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-e distance Laplacian matrix of a connected graph G is defined asL(G) � Tr(G) − D(G), where D(G) is the distance matrix of
G and Tr(G) is the diagonal matrix of vertex transmissions of G. -e largest eigenvalue ofL(G) is called the distance Laplacian
spectral radius of G. In this paper, we determine the graphs with maximum and minimum distance Laplacian spectral radius
among all clique trees with n vertices and k cliques. Moreover, we obtainn vertices and k cliques.

1. Introduction

In this paper, we consider simple connected graphs [1]. A
graphG is represented byG � (V(G), E(G)), in which the set
V(G) � v1, v2, . . . , vn  represents its vertex set and E(G) is
the edge set connecting pairs of distinct vertices. -e number
n � |V(G)| is referred to as the order of G. -e distance
matrix of G is the n × n matrix D(G) � (dG(u, v))u,v∈V(G),
where dG(u, v) denotes the distance between vertices u and v

in G, i.e., the length of a shortest path from u to v in G. For
u ∈ V(G), the transmission of u in G, denoted by TrG(u), is
defined as the sum of distances from u to all other vertices of
G. Let Tr(G) be the diagonal matrix of vertex transmissions
of G. In 2013, Aouchiche and Hansen [2] first gave the
definition of distance Laplacian matrix: for a connected graph
G,L(G) � Tr(G) − D(G), whereL(G) denotes the distance
Laplacian matrix. Obviously,L(G) is a positive semidefinite,
symmetric, and singular matrix. -e distance Laplacian ei-
genvalues of G, denoted by λ1(G)≥ λ2(G)≥ · · · ≥ λn(G) � 0,
are the eigenvalues ofL(G). Especially, the largest eigenvalue
λ1(G) is the distance Laplacian spectral radius of G. -e
positive unit eigenvector, i.e., all components of the eigen-
vector are positive, corresponding to λ1(G) is called the
Perron eigenvector of L(G).

For a graph G, two vertices are called adjacent if they are
connected by an edge and two edges are called incident if
they share a common vertex. -e set of vertices that are
adjacent to a vertex v ∈ V(G) is called the neighborhood of v

and is presented by NG(v). As usual, let Kn, K1,n− 1, and Pn

denote the complete graph, the star, and the path with order
n, respectively. G is a connected graph, X ∈ V(G), G − X is
not connected, and then X is a cut-vertex set. If X has only
vertex v, then v is a cut-vertex. A block of G is a maximal
connected subgraph of G that has no cut-vertex. A block is a
clique if the block is a complete graph. A graph G is a clique
tree if each block of G is a clique. We callPn1 ,n2 ,...,nk

a clique
path if we replace each edge of Pk+1 by a clique Kni

such that
V(Kni

)∩V(Kni+1
) � vi for i � 1, 2, . . . , k − 2 and

V(Kni
)∩V(Knj

) � ∅ for j≠ i − 1, i + 1 and 2≤ i≤ k − 1. We
call Ku,n1 ,n2 ,...,nk

a clique star if we replace each edge of the star
K1,k with a clique Kni

such that V(Kni
)∩V(Knj

) � u for i≠ j

and i, j � 1, 2, . . . , k (see Figure 1).
Recently, Xing and Zhou [3] characterized the unique

graph with minimum distance Laplacian spectral radius
among all the bicyclic graphs with fixed number of vertices;
Aouchiche and Hansen [4] showed that the star K1,n is the
unique tree with the minimum distance Laplacian spectral
radius among all trees; Lin et al. [5, 6] determined the unique
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graph with minimum distance Laplacian spectral radius
among all the trees with fixed bipartition, nonstar-like trees,
noncaterpillar trees, nonstar-like noncaterpillar trees, and
the graph with fixed edge connectivity at most half of the
order, respectively; Niu et al. [7] determined the unique
graph with minimum distance Laplacian spectral radius
among all the bipartite graphs with fixed matching number
and fixed vertex connectivity, respectively; Fan et al. [8]
determined the graph with minimum distance Laplacian
spectral radius among all the unicyclic and bicyclic graphs
with fixed numbers of vertices, respectively; Lin and Zhou
[9] determined the unique graph with maximum distance
Laplacian spectral radius among all the unicyclic graphs with
fixed numbers of vertices.

In 2019, Cui et al. [10] investigated a convex combination
of Tr(G) and D(G) in the form of
Dα(G) � αTr(G) + (1 − α)D(G), 0≤ α≤ 1, which is called
the generalized distancematrix. Alhevaz et al. [11] gave some
new upper and lower bounds for the generalized distance
energy of graphs which are established based on parameters
including the Wiener index and the transmission degrees
and found that the complete graph has the minimum
generalized distance energy among all connected graphs; Lin
and Drury et al. [12] established some bounds for the
generalized distance Gaussian Estrada index of a connected
graph, involving the different graph parameters, including
the order, the Wiener index, the transmission degrees, and
the parameter α ∈ [0, 1], and characterized the extremal
graphs attaining these bounds; Alhevaz et al. [13] obtained
some bounds for the generalized distance spectral radius of
graphs using graph parameters like the diameter, the order,
the minimum degree, the second minimum degree, the
transmission degree, and the second transmission degree
and characterized the extremal graphs; Alhevaz et al. [14]
studied the generalized distance spectrum of join of two
regular graphs and join of a regular graph with the union of
two different regular graphs; Shang [15] established better
lower and upper bounds to the distance Estrada index for
almost all graphs.

-e distance Laplacian energy is defined as
DLE(G) � (1/n) n

i�1 |λi(G) − t(G)|, where t(G) is the av-
erage transmission of G and is defined by
t(G) � (1/n) 

n
i�1 TrG(vi). Although there has been exten-

sive work done on the distance Laplacian spectral radius of
graphs, relatively little is known in regard to distance
Laplacian energy. -e distance Laplacian energy was first
introduced in [16], where several lower and upper bounds
were obtained; Das et al. [17] gave some lower bounds on
distance Laplacian energy in terms of n for graphs and trees
and characterized the extremal graphs and trees. In this

paper, first, we not only get the distance Laplacian eigen-
values of all clique stars Ku,n1 ,n2 ,...,nk

but also get their distance
Laplacian energies; second, we prove all clique stars
Ku,n1 ,n2 ,...,nk

are the graphs with minimum distance Laplacian
spectral radius among all clique trees with n vertices and k

cliques. -en, we show that the clique path Pm,2,...,2,n− m− k+3
for m≥ 3 is the graph with maximum distance Laplacian
spectral radius among all clique trees with n vertices and k

cliques.

2. Preliminaries

Let G � (V, E) be a connected graph with V(G) � v1, v2,

. . . , vn}. A column vector x � (xv1
, xv2

, . . . , xvn
)T ∈ Rn can

be considered as a function defined on V(G) which maps
vertex vi to xvi

, i.e., x(vi) � xvi
for i � 1, 2, . . . , n. -en,

x
T
L(G)x � 

u,v{ }⊆V(G)

dG(u, v) xu − xv( 
2
, (1)

and λ is a distance Laplacian eigenvalue with corresponding
eigenvector x if and only if x≠ 0, for each u ∈ V(G),

λ − TrG(u)( xu � − 
v∈V(G)

dG(u, v)xv, (2)

or equivalently

λxu � 
v∈V(G)

dG(u, v) xu − xv( . (3)

-e above equation is called the eigenequation of G at u.
Note that 1n � (1, 1, . . . , 1√√√√√√√√

n

)T is an eigenvector of L(G)

corresponding to λn(G) � 0. For n≥ 2, if x is an eigenvector
of L(G) corresponding to λ1(G), we have xT1n � 0.

For a unit column vector x ∈ Rn, by Rayleigh’s principle,
we have λ(G)≥xTL(G)x with equality if and only if x is an
eigenvector of L(G) corresponding to λ(G).

-e following is the well-known Cauchy interlacing
theorem.

Lemma 1 (Cauchy interlace theorem) (see [1]). Let A be a
Hermitian matrix with eigenvalues λ1 ≥ · · · ≥ λn and B be one
of its principal submatrices. Let B have eigenvalues
μ1 ≥ · · · ≥ μm. ,en, the inequalities λn− m+i ≤ μi ≤ λi(i � 1,

. . . , m) hold.

Lemma 2 (see [6]). Let G be a connected graph with three
induced subgraphs G1, G2, and G3 such that |V(Gi)|≥ 2 for
i � 1, 2, 3 and V(Gi)∩V(Gj) � u{ } for 1≤ i< j≤ 3 and
∪ 3i�1V(Gi) � V(G) (see Figure 2). For v ∈ V(G2)\ u{ } and
y ∈ V(G1)\ u{ }, let G1 � G − uω: ω ∈ NG3

(u)  + vω: ω ∈{

Kn1

Kn1

Kn2

Kn2

Kn3

Kn3

Knk

Knk

Figure 1: A clique star and a clique path.
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NG3
(u)} and G2 � G − uω: ω ∈ NG3

(u)  + yω: ω

∈ NG3
(u)}. If NG(u) � y, v ∪NG3

(u), then λ1(G)<
λ1(G1) or λ1(G)< λ1(G2).

3. Minimum Distance Laplacian Spectral
Radius of Clique Trees

-e diameter of a graph is the maximum distance between
any pair of vertices.

Lemma 3. Let S be a clique tree with n vertices and k cliques.
If diam(S)≥ 3, then λ1(S)> 2n − 1.

Proof. For convenience, let diam(S) � d andPn1 ,n2 ,...,nd
be a

clique path of S. Denote the cliques of Pn1 ,n2 ,...,nd
by Kn1

,
Kn2

, . . . , Knd
. Let V(Kni

)∩V(Kni+1
) � vi for i � 1, 2, . . . ,

d − 1. Let v0  ∈ V(Kn1
)\ v1  and vd  ∈ V(Knd

)\ vd− 1 .
-en, v0v1 . . . vd is a diameter path of S. We can easily get

TrS v0( ≥ n1 − 2(  + 2 n2 − 2(  + · · · + d nd − 2(  + 1 + 2 + · · · + d

+ 2 n − n1 − n2 − · · · − nd + (d − 1) ,

TrS vd( ≥ nd − 2(  + 2 nd− 1 − 2(  + · · · + d n1 − 2(  + 1 + 2 + · · · + d

+ 2 n − n1 − n2 − · · · − nd + (d − 1) .

(4)

-en, we have

TrS v0(  + TrS vd( ≥ (d + 1) n1 − 2(  + n2 − 2(  + · · · + nd − 2(   + d(d + 1) + 4n

− 4 n1 − 2(  + n2 − 2(  + · · · + nd − 2(   − 8d + 4(d − 1)

� (d + 1 − 4) n1 − 2(  + n2 − 2(  + · · · + nd − 2(   + d(d + 1) + 4n − 8 d + 4(d − 1)

� (d − 3) n1 − 2(  + n2 − 2(  + · · · + nd − 2(   + d
2

+ 4n − 3d − 4> 4n + d
2

− 3d − 8.

(5)

Let M be the principal submatrix ofL(S) indexed by v0
and vd. -en,

M �
TrS v0(  − d

− d TrS vd( 
 ,

|M − λE| ��
TrS v0(  − λ − d

− d TrS vd(  − λ





� λ2 − TrS v0(  + TrS vd( ( λ + TrS v0( TrS vd(  − d
2
,

(6)

and thus

λ1(M) �
TrS v0(  + TrS vd(  +

����������������������

TrS v0(  − TrS vd( ( 
2

+ 4d
2



2

≥
TrS v0(  + TrS vd(  + 2 d

2
>
4n + d

2
− d − 8
2

≥
4n + 32 − 3 − 8

2
� 2n − 1.

(7)

By Lemma 2, we have λ1(S)≥ λ1(M)> 2n − 1. □

Theorem 1. Let Ku,n1 ,n2 ,...,nk
be an arbitrary clique star with n

vertices and k cliques. ,en, λ1(Ku,n1 ,n2 ,...,nk
) � 2n − 1.

Proof. Obviously, we have n1 + n2 + n3 + · · · + nk �

n + k − 1. Let x be a Perron eigenvector of L(Ku,n1 ,n2 ,...,nk
)

corresponding to λ1(Ku,n1 ,n2 ,...,nk
). By symmetry, we may

assume xv � xi for any v ∈ V(Kni
)\ u{ }, i � 1, 2, . . . , k. Let

x0 � xu, then we have

u
y y yv v v

u u

G3

G1
G2 G1 G2

G3

G1 G2

G3

G1G G2

Figure 2: A graph transformation from G to G1 and G2.
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λx0 � n1 − 1(  x0 − x1(  + n2 − 1(  x0 − x2(  + n3 − 1(  x0 − x3(  + · · · + nk − 1(  x0 − xk( ,

λx1 � x1 − x0(  + 2 n2 − 1(  x1 − x2(  + 2 n3 − 1(  x1 − x3(  + · · · + 2 nk − 1(  x1 − xk( ,

λx2 � x2 − x0(  + 2 n1 − 1(  x2 − x1(  + 2 n3 − 1(  x2 − x3(  + · · · + 2 nk − 1(  x2 − xk( ,

λx3 � x3 − x0(  + 2 n1 − 1(  x3 − x1(  + 2 n2 − 1(  x3 − x2(  + · · · + 2 nk − 1(  x3 − xk( ,

. . .

λxk � xk − x0(  + 2 n1 − 1(  xk − x1(  + 2 n2 − 1(  xk − x2(  + · · · + 2 nk− 1 − 1(  xk − xk− 1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

-us, λ1 is the largest root of the equation
fn1 ,n2 ,...,nk

(t) � 0, where β � 
k
i�1 ni − k and

fn1 ,n2 ,...,nk
(t) �

β − t 1 − n1 1 − n2 · · · 1 − nk

− 1 2 β − n1(  + 3 − t 2 − 2n2 · · · 2 − 2nk

− 1 2 − 2n1 2 β − n2(  + 3 − t · · · 2 − 2nk

⋮ ⋮ ⋮ ⋱ ⋮

− 1 2 − 2n1 2 − 2n2 · · · 2 β − nk(  + 3 − t





�

− t 1 − n1 1 − n2 · · · 1 − nk

− t 2 β − n1(  + 3 − t 2 − 2n2 · · · 2 − 2nk

− t 2 − 2n1 2 β − n2(  + 3 − t · · · 2 − 2nk

⋮ ⋮ ⋮ ⋱ ⋮

− t 2 − 2n1 2 − 2n2 · · · 2 β − nk(  + 3 − t





�

− t 1 − n1 1 − n2 1 − n3 · · · 1 − nk

− t 2 β − n1(  + 3 − t 2 − 2n2 2 − 2n3 · · · 2 − 2nk

0 1 − 2n + t 2n − 1 − t 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 1 − 2n + t 0 0 · · · 2n − 1 − t





�

− t 1 − n − t 1 − n2 1 − n3 · · · 1 − nk

− t 1 − 2t 2 − 2n2 2 − 2n3 · · · 2 − 2nk

0 0 2n − 1 − t 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 · · · 2n − 1 − t





� (− t)(− 1)
2
(2n − 1 − t)

k− 1
(1 − 2t) +(− t)(− 1)

3
(2n − 1 − t)

k− 1
(1 − n − t)

� (2n − 1 − t)
k− 1

[(1 − 2t)(− t) +(1 − n − t)t]

� t(2n − 1 − t)
k− 1

(t − n).

(9)

-erefore, we have λ1(Ku,n1 ,n2 ,...,nk
) � 2n − 1 n and 0 are

also distance Laplacian eigenvalues of Ku,n1 ,......,ukK......
.

Combining Lemma 3 and -eorem 1, we have the
following result. □

Theorem 2. Among all clique trees with n vertices and k

cliques, the graphs attaining the minimum distance Laplacian
spectral radius are clique stars Ku,n1,n2 ,...,nk

.

Let I be the identity matrix of order n. -e charac-
teristic polynomial of L(G) can be written as
ψ(G: λ) � det(λI − L(G)). Let us label the vertices of
Ku,n1 ,n2 ,...,nk

such that u is the first vertices, and the first n1
vertices are from V(Kn1

), the following n2 − 1 vertices are
from V(Kn2

)\ u{ }, . . ., and the last nk − 1 are from
V(Knk

)\ u{ }. Let det(λI − L(Ku,n1 ,n2 ,...,nk
)) � 0. Combining

-eorem 1, by direct calculations, we get the following
result.
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Corollary 1. ,e distance Laplacian eigenvalues of
Ku,n1,n2 ,...,nk

are 2n − 1 of multiplicities k − 1, 2n − ni of
multiplicities ni − 2(1≤ i≤ k), n, and 0.

Theorem 3. Let Ku,n1 ,n2 ,...,nk
be an arbitrary clique star with n

vertices and k cliques. ,en, we have
DLE(Ku,n1 ,n2 ,...,nk

) � (2/n)[2n − 1 + (1/n)(k − 1 − 
k
i�1 n2

i )].

Proof. Obviously, we have n1 + n2 + n3 + · · ·+ nk � n + k − 1.
For convenience, let G � Ku,n1 ,n2 ,...,nk

. For any
v, w ∈ V(Kni

)\ u{ }, we have TrG(v) � TrG(w). Let
vi ∈ V(Kni

)\ u{ }, 1≤ i≤ k. -en, we have TrG(vi) � 2n − ni −

1 and t(G) � (1/n) 
n
i�1 TrG(vi) � (([

k
i�1((ni − 1)(2n − ni−

1)] + n − 1)/n)� ((2n i� 1k(ni − 1) − 
k
i�1(ni − 1)(ni + 1) +

n − 1)/ n) � ((2n(n − 1) − 
k
i�1 n2

i + k + n − 1)/n) � 2n − 1 +

((k − 1 − i� 1kn2
i )/n). By Cauchy–Schwarz inequality, we

have 
k
i�1 n2

i ≥ (n + k − 1)2 > n2. So, we get t(G)< 2n − 1+

((k − 1 − n2)/n) � n − 1 + (k − 1/n)< n. By Corollary 1, we
know λi > n> t(G) for i � 1, 2, . . . , n − 1, and λn � 0.
DLE(Ku,n1 ,n2 ,...,nk

) � (1/n) 
n
i�1 |λi(G) − t(G)| � ((i� 1n− 1

[λi(G) − t(G)] + t(G) )/n)� (
n
i�1 λi(G) + (2 − n)t(G)/n) �

(2t (G)/ n) since 
n
i�1 λi(G) is equal to the trail ofL(G), i.e.,


n
i�1 λi(G) � 

n
i�1 TrG(vi). So, we get DLE(Ku,n1 ,n2 ,...,nk

) �

(2/n)[2n − 1 + (1/n)(k − 1 − i� 1kn2
i )]. □

4. Maximum Distance Laplacian Spectral
Radius of Clique Trees

Lemma 4. Let H be a connected graph and S be a clique tree
with diam(S) � d. Suppose Pn1 ,n2 ,...,nd

is a clique path of S

with cliques Kn1
, Kn2

, . . ., Knd
and V(Kni

)∩V(Kni+1
) � vi for

i � 1, 2, . . . , d − 1. Let Ht be the graph obtained by identifying
a vertex v ofH and a vertex u ofKnt

, where 2≤ t≤d − 1.,en,
λ1(Hd)> λ1(Ht) or λ1(H1)> λ1(Ht).

Proof. By Lemma 2, we may assume u≠ vt− 1 or u≠ vt for
2≤ t≤ d − 1. Denote the component of S − vt− 1 which
contains vertex vt− 2 by S1 and the component of S − vt

which contains vertex vt+1 by S2. Let S1 � V(S1),
S2 � V(S2), and S3 � V(S)\(V(S1)∪V(S2)). Suppose x is
a Perron eigenvector ofL(Ht) corresponding to λ1(Ht). In
the following, we will first prove λ1(Ht+1)> λ1(Ht) or
λ1(Ht− 1)> λ1(Ht).

Case 1: h∈V(H)\ v{ }ω∈S1(xω − xh)2 ≥h∈V(H)\ v{ }ω∈S2
(xω− xh)2. From Ht to Ht+1, we have

dHt
(ω, h) − dHt+1

(ω, h) �

− 1, ω ∈ S1 ∪ S3\ vt , h ∈ V(H)\ v{ },

1, ω ∈ S2, h ∈ V(H)\ v{ },

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

λ1 Ht+1(  − λ1 Ht( ≥ x
T
L Ht+1(  − L Ht( ( x

� 
h∈V(H)\ v{ }



ω∈S1 ∪ S3\ vt{ }

xω − xh( 
2

− 
ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 
h∈V(H)\ v{ }


ω∈S1

xω − xh( 
2

+ 

ω∈S3\ vt{ }

xω − xh( 
2

− 
ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

≥ 
h∈V(H)\ v{ }


ω∈S1

xω − xh( 
2

− 
ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≥ 0.

(10)

-us, λ1(Ht+1)≥ λ1(Ht).
In the following, we will prove λ1(Ht+1)> λ1(Ht). If
λ1(Ht+1) � λ1(Ht), then h∈V(H)\ v{ }ω∈S3\ vt{ }(xω−

xh)2 � 0, which implies xω � xh for any ω ∈ S3\ vt ,
h ∈ V(H)\ v{ }, and x is also a Perron eigenvector of
L(Ht+1) corresponding to λ1(Ht+1). For arbitrary
ω1 ∈ S1, from the eigenequations of Ht+1 and Ht at ω1,
we have

λ1 Ht+1( xω1
� 

h∈V Ht+1( )

dHt+1
ω1, h(  xω1

− xh 

� 

h∈V Ht( )

dHt
ω1, h(  xω1

− xh 

+ 
h∈V(H)\ v{ }

xω1
− xh 

� λ1 Ht( xω1
+ 

h∈V(H)\ v{ }

xω1
− xh .

(11)
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So, we have h∈V(H)\ v{ }(xω1
− xh) � 0. Similarly, for

arbitrary ω2 ∈ S2 and ω3 ∈ S3\ vt , we have
h∈V(H)\ v{ }(xω2

− xh) � 0 and h∈V(H)\ v{ }(xω3
− xh) � 0.

-en, we have xω � xw for any ω,w ∈V(Ht)\ vt . Since
xT1|V(Ht)|

� 0, we have (|V(Ht)| − 1)xv1
+ xvt

� 0, which
implies xv1

≠0 and xvt
≠0.

From the eigenequation of Ht at v1 and v2, we have
0 � λ1(Ht)xv1

− λ1(Ht)xv2
� h∈V(H)\ v{ }(xv1

− xh) +

xvt
� xvt

, which is a contradiction.
Up to now, we have proved λ1(Ht+1)> λ1(Ht).
Case 2: h∈V(H)\ v{ }ω∈S1(xω − xh)2 <h∈V(H)\ v{ }ω∈S2
(xω− xh)2.

From Ht to Ht− 1, we have

dHt
(ω, h) − dHt− 1

(ω, h) �

− 1, ω ∈ S2 ∪ S3\ vt− 1 , h ∈ V(H)\ v{ },

1, ω ∈ S1, h ∈ V(H)\ v{ },

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(12)

-en, we have

λ1 Ht− 1(  − λ1 Ht( ≥x
T

L Ht− 1(  − L Ht( ( x

� 
h∈V(H)\ v{ }


ω∈S2

xω − xh( 
2

+ 

ω∈S3\ vt− 1{ }

xω − xh( 
2

− 
ω∈S1

xω − xh( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

≥ 
h∈V(H)\ v{ }


ω∈S2

xω − xh( 
2

− 
ω∈S1

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

> 0.

(13)

-us, λ1(Ht− 1)> λ1(Ht).
In the following, we will prove λ1(Hd)> λ1(Ht) or

λ1(H1)> λ1(Ht).
If λ1(Ht+1)> λ1(Ht), we may denote the component of

S − vt which contains vertex vt− 1 by S1′ and the component
of S − vt+1 which contains vertex vt+2 byS2′. LetS1′ � V(S1′),
S2′ � V(S2′), and S3′ � V(S)\(V(S1′)∪V(S2′)). Let x′ be a
Perron eigenvector of L(Ht+1) corresponding to λ1(Ht+1).
If h∈V(H)\ v{ }ω∈S1′(xω′ − xh

′)2 <h∈V(H)\ v{ }ω∈S2′(xω′ − xh
′)2,

then λ1(Ht) − λ1(Ht+1)≥h∈V(H)\ v{ }[ω∈S2′(xω′ − xh
′)2−

ω∈S1′(xω′ − xh
′ )2], and we can get λ1(Ht)> λ1(Ht+1), which

is a contradiction. So, we have h∈V(H)\ v{ }

ω∈S1′(xω′ − xh
′)2 ≥h∈V(H)\ v{ }ω∈S2′(xω′ − xh

′)2. -en, we have
λ1(Ht+2) − λ1(Ht+1)≥h∈V(H)\ v{ } [ω∈S1′(xω′ − xh

′)2 − ω∈S2′

(xω′ − xh
′)2]≥ 0, similar to case 1, and we can get the equal

sign in the above inequality does not hold. So, we have
λ1(Ht+2)> λ1(Ht+1). Repeating the above procedure, we can
get λ1(Hd)> · · · > λ1(Ht+2)> λ1(Ht+1)> λ1(Ht).

Similarly, if λ1(Ht− 1)> λ1(Ht), we can prove
λ1(H1)> · · · > λ1(Ht− 2)> λ1(Ht− 1)> λ1(Ht). □

Theorem 4. Among all clique trees with n vertices and k

cliques, the graph attaining the maximum distance Laplacian
spectral radius is Pm,2,...,2,n− m− k+3 for some m≥ 3.

Proof. Let G be the graph with maximum distance Laplacian
spectral radius among all clique trees with n vertices and k

cliques. By Lemma 4, we get G � Pn1 ,n2 ,...,nk
. Let

V(Kni
)∩V(Kni+1

) � vi for i � 1, 2, . . . , k − 1. If k≤ 2, the
result holds. Next, wemay assume k≥ 3. Suppose there exists
some 2≤ t≤ k such that nt ≥ 3. Denote the component of G −

vt− 1 which contains vertex vt− 2 by G1 and the component of
G − vt which contains vertex vt+1 by G2. Let S1 � V(G1),
S2 � V(G2), and S3 � V(G)\(V(G1)∪V(G2)), i.e.,
S3 � V(Knt

). Let

G
t− 1

� G − vvt|v ∈ V Knt
 \ vt− 1, vt   + uv|u ∈ V Knt− 1

 \ vt− 1 , v ∈ V Knt
 \ vt− 1, vt  ,

G
t+1

� G − vt− 1|v ∈ V Knt
 \ vt− 1, vt   + uv|u ∈ V Knt− 1

 \ vt , v ∈ V Knt
 \ vt− 1, vt  ,

(14)

i.e., Gt− 1 � Pn1 ,...,nt− 2 ,nt− 1+nt− 2,2,nt+1 ,...,nk
and Gt+1 �

Pn1 ,...,nt− 1 ,2,nt+1+nt− 2,nt+2 ,...,nk
. Suppose x is a Perron eigenvector

of L(G) corresponding to λ1(G). In the following, we will
first prove λ1(Gt− 1)> λ1(G) or λ1(Gt+1)> λ1(G).

Case 1: ω∈S2h∈S3\ vt− 1 ,vt{ }(xω − xh)2≥ ω∈S1h∈S3\ vt− 1 ,vt{ }
(xω− xh)2.
From G to Gt− 1, we have

6 Discrete Dynamics in Nature and Society



dG(ω, h) − dGt− 1(ω, h) �

− 1, ω ∈ S2 ∪ vt , h ∈ S3\ vt− 1, vt ,

1, ω ∈ S1, h ∈ S3\ vt− 1, vt ,

0, otherwise.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ1 G
t− 1

  − λ1(G)≥x
T
L G

t− 1
  − L(G) x

� 

h∈S3\ vt− 1 ,vt{ }



ω∈S2 ∪ vt{ }

xω − xh( 
2

− 
ω∈S1

xω − xh( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 

h∈S3\ vt− 1 ,vt{ }


ω∈S2

xω − xh( 
2

+ xvt
− xh 

2
− 

ω∈S1

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≥ 

h∈S3\ vt− 1 ,vt{ }


ω∈S2

xω − xh( 
2

− 
ω∈S1

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≥ 0,

(15)

which implies λ1(Gt− 1)≥ λ1(G). Similar to Case 1 of
Lemma 4, we can get the equal sign in the above in-
equality does not hold. So, we have λ1(Gt− 1)≥ λ1(G).

Case 2: ω∈S2h∈S3\ vt− 1 ,vt{ }(xω − xh)2 <ω∈S1h∈S3\

vt− 1, vt (xω− xh)2.
-en, we have

λ1 G
t+1

  − λ1(G)≥ x
T
L G

t+1
  − L(G) x

� 

h∈S3\ vt− 1 ,vt{ }



ω∈S1 ∪ vt− 1{ }

xω − xh( 
2

− 
ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 

h∈S3\ vt− 1 ,vt{ }


ω∈S1

xω − xh( 
2

+ xvt− 1
− xh 

2
− 

ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≥ 

h∈S3\ vt− 1 ,vt{ }


ω∈S1

xω − xh( 
2

− 
ω∈S2

xω − xh( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

> 0.

(16)

-us, we have λ1(Gt+1)> λ1(G).

Doing the above graph transformations until
n2 � n3 � · · · � nk− 1 � 2, we get G as Pm,2,...,2,n− m− k+3 for
some m≥ 3. □

5. Conclusion

-is paper mainly determines the extremal graphs with
maximum and minimum distance Laplacian spectral ra-
dius among all clique trees with n vertices and k cliques.
Moreover, we get the distance Laplacian energies of all the
clique stars with n vertices and k cliques. Based on our
results, we conjecture that the line graphs of S+

n and Kin,3
are the unique graphs with minimum and maximum
distance Laplacian spectral radius among all the line
graphs of unicyclic graphs, respectively, where S+

n is the
graph obtained by adding an edge to the star K1,n− 1 of

order n and Kin,3 is the graph obtained by adding an edge
between a vertex of a triangle and a terminal vertex of a
path on n − 3 vertices. Moreover, we can study the dis-
tance Laplacian spectral radius of diclique trees in the
future.
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