( xi ) + μqx
2
i T( xi ) S( xi )( 􏼁

N− 1

ξ1xi

􏼠 􏼡,

ψi,1 � 0,ψi,3 � T( xi ),

ψi,k � S xi( 􏼁)
k− 1ψi,3, k � 4, 5, . . . , N + 2, S( x ) � −

μqx
2

f3( x )
, T( x ) � −

μpx
2

f3( x )
.􏼠

(25)

After deriving the eigenvalues and their corresponding
left eigenvectors, the coefficients ai(i � 0, 1, 2, . . . , N + 2)

can be directly computed by the balance equations and the

normalization condition. From π0C + π1B2 � 0, π0 can be
obtained in terms of π1. -en, combining the expression of
πj and solving the set of equations
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π0B0 + π1A1 + π2A2 � 0,

π0e1 + 􏽘
∞

j�1
πje � 1,

(26)

N + 3 unknown coefficients a0, a1, a2, . . . , aN+2 can be de-
rived, and hence the steady-state probabilities.

3.4. Performance Measures. From the derived steady-state
probabilities, in this subsection, we will obtain some per-
formance measures. Let E[L] and E[W] denote the expected
number of customers in the system and the mean sojourn
time of a customer needing to be served in the system.-en,
some performance measures could be obtained as follows:

(i) -e probability that the server is idle: PI � π0,1.
(ii) -e probability that the server is busy in the normal

working state: PB � 􏽐
∞
n�1 πn,1.

(iii) -e probability that the server is in the warning
working state: Pw � 􏽐

N− 1
k�0 􏽐

∞
n�1 πn,2,k.

(iv) -e probability that the server is in the planned
maintenance state: Ppm � 􏽐

∞
n�0 πn,0.

-e probability that the server is in the reactive
maintenance state: Prm � 􏽐

∞
n�0 πn,− 1.

-e expected number of customers in the system is

E[L] � 􏽘
∞

k�1
kπke � π1(I − R)

− 2e, (27)

or

E[L] � 􏽘
∞

j�1
jπje � 􏽘

N+2

i�0
ai

1
1 − xi( 􏼁

2
⎛⎝ ⎞⎠ψie. (28)

By using Little’s law, the mean sojourn time of a cus-
tomer needing to be served is

E[ W ] �
E[ L ]

λ
�
π1(I − R)

− 2e
λ

� 􏽘
N+2

i�0

ai

λ 1 − xi( 􏼁
2

⎛⎝ ⎞⎠ψie.

(29)

4. Numerical Results

In this section, we would provide a set of numerical ex-
amples to give a comparison between the underlying
queueing model and its special case (N � 0). Moreover,
sensitivity analysis of parameters is included in this section
for illustrative purpose, and some qualitative take-away
messages are provided and intuitively explained.

We first derive the steady-state probabilities for the
special case of the underlying queueing model (queueing
model with the condition-based maintenance). If we assume
that N � 0, this means that, once the system receives a
negative feedback, the reactive maintenance will be triggered
immediately. Let N∗(t) denote the number of customers in
the system at time t and I∗(t) denote the state of the server at
time t; then the state-transition-rate matrix of this model can
be obtained as follows:

Q∗ �

C∗ A∗0 0 0 · · ·

B∗2 A∗1 A∗0 0 · · ·

0 A∗2 A∗1 A∗0 · · ·

0 0 A∗2 A∗1 · · ·

⋮ ⋮ ⋮ ⋱ ⋱

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where all partitioned matrices are square ones with 3 × 3
orders

C∗ �

− λ + ξ1( 􏼁 0 ξ1
0 − λ + ξ2( 􏼁 ξ2
0 0 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,B∗2 �

0 0 0

0 0 0

μp μqβ μq(1 − β)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A∗0 �

λ 0 0

0 λ 0

0 0 λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,A∗1 �

− λ + ξ1( 􏼁 0 ξ1
0 − λ + ξ2( 􏼁 ξ2
0 0 − (λ + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,A∗2 �

0 0 0

0 0 0

μp 0 μq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(31)

In this case, the sufficient and necessary stability con-
dition is

λ<
μξ1

μp + ξ1
􏼠 􏼡. (32)

Similar to the analysis in Section 3, if the stability
condition is satisfied, we can obtain the steady-state
probabilities.

Next, based on the theoretical framework given by the
above analysis, we present some figures below to investigate
the impact of the parameters on the expected number of

customers E[L]. We first assume that ξ1 � 0.6, ξ2 � 0.8,
p � 0.1, and β � 0.2 and then provide a comparison between
the cases N � 6 and N � 0.

From Figure 2, we find that E[L] is increasing in λ, while
decreasing in μ. It is noteworthy that, for the curves in
Figure 2, if values λ and μ are fixed, the value of E[L] in the
case N � 0 is greater than the case N � 6. It is reasonable
that, as N � 0, once the system receives a negative feedback
from customers, the reactive maintenance will be triggered
immediately; therefore, the case could increase the reactive
maintenance frequency. However, high-frequency
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maintenance will lead to a much longer queue length to the
system. On the contrary, as N> 0, the system will verify
whether the negative feedback is an accidental phenomenon
or not. Compared to the case N � 0, the case N � 6 will
lower the reactive maintenance frequency, which could
satisfy the short queue length requirement. -us, from the
numerical result, to reduce the holding cost for customers
and shorten queue length (or the customer sojourn time),
the system administrator should verify whether the negative
feedback is an accidental phenomenon or not, so that the
reactive maintenance frequency could be properly lowered,
and the cost could be reduced.

Next, we assume that λ � 1.5, μ � 3, ξ1 � 0.6, ξ2 � 0.8,
and p � 0.1 and pay attention to the curves of E[L] with the
change of N from 1 to 20 for the different values of β. Some
interesting managerial insights can be derived from Figure 3.
First, E[L] first increases significantly and then tends to be
smooth. In the author’s opinion, the phenomenon may be
caused by the value of p, i.e., the negative feedback per-
centage (meaning statistically the event may happen every
( 1/(1 − p) ) � (1/q) experiments on average). For a fixed p,
if N> (1/q), the system will be more likely to receive a
negative feedback in the next N feedbacks, which means that
the increase of N leads to a high-frequency reactive
maintenance and a much longer queue length to the system.
However, when N≫ (1/q), the designed inspections/de-
tections do not have chance to be realized, i.e., the reactive
maintenance will always be triggered; then, in this case, E[L]

tends to be smooth as N increases, and the parameter N has
a weak impact on E[L]. According to our model description,
we assume that p remains unchanged while the system is in
the warning working state. -us, from the numerical result,
the maximum value of the next number of feedbacks needs
to be checked in the warning working state is a certain value;
when N exceeds this value, the curve becomes smooth.
Moreover, E[L] is increasing in β. -e reason is that high-
frequency planned maintenance could also contribute a

much longer queue length. -us, according to the negative
feedback percentage, the system administrator needs to
choose a suitable number of feedbacks from customers to
check while the system is in the warning working state.
Moreover, the frequency of planned maintenance should be
properly lowered, so that the queue length of the system
could be reduced, the small sojourn time requirement could
be satisfied, and the holding cost for customers could be
saved.

Finally, we assume that λ � 1.5, μ � 3, ξ1 � 0.6, and ξ2 �

0.8 and explore the impact of the parameters N and β on
E[L] for the different values of p. As expected, Figure 4
reveals that for the fixed values N and β, E[L] increases with
the increase of p. -us, from the numerical results, the
system administrator should control the negative feedback
percentage so as to reduce the queue length of the system and
shorten the customer sojourn time. Also, from Figure 4(a),
the smaller p is, the smoother of the curve becomes.
Moreover, from Figure 4(b), we also find that E[L] increases
with the increase of β. -e reason is that as β increases, the
system has a higher probability to proceed a planned
maintenance process when the system is empty, i.e., the
system has a higher frequency to carry out the planned
maintenance, which could contribute a much longer queue
length to the system. -us, to satisfy the short queue length
requirement, the system administrator should lower the
frequency of the planned maintenance.

In short, these numerical results can provide important
reference value for system administrator to scientifically
design the parameter of the maintenance policy to save cost
and keep the server staying in an efficient operation state.

From the perspective of the queueing model, it is well
known that if the queue capacity design is too large, the
construction and operation costs of the system will be too
high. On the contrary, if the capacity of the queue is too
small, the arriving customers will be lost due to insufficient
capacity, which will cause an economic loss and bring a
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Figure 2: E[L] versus λ and μ for N � 6 and N � 0 (a) E[L]vs λ(μ � 3); (b) E[L]vs μ(λ � 1).
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negative effect. -erefore, there is a great significance in
designing the size of queue capacity. Next, we discuss the
capacity setting of the underlying queueing model by nu-
merical examples and analyze the importance of steady-state
probabilities in designing the queue capacity. We assume
that N � 4, λ � 1.5, μ � 3, ξ1 � 0.6, ξ2 � 0.8, p � 0.1, and
β � 0.2.

We first provide a table to show the steady-state prob-
abilities of the queueing model, i.e., the probability that there
are n(n≥ 0) customers in the system. In Table 1, the expected
number of customers in the system is E[L] � 2.1605. From
Table 1, we find that n is greater than a certain number,
πne⟶ 0, so it is not necessary to design the system ca-
pacity to be infinite. According to E[L], we have

P L>E[L]{ } � 1 − 􏽘

⌊E[L]⌋

n�0
πne � 1 − π0e1 − 􏽘

2

n�1
πne � 0.3094,

P L>E[L] + 1{ } � 1 − 􏽘

⌊E[L]+1⌋

n�0
πne � 1 − π0e1 − 􏽘

3

n�1
πne � 0.2138.

(33)
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Figure 3: E[L] versus N for different values β.
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Figure 4: E[L] versus N and β for different values p (a) E[L]vs β(N � 0.2); (b) E[L]vs β(N � 6).
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-at is, if we use the mean value to design the queue size,
the loss probability of arriving customers due to the finite
capacity reaches 30.94%, even if we expand a unit of mean
value, the loss probability is also up to 21.38%. -erefore, at
this point, it is not advisable to design the queue size
according to the expected number of customers in the
system.

Next, we consider the designing the queue size by
controlling the loss probability. For example, we assume that
the loss probability is less than 0.0001. -en, from
P L> L0􏼈 􏼉< 0.0001, we have L0 ≥ 28; that is, we can set the
queue size as 28. -erefore, designing the queue capacity
based on the steady-state probabilities is a more reasonable
and rational method than the expected number of customers
in the system.

5. Conclusion and Future Work

-is paper is devoted to the study of the performance of the
queueing system with service interruptions under a reactive
maintenance policy combining the planned maintenance for
the server. We dealt with the problem by constructing a
queueing model. Using the matrix analytic approach and
spectral expansion method, we respectively obtained the
steady-state probabilities. Based on the theoretical frame-
work given by the queueing analysis, we derived some
performance measures and provided some numerical ex-
amples to show the impacts of system parameters on some
key performance measures. Moreover, from the perspective
of queueing model, we discussed the capacity setting of the
underlying queueing model by numerical examples and
analyzed the importance of steady-state probabilities in
designing the queue capacity. We hope that our results can
be applied to more practical queueing problems, and the
results can provide important reference value for system
administrator to scientifically design the maintenance
policy.

Although in this paper, we just considered a single-server
queueing system instead of a multiserver queueing system.
In the further work, we could also consider the more realistic
queueing system with multiple servers and use a Phase-type
(PH) distribution for modelling the service times, which
needs to develop new methods, and it will be an interesting
direction for future research. Another interesting direction
for future research is that, based on the steady-state analysis,
we could investigate a real-world production system (service
system) by using the real data and verify the validity of the

underling queueing model. Finally, we could also consider
pricing problem in this system, i.e., we could investigate the
strategic behavior of customers, and then obtain the optimal
pricing decision on the basis of the equilibrium strategies of
customers.
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