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In this study, the authors first develop a direct method used to solve the linear nonhomogeneous time-invariant difference
equation with the same number for inputs and outputs. Economic cybernetics is the crystallization for the integration of
economics and cybernetics. It analyzes the stability, controllability, and observability of the economic system by establishing
a system model and enables people to better understand the characteristics of the economic system and solve economic op-
timization problems. The economic model generally applies the discrete recurrence difference equation. The significant analytic
approach for the difference equation is the z-transformation technique. The z-transformation state of the economic cybernetics
state-space difference equation generally is a rational function with the same power for the numerator and the denominator. The
proposed approach will take the place of the traditional methods without all annoying procedures involving the long division of
some complicated polynomials, the expanded multiplication of many polynomial factors, the differentiation of some complicated
polynomials, and the complex derivations of all partial fraction parameters. To highlight the novelty of this research, this study
especially applies the proposed theorems originally belonging to engineering to the field of economic applications.

1. Introduction

Linear nonhomogeneous time-invariant difference equa-
tions are ubiquitous in many engineering and mathematical
fields [1]. For example, they appear in the engineering theory
of discrete-time systems and control theory of discrete-time
systems as fundamental models of the discrete-time systems
[2-4], and discrete-time signal processing as fundamental
recurrence equations of sampled signals [5]. In algebraic
combinatorics, they are also one of the most significant
topics, tying different special sequences with their generating
functions [6, 7].

It is well known that the system theory, the cybernetics,
and the information theory are called the three theories of
science today and have become the basic theories of the
development for natural sciences and social sciences.
According to the cybernetic view, the economic system is an
organized and controlled system, and a series of economic

activities such as production, consumption, distribution,
and exchange are closely related. According to the scope of
economic activities and the difference in economic structure,
it can be divided into two categories: macroeconomic system
and microeconomic system. Economic systems are often
large systems that are complex. To achieve significant goals
of optimal development, balance between supply and de-
mand, optimal allocation of resources, and sustainable
economic development, accurate quantitative analysis of the
operation for the economic system must be conducted under
the guidance of economic theory. Adjustment, control,
decision-making, and planning are carried out, on the basis
of which the total amount and structure of economic de-
velopment are more reasonable. Obviously, economic cy-
bernetics provides basic theory and more advanced methods
for us to study complex economic systems.

The applications of economic cybernetics in the oper-
ation management and control of economic systems are
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mainly manifested in the following three aspects [8]:

(1) Economic planning. In the macroeconomic system,
to ensure the stability, optimal and sustainable de-
velopment of the national economic system, we not
only need timely regulation of the fluctuations in the
economic operation, but also make scientific me-
dium-term and long-term planning for the operation
of the economic system. Economic cybernetics is
a powerful tool for formulating long-term devel-
opment plans for economic development strategies,
economic restructuring, economic operations, and
economic management system reforms. In terms of
microeconomic operation, it is necessary to improve
the management level of enterprises, to improve the
efficiency for input and output of enterprises, to
make the development of enterprises conform to the
direction of national industrial development, and to
make the development of enterprises into the in-
ternational track. Economic cybernetics is also an
important tool for scientific development planning.

(2) Structural reform of the economic system. For the
macroeconomic system and the microeconomic
system, the operational structure of the system needs
to be evaluated from the total amount and structure.
In a sense, the structures of the system are more
important, such as the first industrial structure, in-
dustry structure within an industry, product struc-
ture within the industry, savings and consumption
structure, resource supply structure, investment
structure, and consumption structure. In this regard,
we can use economic cybernetics to establish a sys-
tem model that analyzes the internal state variables
of the system, so as to effectively avoid the obstacles
for the economic system operation caused by the
irrational structure, and provide the improvement of
the economic system structure.

(3) Optimization of the operation of the economic
system. The ideal operational goal of the economic
system is to steadily increase the total amount of the
various proportional structures within the system.
Economic cybernetics analyzes the stability, con-
trollability, and observability of the model by
establishing a system model. It enables people to
better understand the characteristics of the economic
system and solve economic optimization problems.

Economic cybernetics is the science that applies cybernetics
to study the laws of social economic system activities. It provides
an efficient method for studying the function and efficiency of
the socioeconomic system and plays an important role in
improving the decision-making level of the socioeconomic
system and promoting economic and social development.
Economic cybernetics in the macroeconomic aspects of pop-
ulation control, ecological balance, resource optimization al-
location, analysis of economic fluctuation cycle, fiscal and
monetary policy design, equilibrium price calculation, and
forecasting and in the microeconomic aspects of optimization
for production resource allocation, enterprise structure reform,
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enterprise economic benefit analysis, supply and demand price
analysis, and forecasting has good application prospects.
Generally speaking, whether it is a macroeconomic system or
a microeconomic system, the variables in the system are
counted according to the discrete-time such as year, season,
month, and day, which is consistent with the actual situation.
Therefore, the economic cybernetics model generally adopts the
discrete-time form, and its mathematical form of the state-space
equation is the first-order difference equation x(k+1)=
Ax(k)+Bx(k). System mathematics model is a system of dif-
ference equations in addition to economic cybernetics model
[9, 10], especially applied to short- and long-term repeated game
behaviors of two parallel supply chains based on government
subsidy in the vehicle market [11], supply chain coordination in
the presence of uncertain yield and demand [12], and a time-
based pricing game in a competitive vehicle market regarding
the intervention of carbon emission reduction [13], as well as
HIV biomedical systems [14] and discrete-time systems [15].
The main mathematical tool for solving the difference equation
is the z-transformation in the signal system theory [16].

In this study, we develop a direct method used to solve
the linear nonhomogeneous time-invariant difference
equation with the same number for inputs and outputs. The
z-transformation state of the economic cybernetics state-
space difference equation generally is a rational function
with the same power for the numerator and the de-
nominator, and then the boresome processes involving the
long division of both complicated polynomials, the ex-
panded multiplication of all polynomial factors, the differ-
entiation of both complicated polynomials, and the complex
derivations of all partial fraction parameters are inevitable
for existing traditional methods. For the rational function
with the same power of the numerator and the denominator,
the main traditional methods that exist are the following: (1)
long-division and partial fraction expansion method [17];
(2) divided by z and partial fraction expansion method
[18-24]; (3) direct long-division method [20, 21]; (4) in-
version integral method [21, 25-27]. The disadvantages of
the long division and partial fraction expansion method
involve three troublesome operations: the multiplication of
all polynomial factors, the long division of both complicated
polynomials [20, 21], and the derivations of the complicated
partial fraction expansion variables. According to the z
transformed table, it is obvious to see the fact that almost all
z-transformation formulas have a factor z in the numerator.
To consist with the Laplace transform for continuous-time
system via partial fraction expansion technique, the divided
by z and partial fraction expansion method can be applied,
and the function F (z) will be rewritten as F (z)/z. However,
this special F(z) with z-factor will increase the burden for
involving two troublesome operations: the multiplication of
all polynomial factors and the differentiation of two com-
plicated polynomials [18-24]. The direct long-division
method only yields some finite terms of F(k) and also needs
two troublesome operations: the multiplication of all
polynomial factors and the long division of two polynomials
[20, 21]. The disadvantages of the inversion integral method
involve two tedious operations: the multiplication of all
polynomial factors and the differentiation of both complex
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polynomials [21, 25-27]. To solve these difficulties of the
existing traditional approaches, we have developed more
direct theorems with shorter solving time than the tradi-
tional methods. Finally, to show the practical value of this
study, we use the proposed direct method to solve the fa-
mous economic cybernetics in population prediction,
analysis of market price balance, and loan economic ac-
tivities. Major contributions of this study are summarized as
follows:

(1) This study first develops a direct method used to
solve the linear nonhomogeneous time-invariant
difference equation with the same number for inputs
and outputs.

(2) In this study, the proposed approach takes the place
of the traditional methods without all annoying
procedures involving (i) the long division of some
complicated polynomials; (ii) the expanded multi-
plication of many polynomial factors; (iii) the

a,z" +a, 2"+ +az' +a _ (a,/b,)2" + (a, ,/b)z" " +

differentiation of some complicated polynomials;
(iv) the complex derivations of all partial fraction
parameters.

(3) To highlight the novelty of this research, this study
especially applies the proposed theorems originally
belonging to engineering to the field of economic
applications.

2. Main Results

Some simple direct theorems will be shown here to solve the
inverse z-transformation for a rational function with the
same power of the numerator and the denominator.

Theorem 1. Given a rational function F(z) with distinct real
poles, where the numerator and the denominator are in the
same power

+ (al/b,,)z1 + (ay/b,)

F(z) =", — - b n t
b2"+b,,2" +---+bz +b, 2+ (b, /b,)z" +---+(b/b,)z +(by/b,)
_ (an/bn)zn+(an—1/bn)zn_l + ..+(a1/bn)zl +(a0/bn) . N(Z) (1)
(z-p)(z=p2)- (z- (z=p1)(z=p2)- (- pn)
=<@>+ ky + ks R y
b,)] z-p z-p, Z= Py
— % n an—l n—1 ﬁ 1 @
N(z)_<bn)z +( b, )z + +(bn>z + bn>’ (2)
N(z)
ki = z - |z: > 3
S IR AR D ®)
N(z)
ky = z - Iz: > 4
RS [y NN FEr R @
N (2)
n= 2= Pn |z: . 5
G- p)G-phn(z-p) & P Q
After long division, F(z) can be written to be where
a a /zn—1+a 'z"fz+---+a'zl+a' kllz N,(z) (Z_Pl)l ,
F(z)=<—")+ < - — -p) =P (2= py) =0
b, (z=p1)(z=p2)s--o> (2= P) ' 2( |
N'(z
' ky = z2=p)lep,  (8)
()| . PG e p) & Pl
PZ) (Z_pn) N’
K — (2) (e=p )
( ) |: R - kf,l ] " (Z_Pl)(Z_Pz)"">(Z_Pn) e
cp 2o Pz z2=pa]
, ) ' ne2 R Then, we can get
N'(z)=a, 2" ' +a,2" "+ +a/z' +a,, (7)

ky =kl ok, =kb. ..k, =k, 9)
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that is, the long division operation truly is not necessary. The
inverse transformation of F(z) is

f(k) = (Z")a(k) +ky (p) g (k= 1)+ ky () T (k= 1)+ -+ K, ()" Mg (k= 1)

n

(10)
- (%)6(10 + kl (pl)kus (k)|k=k71 + k2 (pz)kus (k)|k=k71 Foeee kn (pn)kus (k)|k=k,1.
Proof. From (1) and (6), we get Then,
N (z) =(%>(z—pl)(z—p2),..., (z-p,)+N'(2).
(11)
' N'(2)
k - - —
1 (Z_pl)(z_pz),...,(Z—pn) (Z pl)lz—pl
_ (@) (2= p1)(z = pa)- o (2= ) + N1 (2) o
(z=p)(Z=p2)s--r (2= D) P)lecp,
- N (z2) )
= (Z _pl)(z —Pz)’- Cy (z _pn) (Z _pl)lz:p1 = k1>
' N'(2)
k - - —
2 (z=p)(z=py)s--s (2= Pp) (z Pz)|z,p2
_ (an/bn)(z_pl)(z_pz),...,(Z—pn)+N,(z) ) )l (12)
(Z_P1)(Z—p2),...,(z—pn) Z = Pa)lz=p,
N(z)
= - o
(Z_Pl)(Z—Pz),...,(Z—pn) (Z P2)|pr2 2
! N'(2)
k - - _
! (Z_Pl)(z_Pz),...,(Z—pn) (Z pn)'z_Pn
_ (a,/b,)(z = p1)(z=py)s--o> (2= p,) + NI (2) =)
(Z_P1)(Z—p2),...,(z—pn) Pn z=p,
N(z)
) S
(Z_pl)(z_pz),...,(fz-pn) (Z Pn)'zfpn n
Define a rational function with single pole, g(k) = ResidueS[L (zkl)]’ (14)
G(Z) :Z—p' (13) 2

Utilizing the inverse z-transformation theorem of where Residues[1/z — p(z*"")] denote the sum of residue
Cauchy residue calculus yields values for the function 1/z — p (z¥~1). For nonpositive values k,
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1 Therefore, from equations (1) and (6), we get the inverse
g(k) = Residues|:(z - p)zl_k:| z-transformation of F(z) as
a, f—
= Resigue ( o F + Residue ﬁ f k) = (b—)é(k) +ky (py)" ug (k= 1)
z= z—-p)z z=p z-p)z n
R L 4@ +y (o) g (k= 1) + -+ Ky () g (e = 1),
T (-k)!dzCh z - p|z:° T 0) dz© (z)l—klzzf’ (17)
1 1
=R (k) (=k=1),..., Q) (1)) —
’ (p) Theorem 2. Knowing a rational function F(z) with multiple
1 poles, where the numerator and the denominator are in the
+ W =0. same power,
p
(15)

For positive values k,

g(k) = Residues[ (zkl)] = Residue

1 k-1
(z-p) pr (z—p)(z )

1 4O 1 ) )
=0 &0 @& )E Pl =)

(16)

-1

a2 +a, 2" +raiz +ay  (ab,)e +(a, 1 /b,)2" " + -+ (ayb,)zt + (agh,)

F(z) =

bnzn + bn—lzn_l +eeet blzl + bO - 2"+ (bn—l/bn)zn_l et (bl/bn)zl + (b()/bn)
_ (@,/b,)2" + (@y1/b)" "+ + (a/b,)2" + (ag/by) _ N(z) (18)
- (z=p)(z=p2)-- (2= par) (2= P.) T Ge-p)z-p)(z-p)(z-p,)
= % kl kZ kn—r A1 Az Ar
B b" ’ Z—p1+Z—p2+“'+Z—pn_,+ Z_pr+ (Z_ pr)2+“.+ (Z_ pr)r
N (z2)
ky = r - z=p.>
G p e e p) ey P
N (z)
k = T - |z: >
2" z-p)(z=p)r- (z-pu)(z— D)) (2 = P2)lo=p,
_ N (z) (e-p )|
n—r (Z_pl)(z_pz),”., (Z—Py,_r) (Z— pr)r n—r/)lz=p, >
1 d’ N(2) ,
A =020 T\~ = FPr) lz=p>
0 G p) e e pa) - py P b (19)
_1d N(2) .
! “dzl (Z_pl)(z_pZ)""’(Z_Pn—r)(z_pr)r br “he
1 4" N(2)

A = oY
Y -DaZ T (z-p)(z=po)ss (2= o) (2= p) (2= p) 1o,

— % n a1 n-1 ﬁ 1 @
vors (i) () () )
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After a long division, F(z) can be assumed to be

1 _n—1 1 _n-2 11 li
>+ an +an_2z +--taz +ag

= <bn =) P)r (e Pur) P

(Z_) ' [ p)(z - pz),-l\-]i (z()z ~ pur) (2~ pr)’] (20)

( > ky k; ks Aj A Al
Fee + + St =11
Z- D Z‘Pz Z= Pur zZ - P, (Z_P,) (Z_pr)

N'(z)=za, 2" ' +a, 2" >+ - +alz" +a, (21)
where
, N'(2)
k, = (2-p |z= ’
N S TS WU s [ (L
, N'(2)
k, = (2-D |z: )
e P e p ) e py P
) N'(2)
kn7r= 7 \Z = Pur |Z: ’
PG =P e py & P leon
. (22)
, 1.d N'(z) .
Ar=—— 7\Z = Pr Iz:’
N T N oy e A
, 1d N'(2) ,
Ar— =751 2 — D |z: >
U GG o p) e py & )
1 4" N'(z)
Al = (2= D) ey -
T G p) e e pe) -y P b
Then, we can obtain that is, the long division operation truly is not necessary. The
, , , inverse transformation of F(z) is
ky =k, k,=ky... .k, =k,

/ / (23)
Ar = AT’Ar—l = Ar—l’ e Al = Al’
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£k = (Z")Mk) thy () Mg k= 1)+ () g (k=) 4k (P ) (k= 1)
k-1 1 k-2
+ A, (p,) us(k—1)+A2<ﬁ>(k—l)(p,) ug(k—1)+---

1 k—1-(r-1)
+Ar<m)(k—1)(k—2)---(k—l—(r—2))(pr) ug(k—1)

(24)
) (Z”)&(k) e (1) (R + ey (2) b (R)icgy + -+ + Koy (P ) 11 () gy
k 1 k2
+ Ay (pr) vy (R)liogms + A2<ﬁ> (k=1)(p,) 2uy (F)jogpuy + - -
1 o
* Ar(—(r - 1)!) (k) (k =1, (k= (r = 2) (p,) " Y1ty () cy .
Proof. Applying Theorem 1 yields Then,
k,=ki,k,=kj,..., k,., = k,_,,. From (18) and (20), we get
M@= (Z_) (z=p)(z=p) -+ (2= Pur) (2= ) + N'(2).
(25)
L d N'(2) .
T 00d (z-p)(z- P (z=pur)(z= ) Pr) le=p,
14 (a,/b,)(z=p1)(z=Ps)s---» (z=p,)(z=p,) + N1 (2) oY
0! dz’ (z=-p)(z=ps)s- s (2= Pur)(z- p,) Pr) lz=p,
1 do N(Z) .
T 0 dgd r “Pr) lz=p, = Ar)
0 c=p)G—p )= py & ) =
;1 d N’ (z) .
Ar=q 00 r ~ FPr) lz=
R O D CR (z=ppr)(z= p,) (2= pe) L,
1.4 (/b)) (z-p)(z-pa)-os (z—pnf,)(z—pr)%N/(z)( o] 26)
IR G [ S RN CRy S [ R S e
1 d' N(z) )
1 st T\< 7 Pr) lz=p, = Ar_ >
T =S | s W | e W
. 1 d(i’fl) N/ (Z) .
Y -Ddz T (z-p)(z-pa)s- e (z=pur)(z-p.) (2= ) lz=,
1 d" ™ (a,b,)(z = p1)(z=p2)s-- - (z=Ppy)(z=p,) + N1 (2) o)
(-1l (z=p1)(z=p2)s-- o (z-poy)(z—p,) Pr) lz=p,
1 4" N(z)

= -0 ) ., = A,
Dl e p) = (= p) (o= p) & B e =
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Define 1
( ) 1 g(k) = Residues[(z_—p)nﬂ (Zkl)]. (28)
G(z) =———F 27
(Z _ p)n+1 ( )
Utilizing the inverse z-transformation theorem of
Cauchy residue calculus gets

For nonpositive values k,

. 1 . 1 . 1
g(k) = Residues [W} = Rezsigue W + Regi%lue W
_1d” o dh 1
o0 n) 1-k'z= _ - n+112=0
nldz™ Z1-k=°F ()l dz R (7 - py™*! (29)
1 o
=J(k—(1))(k—(2)),~--,(k—(n—l))(k—n)(P)k :
+(—1)‘"‘1(_k)l (n+ W)+ Q),..., (n+ (~k-1))(n-k)(p) "' =0.
For positive values k,
k-1 k-1
g(k) = Residues[zinﬂ] = [Residue Z—nﬂ
(z-p) =r (z-p)
14" 1 o
— g @y = () k= DKk = 20 (= = D) G- ) () (30)
1 o
—(o) = D=2 (k= (= D) =) (p)
Therefore, from equation (19), we get the inverse
z-transformation of F(z) as
£ (32000 4k, (p) k1)
+ k2 (pZ)k_lus (k D+t kn—r (pn—r)k_lus (k - 1)
(31)

+ A (Pr)k_lus(k -1+ A2<%> (k- 1)(p,)k_2us (k=1)+---+

1 B B o k=1-(r—1) B
Ar((r_l)!>(k )(k=2),.... (k=1-(r-2)(p,) u, (k- 1).
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are in the same power,

F(z) =

9
Theorem 3. If a rational function F(z) is given with complex
conjugate poles, where the numerator and the denominator
a2 +a, 2"+ raz +ay  (alb,)e" +(a,/b,)" " + -+ (ay/b,)z + (ay/b,)
b2" +b, 2"+ + bz +b, 2"+ (b, /b,)2" " + -+ (by/b,)Z" + (by/b,,)
(ay/b,)2" + (a,_11b,)2" " + -+ (a,/b,)z" + (ay/b,) (32)

N(z)

(z=p)(z=Ps)s- s (2= Pua) (2 + 260,2 + w})

B (z-p)(z=p2)s--os (2 Pn—z)(zz + 28w,z + “’i),

N(z) = (%)z” +(ag"1>z”_1 + ---+(%)z1 +(

then, we can obtain

F(z):<ﬂ)+[L+L+
bn Z2-p1 Z2- P

where a,/b,, is obtained by directly observing the ratio of the
highest order coefficient of the numerator and the highest
order coefficient of the denominator, and the parameters of

%

b

k,_, Az +B
ot = 2 )P
Z= Py \2°+2w,z+ w,

>, (33)

(34)

the partial fraction will be shown as follows without the long
division operation:

k= o -py)
)@ e pe) @ e v ) & P e
B N(z)
b TG )P @ e a) C Pl
_ N(z) B
M )G (o) @+ gz v ) & Prdleen
(35)
B{M] _K@) ky ko @]wz
(_Pl) e (_Pn—z) b, P P P "
A= [ (an/bn) + (an—l/bn) toee Tt (al/bn) + (ao/bn):|
(1 _Pl)"' (1 _Pn—z)
| Gn ky K, B 2
[bnle—p1 1-p,., 1+2€wn+wi](1+2£wn+w")'
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The inverse transformation of F(z) is

f k) =(%)6<k) hy (p) k= 1) e (pa) (= Dt ke (pc) (e = 1)

n

B-Alw,

_g2,2
w, wn

+ A(w,)" cos ((k - 1O)u, (k- 1) + ( ) (w,)* "sin ((k - 1)O)u, (k- 1)

= a,8 (k) + Ky (p1) te (R)icimr + o (P2) 1t )iy + -+ + Koy (P ) 11, (i (36)

B—Afw) () i ((R)O)u, (R 1,

2

2 2
w, — & w,

+ Ay cos (WO, (R s + (

Proof. From Theorem 1, applying immediately the tradi-
tional partial fraction approach without the long division
operation yields

= ky ky o ke Az+B
F(z) _(bn) +[z ~p = s e o +<22 2wt wﬁ)]’ (37)
_ N(z)
ky = (z=p)(z=p2)s--s (2= Ppa) (2% + 28w,z + w2) (Z—P1)|z:pl,
_ N(z)
s (z=p)(z=P2)s- s (2= Ppa) (22 + 28w,z + W2) (2 = p2)le=p, (38)
N(z)

b2 = o)) o) (@ Rz v ) & Prleep

aylb,
Substituting z=0 and z=1 individually into (32) and B= [ & )( 0 ()_ )]
(34) gets P1)-- > (Pu2
(ao/bn) _(aﬂ) _&_& ..... ks +£ _[(&> _h_& ..... @] w2

(=p1)s- s (=Pua)wn \bu) P1 P Pus @) b,) P P Pua] "

(a,/b,) + (a, /b, + -+ (a,/b,) + (ay/b,,) A [ (a,/b,) +(a,1/b,) + -+ + (a1/b,) + (ao/bn)]
(1=p1)soos (1= pua)(1+ 280, + @7) (1=p1) (1= pua)

O, kL ke, A+B _[@+ o I, T B 2]
b, 1-p 1=-p,y 14280, + 0 b, 1-p 1=pun 142w, +

(39) . (1 + 2w, + wfl)

Then, (40)

From (37), we get
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a, k, k, k, ., Az +B
F(z)=—"+ + +-0 1t + = 5 |- (41)
b, |z-p1 z-p, Z=Ppy \2z2 +2w,z+w,

Utilizing the simple algebraic operations yields

a, ky k, k,, A(z+£wn)+<B—Afwn/\/wﬁ— 2“’ﬁ>\/wi— 7 2
-+t + + .04+ + 2
b, |z-p1 z-p, Z— Puo (z+£wn)2+<\/m>

w -1 +1/2i

F(z) =

(42)

Define S(Z)=(z—p)2+w2_z—(p+jcu)Jrz—(a—jw)’
w
S(z)=——F5—
‘ (z-p)’+w Clz) = (Z—Zp) - 1/2. . 1/2. .
(43) (z-p)+w° z-(ptjw) z-(a- jw)
C(Z)Z(Z;ZP)' (44)
(z-p) +w

According to Theorem 1 and the Euler’s formula, the
Applying the factor decomposition and the partial  inverse z-transformations of C(z) and S(z) are given by
fraction expansion gets

S(k)=[<—%z>(p+]w) +< >(p iw) ]us(k)lk:k_l

= [(—%z <\/;)+—wze](L(P+Jw))>k +<%i><We‘j(4(P+fw)))k]us (Rl keke—1

Il
S /~
|
N[ =
~. .
e}
™
+
S
©
—
S
2
=
~~~
~~~
XA
N—
=)
=
<
~~~
XA
N—’
=
~

(45)
(p+ jo)* +3(p = jo)" it Wi

1 1 . ) k
2 P +wZeJ(L(P+Jw))) +E( /p2+w2e J(A(pﬂw))) :|us(k)|k=k1

1 ke L(ptjw j(— L(ptjw
5<‘/pz+w2) [/ WEProN o JWCNy Ry,
1 k

—(J 02+ W ) [2c05 (K)8)]tt, ()t

2

= (w/p2 + w? )k [cos ((k)O)]ug (K) g
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Therefore, from equation (42), the inverse z-trans-
formation of F(z) is given as

9n

ICHE

+h, (p,) M (k= 1)+

)8(k) +k, (p) g (k- 1)

n

+ kn—2 (Pn—Z)k_ 1us (k - 1)

+ A(w,)" "cos ((k - 1)0)u, (k1)

+ (%) (w,)" "sin ((k = 1)O)us, (k = 1).
w, —Cw

(46)

3. Comparative Examples

In this section, some comparative examples will be proposed
to show that the direct method provided in this study is
better than that of the existing traditional approaches.

Example 1. An economic cybernetic transfer function is
known as

_F(2) (8 +2)(z-1)

H(z) (47)

Discrete Dynamics in Nature and Society

Then, the unit step response of the system is
Z+2

: . (49)
z (z-2)(z-4)(z-6)(z-18)

F(z) =

Immediately we will use some traditional methods and
our proposed direct method to solve it and make some
comparisons between them.

3.1. Traditional Method 1: Long-Division and Partial Fraction
Expansion Method. In order to use the long division and
partial fraction expansion method, we have to expand all the
polynomial factors as follows:

2 +2

5 4 3 2 . (50)
zo — 20z +140z° — 400z + 384z + 0

F(z) =

The following equation can be derived using long
division:
20z* - 140z° + 400z* — 384z + 2
2> =20z + 1402° — 4002% + 384z + 0

F(z)=1+ (51)

That is,

20z* - 1402° + 400z° - 384z + 2
F(z)=1+— . (52)
z2(z-2)(z-4)(z-6)(z-8)

TR() Z(z-2)(z-4)(z-6)(z-8) Define
4 3 2
Let us find the unit step response of the system. The input F'(2) = 202" — 140z" +4002" — 384z +2 (53)
function of the system is given as 2 (z-2)(z-4)(z-6)(z-8)
R(z) = _E (48) Applying the partial fraction method yields
z-1
AI Bl ! D/ E!
F(z)=1+—+ + ¢ + + ,
z z-2 z-4 z-6 z-8
1 1
A, = F/ 0 = =—
Gl = o " 192
320 — 1120 + 1600 — 768 + 2 17
B =F(z-2),, = =—,
= (2)(-2) (-4) (-6) 48
(54)

C'=F(z-4),4=

5120 — 8960 + 6400 — 1536 + 2 513

(4)(2)(-2)(-4) 327
25920 — 30240 + 14400 — 2304 + 2 B 3889

D' =F'(z-6)|,¢ =

>

(6)(4)(2)(-2) 48

81920 — 71680 + 25600 — 3072 +2 16385

E' =F(z-8)|,4 =

(8)(6)(4)(2) 192
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Then,
F(z)=1+ (1/192) . (-17/48)
z-2
(55)
N (513/32) (-3889/48) (16385/192)
z—4 z-6 z-8

Finally, according to Theorem 1, the desired solution is

£ —6<k)+( S)otk-1)

+(—%>(2)k_lus(k 1)

13

f Bl =(—) @ +(3) )

+< 3889)( 6! (16385>( "

192
It is obvious to see that the shortcomings of the long
division and partial fraction method include three tedious
operations: the multiplication of all polynomial factors, the
long division of two complex polynomials, and the deri-
vations of the complicated partial fraction variables.

(57)

3.2. Traditional Method 2: Divided by z and Partial Fraction
Expansion Method. First divide F(z) by z as

513 3889 _
( >(4)k (k=) +<_K>(6)k s (k= 1) F(z) _ 2 +2 (58)
(56) z  Z(z-2)(z-4)(z-6)(z-8)
that is, £(0) =1, f(1) =20, and Using the partial fraction method gives
F(2) _ ﬁ+ﬁ .\ C, ) C, . c, . Cs
z z 2| z-2 z-4 z-6 z-8§
_1d 2> +2 |
27 1dz | (z2-2)(z-4)(z-6)(z-8) | =
1d 22 +2 |
T 11dz | z4 - 2023 + 14022 — 400z! + 384 | “°
_ (Nl)(5z4)—(z5+2)(N2) |, = 25
- (N,) 0 4608
N, = z* - 202° + 1402" - 400z" + 384,
N, = 42° - 602> + 280z" — 400, (59)
_1.d 2°+2 - 1
2701 dz2° | 24 — 2023 + 14022 — 400z' + 384 |*° 192
z°+2 177
= -2 =
<2 (z2(z—z)(z—4)(z—6)(z—8))(z N2 = =5
z°+2 ) 513
P\ 22(z-2)(z-4)(z-6)(z-8) = o8’
B Z°+2 (z—6) 3889
T\ 22(z-2)(z-4)(z-6)(z-8) =6 = T8’
B Z2°+2 _g) 16385
“\22(z-2)(z-4)(z-6)(z-8) =8~ 536"
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Thus,

25 1\1 17\ =z 513\ =z
o )5 ()
4608 \192/ z 96/z—-2 \128/z-4

(60)
3889\ =z 16385\ =z
+< 288>z—6+( 1536 )z—s'
Applying Theorem 1 gives the desired solution as
17
= (o= o(-L)s
513 3889 x (16385
(128) (4" + ( %) 6+ < 1536 >(8)
(61)
that is, £(0) =1, f (1) = 20, and
17 513
S Bz = <_9_6> )" + <128>( *
(62)

+(_%>( ! (116533865)( ’.

It is obvious to see that this specific F(z) with z-factor
will increase the burden of hand-calculation for including
two tedious operations: the multiplication of all polynomial
factors and the differentiation of two complex polynomials.

Discrete Dynamics in Nature and Society

3.3. Traditional Method 3: Inversion Integral Method.
According to the inversion integral method, we get the

invers z-transformation of F(z) as

f (k) = Residues (Z i 2)

L (Fe2)

2! (z-2)(z-4)(z-6)(z - 8)

= Residues

For the case of k=0, the desired solution is

[ (z-2)(z-4)(z-6)(z-8)[

F () = Resi [ (z +2)

= Residues

where

5
M, (2) = (z +2)

22 (z-2)(z-4)(z-6)(z-8)

22 (z-2)(z-4)(z-6)(z-8)

Consequently,

f(k) = Resizcgue[M1 (z)] + Resiczlue[M1 (2)]

+ Residue [M, (2)]

+ Resi_%lue (M, (2)] + Re:si_cé.;lue[M1 (2)],

where

. 1 d
Regi(gue[M1 (2)] = T ds [

(= +2) ] .

(z-2)(z-4)(z-6)(z-8)

z2+2

1 d
C1ldz [24 —20z° + 140z% - 400z! + 384] l=-0

) [<N1> (52) - (=" +2) (Nz)]l s

(N,)*

N, = z* - 202° + 1402

=07 4608’

— 400z + 384,

N, = 42° — 602> + 280z" — 400,

(2° +2)

Residue (M, (2)] = (

Res1due (M, (2)] =

z22(z-2)(z-4)(z-6)(z-8)

(z°+2)

(z°+2)

R651due M, (2)] =

2(z-2)(z-4)(z-6)(z-8)

(2°+2)

Res1due M, (2)] (

= )(z I
(z=-2)(z-4)(z-6)(z-18) 128

z2(z-2)(z-4)(z-6)(z-8)

(63)

(65)

(66)

(67)
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For the case of k=0, the desired solution is derived as
f(0) = Resigue[M1 (2)] + Resiczlue[M1 (2)]
z=| z=
+ Residue[ M, (z)] + Residue[ M, (z)] (68)
z=4 z=6
+ Resi(gue[M1 ()] =1
o=
Consider the case of k=1 as follows:

(z5 + 2)

f (k) = Residues (z-2)(z-4)(z-6)(z - 8)z" (69)

= Residues[M, (2)],

where
(25 + 2)
(z-2)(z-4)(z-6)(z-8)z"

M, (z) = (70)

Thus,

f (k)= Resi:<21ue[M2 (2)] + Resijue[Mz (2)]
+ Resi=(61ue[M2 ()] + Resi:%lue[M2 (2)] (71)
+ Resi:%lue[M2 (z)] = 20.

For the case of k > 2, the inverse transformation of F(z) is
(25 + z)zk‘ 2

(z2-2)(z-49(z-6)(z-8)| (7

f (k) = Residues

= Residues[ M, (2)],
where
(z5 + 2)zk_2

(z-2)(z-4)(z—-6)(z—8)

M;(z) = (73)

Thus,
f (k)= Resi:(zlue[M3 (2)] + Resi;‘}ue[M3 (2)]

+ Resi_(61ue [M;(2)] + Residue [M;(2)]

~(0) @' <) '

() @ (G556 ) "

(74)
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It is easy to see that the disadvantages of the inversion
integral method include two tedious operations: the mul-
tiplication of all polynomial factors and the differentiation of
two complicated polynomials.

3.4. Traditional Method 4: Direct Long-Division Method.
To apply the direct long-division method, we should expand
all the factors.

B 2 +2
T z2(z-2)(z-4)(z-6)(z-8)

F(z)
(75)
2 +2
=75 1 3 2 -
z- =20z +140z° — 400z + 384z +0

The following equation can be derived using direct long
division:

5
zZ +2
F(z) = 5 2 3 2
z° =20z + 140z —400z" + 384z +0
~ 1+2z27° (76)
1-20z"" + 140272 - 400z + 384z * + 0
=1+20z " +---.
Thus,
(0) =1,
s (77)
f()=20,....

It is obvious to see that the direct long-division method
only gives some finite terms of F(k) and also needs two
tedious operations: the multiplication of all polynomial
factors and the long division of two polynomials.

3.5. Our Proposed Direct Method 5. To solve these short-
comings of the above existing traditional approaches, we
directly use Theorem 1 to easily solve the discrete-time
solution with shorter solving time than the traditional
methods without the multiplication of all polynomial fac-
tors, the long division of two complex polynomials, the
differentiation of two complex polynomials, and the deri-
vations of the complex partial fraction variables as follows:

F(z):l+é+ B + ¢ +D+ E, (78)

z z-2 z-4 z-6 z-8
where A = F(2)|,.o = 1/192B = F(z - 2)|,_, = —17/ 48C =
F(z—-4)|,., =513/32D = F(z - 6)|,. 6 =—-3889/48E =F
(z - 8)l,- = 16385/192,
that is,
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(1/192) (-17/48) |

z-2

(513/32)

F(z)=1+
(2) p—

(79)
(—3889/48)
+

z—-6

(16385/192)
z-8

Consequently,

F(k) = 8(k) +( )S(k— 1

192
17\ k-1
+(—@>(2) u (k1)

+(¥)(4)"*1us(k—1)+< 3889 )(6)k (k- 1)

16385\ . &
(Fp ) ® k=1,
(80)
that is, £(0) =1, f(1) =20, and
() ()t (22
16385\ o1
(o2 )®

(81)

Example 2. Let us solve the inverse z-transformation of

3
z

- 82
@ (z+1)(z-2)" e

with the multiple poles (z—2) case by using of the traditional
long division method. We expand the denominator of F(z)
as follows:

3
z

F(z) = —4——F—. (83)
=) 2322 +4
Applying the long division method yields

z 3z -4
=1

2322 +4

F(z) = +
22 -37"+4
(84)
372 -4

.
(z+1)(z-2)

Then, we rewrite F(z) into the partial fraction expansion
form as follows:

Discrete Dynamics in Nature and Society

322 -4 =
(z+1)(z-2°  (z+1)

F(z) =1+

(85)
28/9 8/3
+ I + >
(z-2) (2-2)

According to Theorems 1 and 2, the inverse z-trans-
formation of F(z) is given by

fk) = 8(k) +(=1/9) (-D* ', (k- 1)
+(28/9) (2)F 'u (k- 1) (86)
+(8/3) (k- 1) (2" 2u, (k- 1)

To be in comparison with the above traditional method,
we easily apply the proposed Theorems 1 and 2 to get the
following equation without using the traditional long di-
vision operation:

z’ -1/9  28/9 8/3
=1+ + T+ 5
(z+1)(z-2) (z+1) (z-2) (2-2)
(87)

F(z) =

Then, we can immediately obtain the inverse z-trans-
formation of F(z) via Theorems 1 and 2 as follows:

FR) = 8(k) +(—$)(—1)"“us(k 1)
+(§) 2% u, (k- 1) (88)

+(§) (k= 1) (2 2u, (k - 1).

Example 3. Let us obtain the inverse z-transformation of

F(z) = , (89)

with the complex conjugate poles case by using of the
traditional partial fractional expansion method [21]. Ap-
plying the long division method yields

2 -3z-5

Fz)=1+ (z+1)(2°-22+5)

(90)

We may expand F(z) into partial fraction as follows:
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(-1/8) N (9/8)z + (—35/8)

F(z)=1+ (91)
z+1 Z2-2z+5
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Noting that the two poles involved in the quadratic term
of the last equation are complex conjugates, we rewrite F(z)
as follows:

F(z)=1+(z"")

z—-1 8

() () Q)|

According to the z-transformation table, the compli-
cated shifting formulas of the sinusoidal function are given
as

—aT .
) el T
z[e akT sin(wkT)] =— Z_’; sin (T)
z7=2-e¢" «z-cos(wT) +e

—2aT’

—-a

Z-e .z cos(wT)

z[e_“kT cos(wkT)] =—

22-2-¢eT.z. cos(wT) +e T

(93)

1

2
(~1/8)z +(9)(2_ 1) [z —(2.23)(0.448)z .

(<1.45) (2.23) (0.894)z]

22 -12z+0.5 Z2—12z+0.5
(92)
z* —0.999z 1.993z
T 4 (—1.45) |
z°—-12z+0.5 z--12z+0.5

By identifying e 2T =5,2-¢ % .cos(wT) =2 and
cos(wT) = 0.448 in this case, we have wT = 1.1(rad) and
sin (wT) = 0.894. Hence, we obtain

1[ Z* —0.999z

| = (2.23) cos (1.1k),
z°-12z+05

(94)
1.993z

1 k .
| —2 | = (2.23)Fsin(1.1k),
[22 1.2z + 0.5] (2.23)" sin (1.1k)

Thus, we have

£ k) = 8(k) +(——> D (k- 1) +(Z) (223 cos (1.1 (k - D)u, (k - 1) +<—§> (223 sin (1.1 (k - D)u, (k - 1),

8

(95)
that is,
[0, k<0,
fy=1" k=0 (%)
1 k-1, (9 k-1 13 k-1 .
5 (=D T+ 3 (2.23)" " cos(1.1(k-1)) + e (2.23) "sin(1.1(k-1)), k=1.
To compare with the above traditional method, we easily
apply the proposed Theorem 3 to solve the same problem.
Using the simple algebraic operations gets
2
-3z-5 -1/8 9/8 -35/8
F(z)=1+ z 2Z —1+( /)+(/2)Z+( /8)
(z+1)(z —22+5) z+1 z°—-2z+5
(97)

=1

(=1/8) (9/8)(z—1)z +(-13/8)(2)
+ + :

z+1

(z- 1) +2°
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We immediately obtain

1
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F(k) = 8(k) +<—7) D (k- 1) +<Z) (223 cos (1.1 (k = 1)u, (k - 1)

8

+<—§> (2.23)% 'sin (1.1 (k = 1))u, (k - 1).

It is obvious to see that applying the complicated shifting
formulas of the z-transformation table is not easy. On the
contrary, a simple direct method that needs only easy al-
gebraic operations has been proposed in this study for the
case of complex conjugate poles.

4. Economic Applications

4.1. [Application 1]. Economic Cybernetics in Population
Prediction. Suppose that country A has a population of 180
million in 2020 and B city of that country A has a population
of 20 million. In B city, 8% of the population in the previous
year move out to other parts of the country. In other parts of
country A, 4% of the population in the previous year move
into B city. Define the natural population growth rate as the
difference between birth rate and mortality rate. Assume that
the annual natural population growth rate is 2% and try to
predict the population of B city. Suppose that the population
of the kth year for B city is x1(k), and the population of the
country other than the B city is x2(k), then

z% —0.9792z

(98)
X (k+1) = (1+2%)[(1-8%)x, (k) + 4%x, (k)],
x, (k+1) = (1+2%)[(8%)x, (k) + (1 — 4%)x, (k)],
; (99)
x,(0) =2 x 107,
x,(0) = 18 x 107,
that is,
X(k+1)=AX(k),
x, (0) 2% 107
X(0) = = ,
(©) [xz(O)] |:18><107:| (100)

0.9384 0.0408
0.0816 0.9792 |

Apply the z-transformation to solve the solution as
follows:

0.0408z

(2 -2.0392) (2 - 1.796) (z —2.0392)(z - 1.796)

(zI - A) 'z =

0.0816z

(101)
z* —0.9384z

(z —2.0392)(z - 1.796) (z —2.0392)(z — 1.796)

In order to show the superiority of our proposed
method, here, we first use the traditional method to solve it.
For the traditional method [20, 21], the denominator and the

z* - 0.9792z

numerator polynomial must be multiplied first to facilitate
the long division operation because the denominator and the
numerator have the same order.

0.0408z

z* —3.8352z + 3.6624 z* — 3.8352z + 3.6624

(zI-A) 'z =

0.0816z

(102)
z% —0.9384z

2% —3.8352z + 3.6624 z° — 3.8352z + 3.6624
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Applying the long division operation yields

. 2856z 3.6624 0.0408z
2> —3.8352z +3.6624 z° —3.8352z + 3.6624
(zI-A) 'z= . (103)
0.0816z |, 289652 -3.6624

+
z* —3.8352z + 3.6624 z* - 3.8352z + 3.6624

Then, use the general partial fraction expansion to get

, 88877 60321 03421  -0.3014
z-20392 z-1.796 z-20392 z-1.796

(zI - A) 'z = . (104)
0.6842  —0.6028 92299  -6.3331

+ + +
z—-2.0392 z-1.796 z—-2.0392 z-1.79

Using inverse z transformation yields the solution to be ~ where

X, X 2% 107
X(k) =2 [ (21 - A)'2]X (0 z[ ! ”H ]
(k) [ (z1 - A)"'2]X(0) Xy X )| 18 10

(105)

X,, = 0(k) +(8.8877) (2.0392)" ', (k — 1) + (~6.0321) (1.796)" ', (k — 1),
X, = (0.3421) (2.0392) 'u, (k — 1) - (0.3014) (1.796)" "u, (k — 1),

(106)
X, = (0.6842)(2.0392) u, (k — 1) — (0.6028) (1.796)* 'us, (k — 1),
X,, = 8(k) + (0.6842) (2.0392)" ', (k — 1) - (6.3331) (1.796)" s, (k — 1).
To compare the proposed method with traditional ap-  division. Directly do partial fraction expansion to equation
proach, we use Theorem 1 to solve same problem without  (101), and we can easily get
using the above polynomial multiplication and long
A B C D
+ + +
z-2.0392 z-179 z-2.0392 z-1.796
(zI-A) 'z= , (107)

E F G H
+ 1+ +
z—2.0392 z-1.796 z—2.0392 z-1.796
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where A =8.8877,B = -6.0321, C =0.3421,D = -0.3014,

E =0.6842, F = -0.6028, G =9.2299,H = -6.3331. Using

Theorem 1 yields the solution to be
X, X[ 2x107
X(k)zZl[(zI—A)lz]X(O)E[ " “H 7],
X21 X22 18 x 10

(108)
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where

X, = 8(k) +(8.8877) (2.0392)" ', (k — 1) + (=6.0321) (1.796)" ', (k — 1),

X, = (0.3421) (2.0392) 'u, (k — 1) - (0.3014) (1.796) "u, (k — 1),

(109)

X, = (0.6842)(2.0392) u, (k — 1) — (0.6028) (1.796)* 'u, (k — 1),

X,, = 8(k) + (0.6842) (2.0392)" ', (k — 1) - (6.3331) (1.796)" ', (k — 1).

Then, we can conclude that the predicted population of

the kth year for B city is

x, (k+1) = (2% 107){8 (k) +(8.8877) (2.0392) u, (k — 1) + (=6.0321) (1.796)" ' (k — 1)}

(110)

+(18 x 107){(0.3421) (2.0392)" "1, (k - 1) - (0.3014) (1.796)" ' (k - 1)},

and the predicted population of the country other than the B
city is

%, (k+1) = (2% 107){(0.6842) (2.0392)" 'ui, (k - 1) - (0.6028) (1.796)" 'ut, (k - 1)}

(111)

+(18 x 107){8 (k) + (0.6842) (2.0392)" 'us, (k - 1) - (6.3331) (1.796)" ut, (k - 1)}.

4.2. [Application 2]. Market Price Balance Analysis. The
watermelon supply function is known as

y(k+1)=-05+8(p(k)) = —c+d(p(k)), (112)
and the watermelon demand function is
x(k+1)=7-12(p(k+1))=a-b(p(k+1)), (113)

where the market balance price is defined as p(k). Next, the
market price stability analysis will be carried out, and then
the market balance price will be obtained. When the market
reaches the balance between supply and demand, the fol-
lowing equation can be derived.

a-b(p(k+1))=-c+d(pk)),

plk+1) =<—§>p(k)+(“zc).

Taking the z-transformation of the above equation
yields a rational fraction p(z) with distinct poles, where

(114)

that is,

(115)

the numerator and the denominator are in the same
power

2 a+c z

_p(0Z° +[-p(0) + (a+c/b)lz
B (z+(db)(z-1) '

(116)

For the traditional method [20, 21], the denominator and
the numerator polynomial must be multiplied first to fa-
cilitate the long division operation because the denominator
and the numerator have the same order.

. a+c z
P(2) =(m)1’(°) (5 )[(z kD= =1

_p(0)2” +[-p(0) + (a + c/b)]z
24 db-Dz-db

(117)
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Using the long division operation gets
[a+c/b— p(0)d/blz + p(0)d/b

e e TS

(118)

Then, apply the general partial fraction expansion to
obtain

B d (a+c)d
p (k) = p(0)d (k) +[<—E)P(0) + LT db

To compare the proposed method with traditional ap-
proach, we apply Theorem 1 to address same problem
without using the above polynomial multiplication and long
division. Directly apply partial fraction expansion to
equation (116), and we can easily get

(=d/b)p(0) + (a+c)d/ (b +d)b

P(z)=p(0)+ z +(d/b)

(121)
(a+c/b+d)
"

z—-1

B d (a+c)d
p (k) = p(0)d (k) +[<-E)P(0) + T db

It can be seen from the above formula that when d/b is
less than 1, we can obtain lim,__ (d/b)* = 0. Therefore, the
solution of the market price model tends to a fixed constant

a+c

i P =

b+d (123)

which concludes that the market price is stable, and this
fixed constant is then the market balance price when the
supply and demand are balanced.

4.3. [Application 3]. Analysis of Loan Economic Activities.
Someone loans 15,000 dollars for the project to open, where
the monthly interest rate of the loan is 1%, and the monthly
repayment is 200 dollars. Assume that the loan balance at the
end of the kth month is x(k), the repayment amount is p(k),
and the monthly interest rate is i. The solution of the loan
balance x(k) at the end of the kth month is as follows.
According to the above statements, the system state equation
for this economic activity is

x(k+1)=(1+i)x(k)— p(k), (124)
where x(0) = 15000,i = 0.01, p (k) = 200.
That is,
x(k+1)=1.01x(k) - 200. (125)

d\*! a+c
——) us(k—1)+< >(1)k_1us(k—l).

21
B (=d/b)p(0) + (a+c)d/ (b+d)b
P(z) = p(0) + ~(dib)
(119)
(a+c/b+d)
—
z-1
Applying inverse z-transformation gets the solution
d\*"' a+c
= - k=1 - 120
]( b) u (k 1)+(b+d>(1) u (k- 1), (120)

According to Theorem 1, the following equation can be
obtained.

(122)

b b+d

Taking the z-transformation of the above equation yields
X(z) with distinct poles, where the numerator and the de-
nominator are in the same power

15000z 200z _150002” - 15200z
z-101 (z-101)(z-1) (z-1.01)(z-1)
(126)

X(z) =

Since the order of the denominator and the numerator
is the same, the denominator and the numerator poly-
nomial must be multiplied first to facilitate the long di-
vision operation when we use the traditional method
[20, 21],

15000z> - 15200z

X(2)=—5—7"""— (127)
z-—2.01z + 1.01
Utilize the long division operation to derive
14950z - 15150
X (2) = 15000 + ———————, (128)
z°-2.01z+1.01
Using the general partial fraction expansion gets
-5050 20000
X (z) = 15000 + + . (129)
z-101 =z-1

Then, using inverse z-transformation obtains
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x (k) = 150008 (k) + (=5050) (1.01)* 'u, (k — 1) (130)
+20000 (1) g (k - 1).

To compare the proposed method with traditional ap-
proach, we use Theorem 1 to solve the same problem without
using the above polynomial multiplication and long di-
vision. Directly apply partial fraction expansion to equation
(126), and we can easily get

-5050
+
z—1.01

20000

X (z) = 15000 + .
z—-1

(131)

Consequently, according to Theorem 1, we can conclude
that the solution of the loan balance x(k) at the end of the kth
month is

x (k) = 150008 (k) + (—5050) (1.01)* 'u, (k — 1) (132)
+20000 (1) (k - 1).

4.4. [Application 4]. Real Estate Market Price System.
Assuming that the real estate supply, demand, and price data
of a country from 2000 to 2009 are known as shown in
Table 1, this example is to study the stability of the real estate
market price system [28]. First use the linear regression
analysis to obtain the following demand function and supply
function:
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D, (k) = —573.4106 + 0.3563P,, (k),

(133)
Syp (K) = —687.0668 + 0.4306P,, (k — 1).

Compare the demand function and the supply function
to get 0.4306>0.3563. So, this real estate market price
system is divergent and unstable. For such a system, it will
bring more and more oscillations with the increase of time
and result in instability of the supply and demand system. If
it is not controlled, it will make the real estate market price
supply and demand system out of balance. Next, construct
a mathematical state-space model of the unbalanced real
estate market price containing the expected price.

Dem (k) =« _ﬁpre (k)’
(134)

Sup (k) = =0 + TP, (K),
(135)
P}, (k) = P (k= 1) + y[ Dy (k = 1) = S, (k= D], (136)

whereP?, (k) represents the producer’s expected price for the
kth real estate. From equations (134)~ (136), we can get the
difference equation as follows:

Doy (k+1) =Sy, (k+1) = = pP,, (k + 1) + 8 = T{P, (k) + y[ Doy (k) = S,,, (K]}

== BP(k+1) +8=T{P, (k) + y[Depy (k) = Sy ()]} + [ Dy (k) = Sy, (K]

~ [Dew (0) = S, ()],

that is,

Doy (k+1) = Sy (k+1) = (1 = Tp) [ Doy (k) = Sy (k)| = B[Py (k + 1) = Py, ()]

Define the state-space variables and input to be
'xl (k) = Dem (k) - Sup (k))
x5 (k) = Dy (k= 1) = S, (k= 1),
x5 (k)= P, (k) - P,.(k—1) = u(k).

(139)

And then the state equation and output equation are

(137)
(138)
+ Ty [Depy (k= 1) = S, (k = 1)] = T [P, (k) = P, (k= 1)].
x, (k+1) (1=Ty) Ty =y x; (k) -B
x,(k+1) = 1 0 0 |[x,k) |[+]| 0 |u(k),
xy(k+1) 0 0 0 llx;(k) 1
x; (k)
y(k)=[1 0 0]| x,(k) | = x, (k).
x5 (k)

given by

(140)
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Considering the impact of the magnitude and speed of
the price adjustment on the allocation of resources, the new

x;(k+1) 0.95694 0.04306 —0.043067T x; (k) -0.3563
x,(k+1)|= 1 0 0 x, (k) [+ 0 u(k),
x; (k+ 1) 0 0 0 Ilx;(k) 1
x, (k) x, (k)7 x, (k)
y(k)=[10 0]|x,(k) | =C| x,(k) | = x; (k) = Al x, (k) | + Bu(k).
x5 (k) x5 (k) x5 (k)

Apply the z-transformation to solve the solution as

follows:

z 0.0431z ~0.4306z

(zI-A) 'z =

(z-0.9999) (z + 0.0430) (z —0.9999)(z + 0.0430)

z z* —0.9569z ~0.4306

(z —0.9999) (z + 0.0430)

We first use the traditional method to solve it. For the

1
0 0 -

z

traditional method, the denominator and the numerator merator have the same order.
polynomial must be multiplied first to facilitate the long

(zI-A)'z=

r 2

z 0.0431z ~0.4306z
Z% —0.9569z — 0.0430 z° —0.9569z — 0.0430 z* — 0.9569z — 0.0430

z 2 - 0.9569z -0.4306 _
Z% = 0.9569z — 0.0430 z* —0.9569z — 0.0430 z* — 0.9569z — 0.0430

1
z J

Using the long division operation gets

(zI-A) 'z=

1+

0.9569z + 0.0430 0.0431z —-0.4306z

Z* —0.9569z — 0.0430  z* —0.9569z — 0.0430  z* — 0.9569z — 0.0430

z 0.0430 —-0.4306
1+

1
z

z% = 0.9569z — 0.0430 22 —0.9569z — 0.0430 z° — 0.9569z — 0.0430 |

(z —0.9999) (z + 0.0430) (z — 0.9999) (z + 0.0430) (z — 0.9999) (z + 0.0430)
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dynamic equation can be obtained by taking the price ad-
justment parameter as y = 0.1, = 0.4306, 8 = 0.3563:

(141)

(142)

division operation because the denominator and the nu-

(143)

(144)
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Then, apply the partial fraction expansion to obtain

r N 0.9587 N —-0.0018 0.0412 N 0.0018 —-0.4128 N -0.0178 1
z-0.9999 z+0.0430 z-0.9999 2z+0.0430 2z-0.9999 z+0.0430

. 0.9588 0.0412 0.0412  —0.0412 -0.4129  0.4129
(zI-A) 'z= + + + + . (145)
z-0.9999 ' z +0.0430 z2-0.9999 ' z+0.0430 z—-0.9999 'z +0.0430
1
0 0 -
- Z =
Using inverse z-transformation yields the solution to be
x, (k) X X X3 %1 (0)
X(k) = | x,(k) | =27 [(zI - A)'2]X(0) = | Xy Xy X5 [[ %,(0) |, (146)
x3 (k) X3 X3 X33 1Lx5(0)
where
X,, = 8(k) +(0.9587) (0.9999)" ', (k — 1) + (~0.0018) (~0.0430)" 'z, (k — 1),
X,, = (0.0412) (0.9999) 'u, (k — 1) + (0.0018) (=0.0430) "u, (k — 1),
X5 = (~0.4128)(0.9999)" ' (k — 1) + (~0.0178) (~0.0430)" ', (k — 1),
X, = (0.9588) (0.9999)% 11, (k — 1) + (0.0412) (=0.0430)* 'us, (k — 1),
Xy, = 8(K) + (0.0412) (0.9999)" ur, (k — 1) + (~0.0412) (~0.0430)* "uu, (k — 1), (147)
X,5 = (~0.4129) (0.9999) ', (k — 1) + (0.4129) (=0.0430)* 'u, (k — 1),
X3 =0,
X3 =0,
Xy5 = 8(k—1).
Then, we can get the state variables to be To compare the proposed method with traditional ap-

proach, we use Theorem 1 to solve the same problem without
using the above polynomial multiplication and long di-
%, (k) = X5,%, (0) + X5,%, (0) + X555 (0), (148)  vision. Directly do partial fraction expansion to equation

x5 (k) = X31%; (0) + X3, (0) + X355 (0). (142), and we can easily get

x, (K) = X,y (0) + X 5%, (0) + X135 (0),
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TaBLE 1: The supply, demand, and price of real estate in a country from 2000 to 2009.
Year Supply/10"5 m"2 Demand/10"5 m”2 Price/m”2
2000 44985.5 9010.17 1997
2001 50770.1 12185.30 2063
2002 56857.6 14556.53 2053
2003 65896.9 18637.13 2112
2004 79411.7 22411.90 2170
2005 94104.0 26808.29 2250
2006 117526.0 33717.63 2359
2007 140451.4 38231.64 2778
2008 166053.3 55486.22 3168
2009 194786.4 61857.07 3367

(14 0.9587 N -0.0018 0.0412 N 0.0018 —-0.4128 N —-0.0178 1
z-0.9999 z+0.0430 z-0.9999 2z+0.0430 z-0.9999 =z +0.0430
- 0.9588 0.0412 0.0412 —-0.0412  -0.4129 0.4129
(zI-A) 'z = (149)

+
z—0.9999 z+0.0430

Equation (149) is the same as equation (145) that is derived
with traditional method. From equation (149), the state-
space model of the unbalanced real estate market price
containing the expected price is convergent and stable. In
summary, it can be concluded that the proposed method is
simpler and more effective than traditional methods without
using the above polynomial multiplication and long
division.

5. Conclusion

We propose a direct method used to solve the linear non-
homogeneous time-invariant difference equation with the
same number for inputs and outputs in this study and explicitly
express the general form of the solution sequence with shorter
time than that of the traditional approaches. Overall, the
proposed direct approach in this study has more generality and
universality with more efficiency and provides a significant
solving method for the rational z function with the same power
of the numerator and the denominator. As we know, the
traditional methods used for solving linear nonhomogeneous
difference equations face several difficulties in practical ap-
plications. The main contributions of the proposed approach
are to find the solution without inevitable troublesome oper-
ations including the multiplication of all polynomial factors,
the long division of two complex polynomials, the differen-
tiation of two complex polynomials, and the derivations of the
complex partial fraction expansion variables for the existing
traditional approaches. Some practical applications of solving
the recurrence difference equation including the economic
cybernetics in population prediction, analysis of loan economic
activities, and market price balance analysis are investigated in
this study.

+ + + .
z—-0.9999 z+0.0430 z-0.9999 =z +0.0430
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