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In this paper, we study the stability of positive steady states in a delayed competition system on a weighted network, which does
not satisfy the comparison principle appealing to classical competitive systems. By introducing some auxiliary equations and
constructing proper contracting rectangles, we present some sufficient conditions on the stability of the unique positive steady
state. Moreover, some numerical examples are given to explore the complex dynamics of this nonmonotone model, which implies
the nontrivial roles of weights and time delays.

1. Introduction

Competition is one of the most universal phenomena in the
natural world due to the limit resources including water and
sunshine. When the amount of individuals is concerned in
population dynamics, some differential systems modeling
both interspecific and intraspecific competitions have been
proposed and studied. For example, if only two competitive
species are concerned in population dynamics, then one
famous model is

dN1

dt
� r1N1 1 − N1 − b1N2( ,

dN2

dt
� r2N2 1 − N2 − b2N1( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

in which all the parameters are positive, and N1, N2 present
the densities of two competitive species; we may refer to
Murray [1], section 3.5, for the dynamics and biology
background of (1). When multispecies and delayed effect
[2–4] were considered, Faria [5] and Smith [6] studied the
following delayed system:

dui(t)

dt
� riui(t) 1 − 

n

j�1
cij 

0

− τ
uj(t + s)dηij(s)⎡⎢⎢⎣ ⎤⎥⎥⎦, (2)

in which i ∈ 1, 2, . . . , n{ } � : I, t> 0, all the parameters are
positive, and ηij(s) formulates the history delayed effect and
satisfies

ηij(s) is nondecreasing on [− τ, 0],

ηij(0) − ηij(− τ) � 1, i, j ∈ I.
(3)

In some cases, the spatial distribution of individuals
must be considered. For example, to control the disease
spreading, the spatial distribution of the infected is im-
portant. To model the spatial distribution of individuals,
many reaction-diffusion systems have been established and
studied; see [7–10]. In particular, we refer to He and Ni [11]
and references cited therein for some results on the stability
of different steady states in the corresponding reaction-
diffusion system of (1). Moreover, when the spatial habitat is
R, Weinberger et al. [12] studied the invasion dynamics
between the invader and the native in the corresponding
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diffusion model of (1). For the corresponding diffusion
model of (2), Martin and Smith [13] proved the stability of
steady states in the bounded domain. In the classical re-
action-diffusion systems, it is necessary to assume that the
density of individuals is continuous in both spatial and
temporal variables. However, the spatial continuity is dif-
ficult to be satisfied due to the limitation of data in some
cases. To overcome the deficiency, one recipe is to study the
ordinary differential equations on a weighted network by
considering finite patches as habitat of individuals; we may
refer to Beretta et al. [14], Faria [5], Gao and Ruan [15], Liao
and Lou [16], Mai et al. [17], Sun andMai [18], Xu and Chen
[19], and Zhang and Wang [20] for patch/network models
with time delay.

Recently, Liu et al. [21] considered the competition
dynamics of two competitors on a network or m patches
(m> 1 and m ∈ N); their model can be written as

dN
j
1

dt
� 

m

i�1
d
1
ij N

i
1 − N

j
1  + r1N

j
1 1 − N

j
1 − b1N

j
2 ,

dN
j
2

dt
� 

m

i�1
d
2
ij N

i
2 − N

j
2  + r2N

j
2 1 − N

j
2 − b2N

j
1 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

in which j ∈ 1, 2, . . . , m{ } � : J, dl
ij > 0 describes the move-

ment between the i-th and j-th patches of the l-th species,
which is called the weight between patches i and j. In [18],
Sun and Mai studied the following system on a network:

dN
j
1(t)

dt
� 

m

i�1
d
1
ij N

i
1 t − τ1(  − N

j
1(t)  + r1N

j
1(t) 1 − N

j
1(t) − b1N

j
2(t) ,

dN
j
2(t)

dt
� 

m

i�1
d
2
ij N

i
2 t − τ2(  − N

j
2(t)  + r2N

j
2(t) 1 − N

j
2(t) − b2N

j
1(t) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

in which τ1 ≥ 0 and τ2 ≥ 0 are time delays. A natural question
is how to further study the dynamics of multicompetitive
species with delayed effect on networks. In this paper, we

study the following competition system with time delays on
the network:

du
j

i (t)

dt
� 

m

l�1
d

i
jl 

0

− τ
u

l
i(t + s)dρi

jl(s)ds − u
j
i (t)  + riu

j
i (t) 1 − 

n

k�1
cik 

0

− τ
u

j

k(t + s)dηik(s)⎡⎣ ⎤⎦, t> 0,

u
j

i (s) � v
j

i (s)≥ 0, s ∈ [− τ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

in which all the parameters are positive, j ∈ J, i ∈ I, t> 0,
u

j
i (t) denotes the population density of the i-th species on

the j-th patch, and ρi
jl satisfies

ρi
jl(s) is nondecreasing on [− τ, 0],

ρi
jl(0) − ρi

jl(− τ) � 1, i ∈ I, j, l ∈ J.
(7)

-at is, (6) is a coupled system of m × n functional
differential equations. Evidently, there are m patches in
this model, the same species on different patches may
move from one to another due to di

jl > 0, and different
species on the same patch compete each other. So, (6) is a
competitive system on a weighted network or patch
environment.

To compare the literature results with the complex
phenomena in the real world, the stability of mathematical
models is important since the disturbance is inevitable.
Moreover, the controllability of many mathematical
models in finite time is also important, which partly
depends on the stability conditions of some states; see a

number of examples about switched nonlinear systems
[22–24]. Liu et al. [21] and Sun and Mai [18] studied the
stability of different steady states of (4) and (5) by using
the comparison principle and other techniques, which
also include some applications in population dynamics.
However, because of the intraspecific delayed effect, (6)
does not satisfy the comparison principle of classical
competitive systems, and the recipe in [21] does not work
directly. Moreover, since there are m × n functional dif-
ferential equations, the analysis of eigenvalues would be
complex if we analyse the stability by the characteristic
equation at the positive steady state, which may involve
m × n transcendental equations. -erefore, to study the
dynamics of (6), some other techniques are necessary.

Evidently, (6) may have several different steady states
under proper conditions ((1) may have four steady states
[1]), which reflect different biological sense in population
dynamics. Coexistence of competitive species has been
widely studied in many cases due to its important biological
backgrounds on the biodiversity [25, 26]. In this paper, by
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combining the technique in [21] with the contracting
rectangles in [6], we study the stability of the positive steady
state by giving some sufficient conditions. Moreover, we also
show some numerical results to support our theoretical
conclusions and present the complex dynamics of this
system when our stability conditions do not hold, which
implies the nontrivial role of time delays and partial de-
generate weights.

-e rest of this paper is organized as follows. In section 2,
we present some preliminaries on the stability via con-
tracting rectangles. In Section 3, we show our main results
on the stability of the unique positive steady state. Some
numerical examples will be given in Section 4. Furthermore,
we make a discussion in Section 5.

2. Preliminaries

In this paper, we use the standard partial ordering in
Rn, n ∈ N. -at is, if

u � u1, u2, . . . , un( ,

v � v1, v2, . . . , vn(  ∈ Rn
,

(8)

then

u≤ v if and only if ui ≤ vi, i ∈ 1, 2, . . . , n{ }. (9)

Moreover, u< v implies u≤ v, but u≠ v, and u≪ v im-
plies ui < vi, i ∈ 1, 2, . . . , n{ }. C(A,Rm), A ⊂ Rn, denote the
set of uniform continuous vector functions from A to Rn.

In this part, we recall the stability of the steady state by
contracting rectangles [6]. Consider the functional differ-
ential system

dvi(t)

dt
� fi vt( , i ∈ 1, 2, . . . , r{ }≕R, t> 0,

vi(s) � ]i(s) ∈ C([− τ, 0], [0,∞)), i ∈ R, s ∈ [− τ, 0],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

in which τ > 0 is the delay, v � (v1, v2, . . . , vr) ∈ Rr, and
fi: C([− τ, 0],Rr)⟶ R satisfies the following
assumptions:

(H1) -ere exists E � (E1, E2, . . . , Er) ∈ Rr with E≫ 0
such that fi(0) � fi(

E) � 0, i ∈ R, where · denotes the
constant-valued function in C([− τ, 0],Rr).
(H2) -ere exists a one-parameter family of ordered
intervals given by

Σy � [a(y), b(y)], (11)

such that a(0)≤E≤ b(0), and for 0≤y1 ≤y2 ≤ 1,

0≤ a(0)≤ a y1( ≤ a y2( ≤ a(1) � E � b(1)

≤ b y2( ≤ b y1( ≤ b(0),
(12)

where a(y) and b(y) are continuous in y ∈ [0, 1].
(H3) If u ∈ C([− τ, 0],Rr) and 0≤ v(s)≤ b(0) for
s ∈ [− τ, 0], then

fi(v): C([− τ, 0], [0, b(0)])⟶ R, (13)

is Lipschitz continuous in the sense of supremum
norm for each i ∈ R.

(H4) Σy is a strict contracting rectangle, namely, let

a(y) � a1(y), a2(y), . . . , ar(y)( ,

b(y) � b1(y), b2(y), . . . , br(y)( .
(14)

-en, for any y ∈ (0, 1) and v0(s) ∈ Σy, s ∈ [− τ, 0], we
have

fi v0( > 0 fi v0( < 0( , if ui(0)

� ai(y) ui(0) � bi(y)( , i ∈ R.
(15)

By contracting rectangles, we have the following con-
clusion [6].

Lemma 1. Assume that (H1)–(H4) hold. If
]i(s) ∈ [ai(y0), bi(y0)] for some y0 ∈ (0, 1) with
s ∈ [− τ, 0], i ∈ R, then

lim
t⟶∞

vi(t) � Ei, i ∈ R. (16)

3. Main Results

In this section, we study the long-time behavior of (6). We
denote

ai � ηii(0) − ηii(0− ), i ∈ I, (17)

and set

ηii(s) �
ηii(s), s ∈ [− τ, 0),

ηii(0− ), s � 0,


ηik(s) � ηik(s), i, k ∈ I, i≠ k.

(18)

In population dynamics, ai > 0 implies the existence of
the instantaneous self-limitation effect.

By the basic theory of functional differential equations
[6, 13], we have the following global existence of (6), in
which the unknown function is

u � u
1
1, u

2
1, . . . , u

m
1 , u

1
2, . . . , u

m
n− 1, u

1
n, . . . , u

m
n . (19)

Lemma 2. Assume that ai > 0, i ∈ I. If

v
j
i (s) ∈ [0,∞), s ∈ [− τ, 0], i ∈ I, j ∈ J, (20)

then (6) has a global solution such that

u
j
i (t) ∈ [0,∞), t> 0, i ∈ I, j ∈ J. (21)
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Moreover, if


j∈I

cij

cjj

< 2, i ∈ I, (22)

then (6) has a positive steady state

u
∗

� u
∗
1 , . . . , u

∗
1

√√√√√√√√m

, u
∗
2 , . . . , u

∗
n− 1, u
∗
n , . . . , u

∗
n

√√√√√√√√m

⎛⎝ ⎞⎠≫ 0. (23)

Once the global existence is obtained, we shall prove
the following result on the global asymptotic stability of the
positive steady state, which also implies the uniqueness of
the positive steady state of (6).

Theorem 1. Assume that ai > 0, i ∈ I, such that (20) holds
and


j∈I

cij

cjjaj 
< 2, i ∈ I. (24)

For each i ∈ I, if there exists ji ∈ J such that v
ji

i (0)> 0,
then

lim
t⟶∞

u
j
i (t) � u

∗
i , i ∈ I, j ∈ J. (25)

In the following, we shall prove Jeorem 1 by several
lemmas. -e first is the following result on the positivity of
solutions.

Lemma 3. Assume that ai0
> 0 for some i0 ∈ I. If

v
j0
i0

(0)> 0 , for some j0 ∈ J, (26)

then u
j

i0
(t)> 0, t> 0, j ∈ J, and

limsup
t⟶∞

u
j

i (t)≤ ciiai( 
− 1

, i � i0, j ∈ J. (27)

Proof. In the proof, we fix i � i0 for simplicity. By
di

jl > 0, j, l ∈ J, it is clear that u
j
i (t)> 0, t> 0, j ∈ J. We now

prove (27) by Lemma 2. From the positivity, we have

du
j

i (t)

dt
≤ 

m

l�1
d

i
jl 

0

− τ
u

l
i(t + s)dρi

jl(s)ds − u
j
i (t)  + riu

j
i (t) 1 − ciiaiu

j
i (t) , t> 0,

u
j
i (s) � v

j
i (s)≥ 0, v

j0
i (s)> 0, for some j0 ∈ J, j ∈ J, s ∈ [− τ, 0].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

Further consider

du
j
i (t)

dt
� 

m

l�1
d

i
jl 

0

− τ
u

l
i(t + s)dρi

jl(s)ds − u
j
i (t)  + riu

j
i (t) 1 − ciiaiu

j
i (t) , t> 0,

u
j
i (0) � v

j
i (0)≥ 0, v

j0
i (0)> 0, for some j0 ∈ J, j ∈ J, i ∈ I, s ∈ [− τ, 0].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(29)

-en, the comparison principle leads to

u
j

i (t)≥ u
j

i (t)> 0, j ∈ J, t> 0, (30)

since di
jl > 0, j, l ∈ J, implies that (29) is a cooperative, ir-

reducible system. By the theory of monotone dynamical
systems [6], we have

lim
t⟶∞

u
j
i (t) � ciiai( 

− 1
, j ∈ J. (31)

Using the comparison principle of cooperative systems,
we have (27) for such a fix i ∈ I. We complete the proof.

Consider the initial value problem

dwi(t)

dt
� riwi(t) 1 − 

n

k�1
cik 

0

− τ
wk(t + s)dηik(s)⎡⎣ ⎤⎦, t> 0, i ∈ I,

wi(s) � ωi(s)> 0, s ∈ [− τ, 0], i ∈ I.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)
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After direct calculation, we have the following conclu-
sion by Lemma 1 (we also refer to Smith [6], Lemma 7.4, and
Appendix). □

Lemma 4. Assume that (24) holds. Define

ai(y) � yu
∗
i , bi(y) � yu

∗
i +(1 − y) ciiai( 

− 1
+ ε , y ∈ [0, 1],

a(y) � a1(y), a2(y), . . . , an(y)( , b(y) � b1(y), b2(y), . . . , bn(y)( , y ∈ [0, 1],
(33)

with ε> 0. If there exists ε0 > 0 such that

ωi(s) ∈ 0, ciiai( 
− 1

+ ε0 , s ∈ [− τ, 0], i ∈ I, (34)

and a(y), b(y) with ε � ε0 satisfy (H3) and (H4) in (32), then

lim
t⟶∞

wi(t) � u
∗
i , i ∈ I. (35)

Lemma 5. Assume that (24) holds and ε0 > 0 satisfies Lemma
4. 4en, there exist t0 > 0 and y0 > 0 such that

u
j
i t0 + s(  ∈ ai y0( , bi y0(  , i ∈ I, J ∈ J, s ∈ [− τ, 0], ε � ε0.

(36)

Proof. By (27), we have t0 > τ such that

u
j
i (t + s)< ciiai( 

− 1
+ ε0, i ∈ I, j ∈ J, s ∈ [− τ, 0], t> t0.

(37)

Due to the positivity of solutions in Lemma 3, the result
is true by selecting y0 > 0 small enough. -e proof is
complete.

By what we have done, we now give the proof of -e-
orem 1. □

Proof. Define

A
j

i (y) � ai(y), B
j

i (y) � bi(y), i ∈ I, j ∈ J, y ∈ [0, 1],

(38)

with ε0 > 0 small enough. By direct analysis, we can verify
that (A

j

i (y), B
j

i (y)) satisfy (H3) and (H4) for (6) if (24)
holds (we present the calculation in Appendix). By Lemmas
1 and 5, we complete the proof. □

4. Numerical Simulation

In this part, we simulate the dynamics of (6) when two
patches and three species are involved by selecting some
parameters, which may show the plentiful dynamics of such
a delayed system without monotonicity. Since ρi

jl(s) in (6)
do not change the stability in our results, we shall not
consider the delayed effect modeling the spatial movement
among different patches.

Example 1. We first try to simulate the dynamics of a system
satisfying -eorem 1. For the purpose, we consider the
following delayed system:

du
1
1(t)

dt
� u

2
1(t) − u

1
1(t)  + u

1
1(t) 1 − u

1
1(t) − 0.2u

1
1(t − 1) − 0.1u

1
2(t − 1) − 0.1u

1
3(t − 1) ,

du
2
1(t)

dt
� 2 u

1
1(t) − u

2
1(t)  + u

2
1(t) 1 − u

2
1(t) − 0.2u

2
1(t − 1) − 0.1u

2
2(t − 1) − 0.1u

2
3(t − 1) ,

du
1
2(t)

dt
� u

2
2(t) − u

1
2(t)  + u

1
2(t) 1 − 0.1u

1
1(t − 1) − u

1
2(t) − 0.1u

1
2(t − 1) − 0.1u

1
3(t − 1) ,

du
2
2(t)

dt
� 2 u

1
2(t) − u

2
2(t)  + u

2
2(t) 1 − 0.1u

2
1(t − 1) − u

2
2(t) − 0.1u

2
2(t − 1) − 0.1u

2
3(t − 1) ,

du
1
3(t)

dt
� u

2
3(t) − u

1
3(t)  + u

1
3(t) 1 − 0.3u

1
1(t − 1) − 0.1u

1
2(t − 1) − u

1
3(t) − 0.1u

1
3(t − 1) ,

du
2
3(t)

dt
� 2 u

1
3(t) − u

2
3(t)  + u

2
3(t) 1 − 0.3u

2
1(t − 1) − 0.1u

2
2(t − 1) − u

2
3(t) − 0.1u

2
3(t − 1) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)
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with t> 0 and initial condition

u
1
i (s) � 0.05, s ∈ [− 1, 0],

u
2
i (s) � 0, s ∈ [− 1, 0],

i � 1, 2, 3.

(40)

Evidently, (39) satisfies (24) and has a unique positive
steady state, of which the approximate value is

(0.7143, 0.7857, 0.6429, 0.7143, 0.7857, 0.6429). (41)

From our main result, we see that the positive steady
state is asymptotic stable, which is also illustrated in Figure 1.

Example 2. We now consider the possible extinction of
some unknown functions when -eorem 1 does not hold
and study the dynamics of the following delayed system:

du
1
1(t)

dt
� u

2
1(t) − u

1
1(t)  + u

1
1(t) 1 − u

1
1(t) − 0.2u

1
1(t − 1) − u

1
2(t − 1) − u

1
3(t − 1) ,

du
2
1(t)

dt
� 2 u

1
1(t) − u

2
1(t)  + u

2
1(t) 1 − u

2
1(t) − 0.2u

2
1(t − 1) − u

2
2(t − 1) − u

2
3(t − 1) ,

du
1
2(t)

dt
� u

2
2(t) − u

1
2(t)  + u

1
2(t) 1 − 0.1u

1
1(t − 1) − u

1
2(t) − 0.1u

1
2(t − 1) − 0.1u

1
3(t − 1) ,

du
2
2(t)

dt
� 2 u

1
2(t) − u

2
2(t)  + u

2
2(t) 1 − 0.1u

2
1(t − 1) − u

2
2(t) − 0.1u

2
2(t − 1) − 0.1u

2
3(t − 1) ,

du
1
3(t)

dt
� u

2
3(t) − u

1
3(t)  + u

1
3(t) 1 − 0.3u

1
1(t − 1) − 0.1u

1
2(t − 1) − u

1
3(t) − 0.1u

1
3(t − 1) ,

du
2
3(t)

dt
� 2 u

1
3(t) − u

2
3(t)  + u

2
3(t) 1 − 0.3u

2
1(t − 1) − 0.1u

2
2(t − 1) − u

2
3(t) − 0.1u

2
3(t − 1) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

with t> 0 and initial condition (40). Evidently, this system
does not satisfy (24), and its dynamics may be different from
our -eorem 1, which is presented in Figure 2.

Example 3. -e weights among the same species partly play
the role of irreducibility, which leads to the possible syn-
chronism. What will happen if the condition does not hold?
We consider the dynamics of the following delayed system:

du
1
1(t)

dt
� d1 u

2
1(t) − u

1
1(t)  + u

1
1(t) 1 − u

1
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1
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2
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2
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2
2(t − 1) − 0.1u
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du
1
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dt
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1
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1
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1
1(t − 1) − u

1
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1
2(t − 1) − 0.1u

1
3(t − 1) ,

du
2
2(t)

dt
� u

2
2(t) 1 − 0.1u

2
1(t − 1) − u

2
2(t) − 0.1u

2
2(t − 1) − 0.1u

2
3(t − 1) ,

du
1
3(t)

dt
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2
3(t) − u

1
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1
3(t) 1 − 0.3u

1
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1
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1
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1
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du
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)
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with t> 0 and initial condition (40), and d1, . . . , d4 are
positive.

In this system, the weights may be zero, and it does not
satisfy our condition. By simulation in Figures 3 and 4, we
may observe different persistence-extinction phenomena
with partially degenerate weights.

Example 4. Finally, we try to explore the influence of delay
size. In the literature, some nontrivial results of the delay size
have been reported even in scalar equations [2]. We consider
the dynamics of the following delayed system:

du
1
1(t)

dt
� u
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1
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1
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1
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1
2(t − τ) − 0.1u

1
3(t − τ) ,

du
2
1(t)

dt
� 2 u

1
1(t) − u

2
1(t)  + u

2
1(t) 1 − 0.2u

2
1(t) − u

2
1(t − τ) − 0.1u

2
2(t − τ) − 0.1u

2
3(t − τ) ,

du
1
2(t)

dt
� u

2
2(t) − u

1
2(t)  + u

1
2(t) 1 − 0.1u
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2
1(t − τ) − 0.1u
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2
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2
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du
1
3(t)
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� u

2
3(t) − u

1
3(t)  + u

1
3(t) 1 − 0.3u

1
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1
2(t − τ) − 0.1u

1
3(t) − u

1
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du
2
3(t)
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� 2 u
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3(t)  + u

2
3(t) 1 − 0.3u
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1(t − τ) − 0.1u

2
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

with τ > 0, t> 0, and initial value condition

u1(s) � u2(s) � u3(s) � 0.05, s ∈ [− τ, 0],

u4(s) � u5(s) � u6(s) � 0, s ∈ [− τ, 0].
(45)

By our simulations in Figure 5, we find that large delay
may lead to the instability of the positive steady state, while

the small delay may be harmless to the stability of the
positive steady state.

5. Discussion

In this paper, we studied a delayed model on a weighted
network, which may be regarded as a delayed competition
model on patches. We established the global stability of the
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Figure 1: Simulation of (39) with (40).
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unique positive steady state by constructing contracting
rectangles under condition (24). Moreover, we gave some
numerical examples to model the dynamics of (6). From
Examples 1–4, we found that the dynamics of this non-
monotone system may be very complex, which includes the
stability of different steady states. In particular, if the weight
coefficients among some patches are zero, the uniform
convergence on different patches may be false even if (24)
holds, and we observed this from Example 2.-at is, weights
among different patches may affect the dynamics of this
system, and the role of weights should be further studied.

Moreover, if (24) does not hold, then the stability of the
positive steady state may depend on the size of time delay,
which is partially motivated by the dynamics of the classical
delayed logistic model [27]. From Example 4, we observed
different convergence results with different delays. To fur-
ther show the effect of time delay in such a delayed model is

an interesting question. However, with the increase in the
number of unknown functions, the analysis of eigenvalues
becomes complex, and this is a challenging question. We
shall further consider these questions in our future works.

Finally, in many other mathematical models including
uncertain discrete-time descriptor systems with multiple
time-varying delays and parametric uncertainties [28],
nonholonomic systems with time-varying delays and non-
linear disturbances [29], and uncertain chaotic systems with
nonlinearity and time delay [30], it is important to estimate
the dynamics in finite time. Due to the effect of time-varying
delays, this is not a trivial work and deserves further in-
vestigation. Because the contracting rectangles could reflect
certain uniform convergence, it is possible to consider the
finite-time dynamics of these important models by con-
tracting rectangles, at least when the initial data satisfy
proper uniform conditions in the delayed interval.
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Figure 2: Simulation of (42) with (40).
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Figure 5: Simulation of (44) with (45) by taking different time delays.
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Appendix

In this part, we verify the definition of contracting rectangles
in (6) and (32). Since the verification of (32) can be obtained
by that of (6) and can be found in [6], we only verify the
result on (6).

We first verify the conclusion on A
j

i (y) in (H4); if
u

j

i (t) � A
j

i (y), y ∈ (0, 1), and

u
l
k(t + s) ∈ A

j
i (y), B

j
i (y) , k ∈ I, j ∈ J, s ∈ [− τ, 0],

(A.1)

for some t≥ 0, then

1 − 
n

k�1

cik

ckkak


0

− τ
dηik(s)> 0, (A.2)

by selecting ε> 0 small enough since (24) implies

1 − 
n

k�1

cik

ckkak


0

− τ
dηik(s)> 0, (A.3)

which also implies the admissibility of ε0 > 0 in the proof of
-eorem 1.

We now verify the conclusion on B
j
i (y) in (H4); if

u
j
i (t) � B

j
i (y), y ∈ (0, 1), and

u
l
k(t + s) ∈ A

j
i (y), B

j
i (y) , k ∈ I, j ∈ J, s ∈ [− τ, 0],

(A.4)

for some t> 0, then
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(A.5)

by ε> 0. Due to the arbitrary of i and j, we finish the
verification.
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