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The distance Laplacian matrix of a connected graph G is defined as & (G) = Tr(G) — D (G), where D (G) is the distance matrix of
G and Tr(G) is the diagonal matrix of vertex transmissions of G. The largest eigenvalue of & (G) is called the distance Laplacian
spectral radius of G. In this paper, we determine the graphs with maximum and minimum distance Laplacian spectral radius

among all clique trees with # vertices and k cliques. Moreover, we obtainn vertices and k cliques.

1. Introduction

In this paper, we consider simple connected graphs [1]. A
graph Gis represented by G = (V (G), E(G)), in which the set
V(G) = {v,v,,...,v,} represents its vertex set and E(G) is
the edge set connecting pairs of distinct vertices. The number
n=|V(G)| is referred to as the order of G. The distance
matrix of G is the nx n matrix D(G) = (dg (4, V)),,,ev ()
where d; (1, v) denotes the distance between vertices u and v
in G, i.e., the length of a shortest path from u to v in G. For
u € V(G), the transmission of u in G, denoted by Tr; (u), is
defined as the sum of distances from u to all other vertices of
G. Let Tr (G) be the diagonal matrix of vertex transmissions
of G. In 2013, Aouchiche and Hansen [2] first gave the
definition of distance Laplacian matrix: for a connected graph
G, Z (G) = Tr(G) — D(G), where Z (G) denotes the distance
Laplacian matrix. Obviously, & (G) is a positive semidefinite,
symmetric, and singular matrix. The distance Laplacian ei-
genvalues of G, denoted by A, (G) 21, (G)> --- 21,(G) =0
are the eigenvalues of & (G). Especially, the largest eigenvalue
A, (G) is the distance Laplacian spectral radius of G. The
positive unit eigenvector, i.e., all components of the eigen-
vector are positive, corresponding to A, (G) is called the
Perron eigenvector of & (G).

For a graph G, two vertices are called adjacent if they are
connected by an edge and two edges are called incident if
they share a common vertex. The set of vertices that are
adjacent to a vertex v € V (G) is called the neighborhood of v
and is presented by N (v). As usual, let K,, K, |, and P,
denote the complete graph, the star, and the path with order
n, respectively. G is a connected graph, X € V(G), G- X is
not connected, and then X is a cut-vertex set. If X has only
vertex v, then v is a cut-vertex. A block of G is a maximal
connected subgraph of G that has no cut-vertex. A blockis a
clique if the block is a complete graph. A graph G is a clique
tree if each block of G is a clique. We call #,, ,, . a clique
path if we replace each edge of P, by a chque K such that
V(K,)NV(K, )=v for i=1,2,.... k=2 and
V (K, )ﬂV(K )— @ for j+i-1, z+1and2<z<k—1 We
call Ku S a clique star if we replace each edge of the star
Ky with acllqueK such that V/(K,, ) NV (K, ) =ufori#j
and i,j=1,2,...,k (see Figure 1).

Recently, Xmg and Zhou [3] characterized the unique
graph with minimum distance Laplacian spectral radius
among all the bicyclic graphs with fixed number of vertices;
Aouchiche and Hansen [4] showed that the star K, is the
unique tree with the minimum distance Laplacian spectral
radius among all trees; Lin et al. [5, 6] determined the unique
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FIGURE 1: A clique star and a clique path.

graph with minimum distance Laplacian spectral radius
among all the trees with fixed bipartition, nonstar-like trees,
noncaterpillar trees, nonstar-like noncaterpillar trees, and
the graph with fixed edge connectivity at most half of the
order, respectively; Niu et al. [7] determined the unique
graph with minimum distance Laplacian spectral radius
among all the bipartite graphs with fixed matching number
and fixed vertex connectivity, respectively; Fan et al. [8]
determined the graph with minimum distance Laplacian
spectral radius among all the unicyclic and bicyclic graphs
with fixed numbers of vertices, respectively; Lin and Zhou
[9] determined the unique graph with maximum distance
Laplacian spectral radius among all the unicyclic graphs with
fixed numbers of vertices.

In 2019, Cui et al. [10] investigated a convex combination
of Tr(G) and D(G) in the form of
D,(G) =aTr(G) + (1 -a)D(G), 0<a<1, which is called
the generalized distance matrix. Alhevaz etal. [11] gave some
new upper and lower bounds for the generalized distance
energy of graphs which are established based on parameters
including the Wiener index and the transmission degrees
and found that the complete graph has the minimum
generalized distance energy among all connected graphs; Lin
and Drury et al. [12] established some bounds for the
generalized distance Gaussian Estrada index of a connected
graph, involving the different graph parameters, including
the order, the Wiener index, the transmission degrees, and
the parameter « € [0,1], and characterized the extremal
graphs attaining these bounds; Alhevaz et al. [13] obtained
some bounds for the generalized distance spectral radius of
graphs using graph parameters like the diameter, the order,
the minimum degree, the second minimum degree, the
transmission degree, and the second transmission degree
and characterized the extremal graphs; Alhevaz et al. [14]
studied the generalized distance spectrum of join of two
regular graphs and join of a regular graph with the union of
two different regular graphs; Shang [15] established better
lower and upper bounds to the distance Estrada index for
almost all graphs.

The distance Laplacian energy is defined as
DLE(G) = (1/n) Y, |4, (G) = t(G)|, where t(G) is the av-
erage transmission of G and is defined by
t(G) = (1/n) Y., Trg (v;). Although there has been exten-
sive work done on the distance Laplacian spectral radius of
graphs, relatively little is known in regard to distance
Laplacian energy. The distance Laplacian energy was first
introduced in [16], where several lower and upper bounds
were obtained; Das et al. [17] gave some lower bounds on
distance Laplacian energy in terms of # for graphs and trees
and characterized the extremal graphs and trees. In this

paper, first, we not only get the distance Laplacian eigen-
values of all clique stars K, ., , butalso get their distance
Laplacian energies; second, we prove all clique stars

wn ..., re the graphs with minimum distance Laplacian
spectral radius among all clique trees with » vertices and k
cliques. Then, we show that the clique path &, , ;. . 13
for m>3 is the graph with maximum distance Laplacian
spectral radius among all clique trees with » vertices and k
cliques.

2. Preliminaries

Let G = (V,E) be a connected graph with V(G) {vi, vy
..»V,}. A column vector x = (x,,, vy Xy ) € R" can

be considered as a function deﬁned on V(G) “which maps

vertex v; to x[,le x(v;) =X, fori=1,2,...,n. Then,

ng(G)x = Z dg (u,v) (xu — xV)Z, (1)
{u,v}cV (G)

and A is a distance Laplacian eigenvalue with corresponding
eigenvector x if and only if x #0, for each u € V(G),

(A = Trg (w)x, = - Z dg (u,v)x,, )
veV (G)
or equivalently
Ax, = Z dg (u,v) (x, — x,). (3)

veV (G)

The above equation is called the eigenequation of G at u.

Note that 1,, = (1, 1,...,1 ) is an eigenvector of Z(G)
corresponding to A, (G) = 0 For n>2, if x is an eigenvector
of Z(G) corresponding to A, (G), we have x'1, = 0.

For a unit column vector x € R”, by Rayleigh’s principle,
we have A (G) > xT # (G)x with equality if and only if x is an
eigenvector of Z(G) corresponding to A (G).

The following is the well-known Cauchy interlacing
theorem.

Lemma 1 (Cauchy interlace theorem) (see [1]). Let A be a

Hermitian matrix with eigenvalues A, > --- >, and B be one

of its principal submatrices. Let B have eigenvalues

U= =, Then, the inequalities A <M\ (=1,
..,m) hold.

n— m+l_|l/tl

Lemma 2 (see [6]). Let G be a connected graph with three
induced subgraphs G,, G,, and G; such that |V (G;)| =2 for
i=1,2,3 and V(G)nV(G )={u} for 1<i<j<3 and
UL, V(G;) =V (G) (see Fzgure 2). For v € V(Gy)\{u} and
y € V(G)\{u}, let G' =G - {uw w € Ng, (u)} +{vw: w €



Discrete Dynamics in Nature and Society

) )

FIGURE 2: A graph transformation from G to G! and G2.

Ng,w)}  and G*=G- {uw: w € Ng, (u)} +{yw:
€ Ng (W} If Ng(u)= {y,v} UNGg, (u), then A, (G)<
A, (GY or A, (G) < A, (GP).

3. Minimum Distance Laplacian Spectral
Radius of Clique Trees

3

! "

G' G
Proof. For convenience, let diam(S) =dand &, , ., bea
clique path of S. Denote the cliques of &, , . by K, ,

Koo s K, Let V(K )NV (K, Y=v; for i=12,...,
d-1. Let {v} € V(K,)\{v,} and {v;} € V(K, )\ {vy}.

Then, vyv, ... v, is a diameter path of S. We can easily get

Trg(vg)> (n, —2) +2(n, = 2)+---+d(ng - 2)+1+2+---+d

+2[n-n —-ny—---—ny+ (d-1)],
The diameter of a graph is the maximum distance between
any pair of vertices. Trg(vy)> (ng—2)+2(ngy = 2)+---+d(n —2)+1+2+---+d
+2n-n—-ny—--—ny+ (d-1)].
Lemma 3. Let S be a clique tree with n vertices and k cliques. (4)
If diam (S) = 3, then A, (S)>2n - 1. Then, we have
Trg(vo) + Trg(vy) = (d+ D [(n, —=2)+(n, =2) +---+(ny —2)] +d(d+1) +4n
-4[(n -2)+(n, -2)+---+(ny;-2)] -8d+4(d-1)
5
= d+1-4)[(n-2)+(n,=2)+---+(ny—-2)] +d(d+1)+4n-8d +4(d-1) )
=(d-3)[(n -2)+(m-2)+--+(ny—2)| +d" +4n-3d —4>4n+d> - 3d - 8.
Let M be the principal submatrix of & (S) indexed by v,  and thus
and v,. Then,
[ Trg(vy) —d
M _< —d  Trg(va) )’
~ | Trg(v) = A —d
=
= 1 = (Trg (v) + Trg (vg)JA + Trs (v) Trs (vy) — d”,
(6)
Trg () + Trg (va) + y(Trs () = Tro (va))” + 4’
A (M) = 3
2Trs(vo)+Trs(vd)+2d>4n+dz—d—8 (7)
2 2
n+3*-3-38
>————=2n-1
2
By Lemma 2, we have A, (S)>A, (M) >2n—1. O  Proof. Obviously, we have #n +n,+n;+---+mn =

Theorem 1. Let K

U,Hy 1y

. be an arbitrary clique star with n
vertices and k cliques. Then, A, (K

k)=2n—l.

Uy 1501

n+k—1. Let x be a Perron eigenvector of Z(K,,,, ,, .)
corresponding to A; (K, , ). By symmetry, we may
assume x, = x; for any v € V(K,)\{u}, i=1,2,... k. Let
X, = X,,, then we have
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[ Axg = (my = 1) (xg = 1) + (1 = 1) (30 = %) + (15 = 1) (%9 = x3) + -+ + (m = 1) (3 — %)
Axy = (o = x) +2(ny = 1) (3 = %) +2(n3 = 1) (3 —x3) + -+ + 2(mg = 1) (%) — x¢)s
Axy = (xy = x0) +2(ny = 1) (x, —x1) +2(n3 — 1) (x5 — x3) + -+ 2(nm. = 1) (x, — x3.),
Ay = (x5 = x0) +2(ny = 1) (33 = x7) +2(ny = 1) (363 = x5) + -+ + 2 (. — 1) (35 — X3,

[ Ay = (o0 = x9) +2(my = 1) (o0 = x7) +2(my = 1) (o0 = %) + -+ + 2 (e = 1) (3 = Xy)-

Thus, A, is the largekst root of the equation
S (£) = 0, where B =37, n; — k and

Bt 1-n 1-mn, 1-n
-1 Z(ﬁ—n1)+3—t 2-2n, 2-2n,
fnl,nz,.“,nk(t): -1 2—21’11 2(ﬁ—n2)+3—t Z—an
-1 2 -2n, 2 -2n, .z(ﬁ_nk)+3_t
-t L-mn l-n, 1-mn,
=|-t 2 -2, 2(ﬁ—n2)+3—t 2-2m
-+ 2= 2-om e 2(B-n) 3o
—t 1-n 1-mn, 1-n; 1—my
-t 2(B-m)+3-t 2-2n, 2-2n5 --- 2-2m ©)
=10 1-2n+t 2n-1-t 0 0
0 1-2n+t 0 0 e dn—1-t¢
-t l-n-t 1-n, 1-n;4 1-n
-t 1-2t 2 -2n, 2—2713 2_2nk
=10 0 2n—1-t 0 0
0 0 0 0 - 2n—1-t

=(-)(-D)*n-1-F'a-20)+ (- (-1’ 2n-1-"'(1-n-1)
=2n-1-11 =20 (=) + (1 —n - 1)t]

=t@2n-1-1(t-n).

Therefore, we have A, (K,,,, ,, ,)=2n-1nand0 are
also distance Laplacian eigenvalues of K, ., x

Combining Lemma 3 and Theorem 1, we have the
following result. O

Theorem 2. Among all clique trees with n vertices and k
cliques, the graphs attaining the minimum distance Laplacian

spectral radius are clique stars K, ,, ..

Let I be the identity matrix of order n. The charac-
teristic polynomial of Z(G) can be written as
Y(G: A) =det(Al - Z(G)). Let us label the vertices of
Ky m,....n, such that u is the first vertices, and the first n,
vertices are from V(Knl), the following n, — 1 vertices are
from V(K )\ub, .. and the last n,—1 are from
V(K )\{u}. Let det(M - £ (K,,,, ,, ..4)) = 0. Combining
Theorem 1, by direct calculations, we get the following
result.
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Corollary 1. The distance Laplacian eigenvalues of
wny,..m, 0r€ 2n—1 of multiplicities k-1, 2n—n; of
multiplicities n; — 2(1 <i<k), n, and 0.
Theorem 3. LetK,, , ., beanarbitrary clique star withn
vertices — and  k  cliques. Then, we  have
DLE(K,,, s .n) = (2/m)[2n—-1+ (1/n)(k-1- Zl )]
Proof. Obviously, wehaven, +n, +ny+---+n, =n+k-1.
For  convenience, let G=K,,, .. For any
v, W € V(K,,i)\{u}, we have Trg(v) =Trg(w). Let
v; € V(K )\{u}, 1 <i<k. Then, we have Trg (v;) = 2n—n; -

landt(G) = (1/n) Y7, Tre (v;) = ([XX, ((n; = 1) (2n — n—
1)] +n-1)n)= (2nY. % -1) =35 (n, -1+ 1) +

-1) n)= ((2nn-1) - Zl Mt k+n-1)/n)=2n-1+
((k -1- Zl_ 1¥n2)/n). By Cauchy-Schwarz inequality, we
have le > (n+k—1)*>n’. So, we get t(G)<2n— 1+
(k=1-n*)/n) =n—1+ (k- 1/n)<n. By Corollary 1, we
know A;>n>t(G) for i=1,2,...,n—1, and A, =0.
DLE (Ku,nl,nz,.“,nk) = (1/1’1) Z?:l Mz (G) - t(G)| = ((Zi: 1n—1
(4 (G) =t (G)] +t(G) )m)= (XL, 1 (G) + (2 - m)t(G)/n) =
(2t (G)/ n) since Y, A, (G) is equal to the trail of Z (G), i.e.,

Y Ai(G) =Y, Trg (v;). So, we get DLE (K,
2m)[2n—1+ (Un)(k—-1-Y,_ 1*n})].

) =

4. Maximum Distance Laplacian Spectral
Radius of Clique Trees

Lemma 4. Let H be a connected graph and S be a clique tree
with diam(S) = d. Suppose P, ,, ., is a clique path of S
with cliques K,, K. K, and V(K JNV(K, )=v ; for
i=1,2,...,d-1. LetH be thegraph obtained by zdentzfymg
avertexv ofH and a vertexu of K, , where2 <t <d — 1. Then,
Ay (Hyg) > Ay (Hy) or Ay (Hy) >\ (H)

Proof. By Lemma 2, we may assume u#v,_; or u#v, for
2<t<d-1. Denote the component of S-v,; which
contains vertex v,_, by &, and the component of S -,
which contains vertex v,,, by &,. Let S =V (S)),
S, =V(8,),and S5 = V(S\(V(S,) UV (S,)). Suppose x is
a Perron eigenvector of & (H,) corresponding to A, (H,). In
the following, we will first prove A,(H,,)>A,(H,) or
A(H ) > A (Hy).

2
Case 1: ZZhGV(H)\ W wes, (X6 = X1)” 2 Xpev (0} Lwes,
(x,— x3,)°. From H, to H,,,, we have

-1, weS US\{n}, he VH)\{},

dHt(w)h) _dHHI(wrh) = 1)

A (Hyy) =M (H) >x' (Z(Hp) -

= 22

heV ()\v} | weS,

heV (H)\{v} [weS,

>0.

Thus, A, (H,,;) = A, (H)).

In the following, we will prove A, (H,,,) > A, (H,). If
M (Ht+1) =A(H,), then ZheV (H)\{ V}Zwesg\{v,}(x
x;,)* = 0, which implies x, = x;, for any w € S;\{v,},
h e V(H)\{v}, and x is also a Perron eigenvector of

weS,, he V(H\{v}
0, otherwise,

Z(H,))x

(%, = xh)2 - Z (%4 = xh)zjl

heV (H)\{v} | weS; US3\{vt} weS, (10)
= Z Z (xw - xh)z + Z (xw - xh)z - Z (xw - xh)z}
weS;\{v} weS$,
2 3 T e 3 ]
wES,
/\1 (Ht+1)xw1 = Z dH[+1 (wl’ h)(xw1 - xh)
heV (H,,,)
= Z dy, (wl,h)(xwl - xh)
heV (H,) (11)
+ Z (x‘”l - xh)
heV (H)\{v}

< (H,,,) corresponding to A, (H,,,). For arbitrary
w, € §,, from the eigenequations of H,,, and H, at w,,
we have

:Al (Ht)xwl + Z

heV (H)\{v}

(%4, = x2).
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So, we have }cy (X, = X4) = 0. Similarly, for From the eigenequation of H, at v, and v,, we have

arbitrary w, €S, and w3 € S\{v,}, we have 0=X4 (H)x, —A (H)x, =Yy (%, = Xp) +

Yhev g (X, = x1) = 0and Ypey gy (%4, —%5) =0. x,, = x,,, which is a contradiction.

Then we have X, = x,, for any w,w € V (H,)\{v,}. Since Up to now, we have proved A, (H,,,) > A, (H,).

x 1|V w, =0, we have (IV(H)I-Dx v, %, =0, which c 9 N

implies x, #0 and x, #0. (;‘“ 2 )Zhev i\ Laes, (X = %n)" < Lhev () Loes,
~ Xp

From H, to H,_;, we have

-1, weSUS\{v,_ }, he V(H)\{v},
dy (0,h) —dy_(0,h) =11, weS,heV(H\{W, (12)

0, otherwise.

Then, we have

M (Heoy) = Ay (Hy) >x" (&

heV (H)\{v} | weS,

(H-t) = £ (Hy))x

5 {z (o +

Z (xw - xh)2 - Z (xw - xh)2]

weS\ [y} wes,

D R

heV (H)\{v} LweS,

> 0.

Thus, A, (H,_;) >\, (H,).

In the following, we will prove A, (H,)>A,(H,) or
A (Hp) > A (H)).

If A, (H,,;) >, (H,), we may denote the component of
S — v, which contains vertex v, ; by &, and the component
of S - v,,, which contains vertex v,,, by &,. Let 1 = V(§}),
S8, =V(S$,), and &5 =V (S\(V(S)UV(S,)). Let x" be a
Perron eigenvector of & (H,,,) corresponding to A, (H,,;).
If ZheV(H)\{v}ZweS’l (Xaﬁ - xli)z < ZheV(H)\{v}Zwes; (xai - xii)z’
then A (H) =M (Hi) 2 Shev iy [Zoes, (X = 1) =
Zwesrl(xaﬁ —x;,)%], and we can get A, (H,) >, (H,,,), which
is a contradiction. So, we
Zwes; (xu; - x;,;)z 2 ZheV(H)\{v}Zwss; (xu; - xl;)z' Then, we have
Al (Ht+2) - Al (Ht+1) 2 ZhEV(H)\{v} [ZwGS; (xa; - x},l)z - Zwes;
(x) - x4)*1= 0, similar to case 1, and we can get the equal
sign in the above inequality does not hold. So, we have

A (Hyyp) > A (H ). Repeating the above procedure, we can
get A, (Hy) > --- > A (H, ) > A (H,p) > A (H)y).

have ZheV H)\{v}

G"
Gt+1

i'e" GFI = tgjnl,...,nt,2,nt,1Jr;ftt—Z,Z,nt,rl ,,,,, n and GHl =
Doty iy =21 SUPPOSE X I8 @ Perron eigenvector
of Z(G) corresponding to A, (G). In the following, we will
first prove A, (G'"1) >, (G) or A, (G"™) > A, (G).

=G- {vvtlv € V(Knt)\{vt,l,vt}} +{uv|u € V<Knt,l)\{"t71}:" € V(Knt)\{vt,l,vt}},
G- {lev € V(Knt)\{"m) vt}} +{uv|u € V(Kntil)\{vt}, ve V(Knt)\{vt,l, vt}},

(13)
Similarly, if A,(H,,;)>A,(H,), we can prove
MH))> - >A (H,,) > A (HZ) > A (H)). O

Theorem 4. Among all clique trees with n vertices and k
cliques, the graph attaining the maximum distance Laplacian
spectral radius is P, 5 5, k3 fOr some m=3.

Proof. Let G be the graph with maximum distance Laplacian
spectral radius among all clique trees with » vertices and k
cliques. By Lemma 4, we get G=92,, e Let
V(K )NV (K, )=v for i=1,2,...,k—1. Ifk<2 the
result holds. Next, we may assume k > 3 Suppose there exists
some 2 <t <k such that n, > 3. Denote the component of G —
v,_, which contains vertex v,_, by G, and the component of
G — v, which contains vertex v,,; by G,. Let §; =V (G,),
$,=V(G,), and S;=V(G\(V(G)UV(G,)), ie,
S;=V(K,). Let

(14)

2
Case I: ZwesZZhesz\{vt m}(x —xp)"2 ZweSIZhes3\{v,,l,vt}
(x,— x3,)°.

From G to G !, we have
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do (@, h) = dgr (0, h) =] 1,
Oa

-y

7
-1, weSuiv} heS\{vi_1, v}
w €S, heS\{v_, v}
otherwise.
LG =16 2x (Z(G7) - 2(G)x
Z (xw - xh)z - Z (xw - xh)2]
h€S3\{vH,vt} _wESZU{vt} weS, (15)

=Z—

)

hES3\{1/t_1 ,vt} LweS,

>0,

which implies A, (G""!) >, (G). Similar to Case 1 of
Lemma 4, we can get the equal sign in the above in-
equality does not hold. So, we have A, (G 1) >, (G).

¥ G- ol,n) - )]

h€S3\{vt_1 ,vt} LweS,

Z (xw - xh)z - Z (xw - xh)2

wEeS, ]

2
Case 2: ZwésézhE&\{V,,l,V,}(xw - x;)" < ZwES]Zh€S3\
(Ve Ve (x= x)°

Then, we have

LG -1 (@) 2" (2(GM) - 2(G))x

= 2|2

(x4 = xh)z - Z (x4 = xh)zjl

h€S3\{vH,vt} | weS; U {VH} weS,

M

h€S3\{vH,vt} [ WES,

=

M

heS3\{vH ,vt} LweS,

> 0.
Thus, we have A, (G"!) > 1, (G).
Doing the above graph transformations until
my=ny=--=m_ =2, we get G as P, 5, mps3 for
some m > 3.

5. Conclusion

This paper mainly determines the extremal graphs with
maximum and minimum distance Laplacian spectral ra-
dius among all clique trees with n vertices and k cliques.
Moreover, we get the distance Laplacian energies of all the
clique stars with » vertices and k cliques. Based on our
results, we conjecture that the line graphs of S} and K ;
are the unique graphs with minimum and maximum
distance Laplacian spectral radius among all the line
graphs of unicyclic graphs, respectively, where S is the
graph obtained by adding an edge to the star K, ; of

Z ('xw - xh)z +(‘va

(16)

- xh)z - Z (x4 = xh)2:|

WES,

Z (xw - xh)2 - Z ('xw - xh)2

WES, ]

order nand K; ; is the graph obtained by adding an edge
between a vertex of a triangle and a terminal vertex of a
path on n— 3 vertices. Moreover, we can study the dis-
tance Laplacian spectral radius of diclique trees in the
future.
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