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This paper is dedicated to building a multilayer financial network within banking sectors and firm sectors (nonbanking) on the
balance sheet of two types of agents and to assessing systemic risk contagion in the reconstructed network. Two propagation
channels due to interbank credit and counterparty risk via banks’ loans to firms are comprehensively taken into account in
systemic risk contagion assessment, which is based on the DebtRank model by analyzing the relative loss of each bank’s equity and
the vulnerability of the network. The computational simulation on how systemic risk contagious process evolves has been
conducted, where the possible influential factors of network structure, agent’s initial risk status, external shock ratio, liquidity flow
rate, and different layers of the network are considered. The findings show that the reconstructed network is absolutely vulnerable
under the assumed market circumstance without any bailouts and the risk contagion process shows nonlinear behavior.
Specifically, when the average degree of the network and the external shock ratio increases, the risk contagion speed becomes
relatively high and the resulting negative effects on the network are more intense. Besides, risks originating from the failed firms in
bank-firm layer should place more negative effect on the financial system than that only happening in interbank market. Different
liquidity rates in financial market could lead to obvious discrepancy of the risk contagion speed and the extent of asset loss.
Additionally, the two layers of the network have diverse influences on risk contagious process resulting in totally different banks’
status in each layer.

systemic risk in financial markets can be seen as a specific
risk that a significant fraction of the financial system can no
longer perform its function as a credit provider and col-
lapses. Briefly speaking, systemic risk is the notion of

1. Introduction

The financial crisis of 2007-2008, originally sparked by the
collapse of relatively small investment banks, has caused

magnified losses for numerous financial and nonfinancial
institutions eventually and ultimately led to a worldwide
economic slump. The Bank for International Settlements
(BIS) and the International Monetary Fund (IMF) believed
that financial systemic risk would lead to functional disorder
of the financial system and actually place serious impact on
real economy, due to the interrelationships between them
[1]. Therefore, the emergence of systemic risk in financial
networks has been receiving increasing attention in the
literature [2, 3] and regulators (Yellen [4]). Generally,

contagion or impact that starts from the failure of a financial
institution and propagates through the financial system,
potentially to the real economy [5, 6]. Network places
paramount effect on systemic risk and financial stability
because shocks can be amplified and transmitted across
various channels both directly and indirectly, including
credit lending [7-10], common funding [11, 12], balance
sheet interlock [13, 14]), exposures to common assets
[3, 15-17], derivative exposures [18], and deleveraging
across financial institutions [19, 20]. In view of this,
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network-based systemic risk is extremely harmful and can be
potentially applied to evaluate the financial risk, which has
already been testified by the academic circles and regulation
authorities.

Until now, lots of researches have been done on whether
the network structure can amplify or mitigate risk within the
financial systems, at both regulatory level [21] and institu-
tion level [19, 22]. These achievements have accelerated the
research on systemic risk and financial networks for different
purposes, especially on the measurement of systemic risk
from the network perspective [14, 18, 23-25]. However,
other than the most works on systemic risk in single layer
financial network, some works have already extended the
notion of systemic risk to be explored in multilayer net-
works, which is much more complicated than the simple
accumulation of the risks in homogeneous single layer
network [26]. Concerning the multilayer network-based
financial risk analysis, recent literatures have appeared and
spurred the future exploration [26-33]. Leon et al. [29] and
Bargigli et al. [30] analyzed the interactions of financial
institutions on different markets in Colombia and Italy,
respectively. Bluhm and Krahnen [28] designed an agent
model of multilayer interbank network with the channels of
common asset exposure, direct lending exposures, and fire
sales. Montagna and Kok [27] studied the individual con-
tagion layer to systemic risk through the multilayer networks
with three layers: long-term direct lending exposures, short-
term direct lending exposures, and common asset exposures.
Poledna et al. [26] showed that the risk was greatly
underestimated only in a single layer network and quantified
the contribution of the four-tier network of Mexican
banking system on systemic risk. Peralta and Criséstomo
[31] divided the bank network structure into two layers
based on the type of mortgage-free transaction and showed
that the speed of risk transmission under the multilayer
network structure was more rapid. Korniyenko et al. [32]
constructed a multilayer network based on the division of
different financial instruments and analyzed the transmis-
sion of risks in global financial networks. Li et al. [33]
constructed a multiplex network model of banks with ar-
bitrary structural characteristics by long-term and short-
term interbank lending.

In real markets, especially in some emerging markets,
banks are the main creditors to the real economy in financial
system, but part of the large firms (nonbanking) also has
these similar financial functions to the banks, which means
that financial crisis could also originate from the real
economy and spread to the financial system even the whole
economy in back and forth way. Therefore, the topology of
financial networks can be adopted to identify and quantify
systemic collapse systematically, and the networks should
not only comprise financial institutions, but also include
certain industrial firms [34-36]. To our knowledge, only a
few works empirically and theoretically study the interre-
lationship between the financial economy and the real
economy [37-40]. Moreover, De Masi et al. [41] and Mi-
randa and Tabak [42] studied credit networks in Italy and
Brazil empirically, while Lux [43] developed a theoretical
model of bipartite credit networks. Marotta et al. [40]
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investigated the evolution of the network structure in Japan
and then identified the communities in the composed fi-
nancial network between banks and firms. Except for the
concentration on the structure of bank-firm networks,
systemic risk assessment in them has also been put forward.
Miranda and Tabak [42] and Aoyama [39] firstly attempted
to study systemic risk in credit networks of Japan and Brazil
empirically. In these works, several measures for systemic
risk have been proposed that are mostly based on the tra-
ditional statistics of losses, accompanied by a potential
distress during the periods of risk contagion [44-46].
However, none of these measures take cascading defaults
into account. As a complement solution, network-based
theory and measures, such as network centrality approach
and its derivations, have been great contributions to un-
derstand this issue.

Therefore, considering the interrelationship between the
financial department and the real economy sector, financial
risk not only happens when the institutions directly are
shocked, but also has adverse impact on the deterioration of
credit quality [47] in this complicated financial system. We
extend the existing literature by reconstructing and ana-
lyzing a synthetic financial network that not only includes
interbank liabilities but also covers the lending relationship
from banks to firms. The theoretical reconstruction of fi-
nancial network within banking and firm sectors allows
identifying the assessment systemic risk contagion by
employing DebtRank algorithm as proposed in Battiston
et al. [14] and Bardoscia et al. [48], whose derivation has
been approved useful in several works [26, 49].

This paper is organized as follows: the two-layer financial
credit network model between banks and firms is recon-
structed theoretically in Section 2, and the systemic risk
contagion mechanism in the reconstructed financial net-
work is presented in Section 3. Section 4 builds a systemic
risk contagion model on DebtRank model. In Section 5,
simulation analysis is conducted. Section 6 draws the
conclusions.

2. Reconstruction of Financial Network within
Banking and Firm Sectors

In order to capture the systemic risk contagion effects in
financial system precisely, joint exposures via different
channels to the same set of correlated agents should be
included. With regard to this, a consistent and extremely
close to realistic network structure for each type of agents
within different but combined channels should be designed,
especially for the financial bipartite network of banks and
firms. Some basic and reasonable stylized realities can be
inferred from the analysis of comprehensive empirical
studies on Italian data [41], Japanese data [37-39], Brazil
data [42], and Austrian data [50], which have been simply
described and explored in some related articles [43, 50].
In most of the empirically analyzed articles on bipartite
networks, the distribution of degrees is always wider for
banks than for the correlated firms [38, 50], and the number
of links of the networks also depends on the size of each
agent in the network system [37, 41]. Based on the above
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literatures, we aim to reconstruct a multilayer financial
credit network within banking and firm sector theoretically
by adopting the hypothesis and the algorithm proposed in
the directional articles of Montagna and Lux [51], De Masi
and Gallegati [38], and Lux [43]. A two-layer financial di-
rected network is to be established as G = (V, E) in this
article, where V and E represent the nodes and links, re-
spectively, consisting of interbank credit layer and bank-firm
credit layer. Basically, the schematic diagram of the
reconstructed network can be depicted in Figure 1.

Above all, we set a fix number of banks and firms in our
reconstructed network system, and it is certain that number
of the firms in real economy exceeds that of banks by two or
more orders of magnitude. Meanwhile, we assume that the
balance sheet size of the banks and firms both follows Pareto
distribution which is well-known insights in reality [43, 51].
Therefore, interbank credit layer network and bank-firm
credit layer network are reconstructed specifically in the
following sectors. For all, we denote the number of banks
and firms in the network by N, and N, respectively.

2.1. Interbank Credit Network. In interbank network, the
edges are directed and weighted, and the direction of a link
from node i to node j means the total amount of money that
bank i lends to bank j. Following Montagna and Lux [51], we
adopt that simplified scheme of the agents’ balance sheet.
The assets side A; of each bank can be partitioned into two
parts: interbank loans I; and external assets x; (loans to
firms), so that the total assets A; can be given as A; = [; + x;.
In the same way, the liabilities L; of each bank can be divided
into three parts: interbank borrowing b;, deposit d;, and
equity e;, so the liabilities side can be obtained as
Li=b+d;+e;.

Therefore, the links between the banks can be generated
by the probability generating functions P (A;, A;) according
to the relative sizes A; and A ; of balance sheets [43], which is
in accordance with the fact that relatively small and medium
sized financial entities usually lend money to much bigger
banks so as to reallocate liquidity to the market more effi-
ciently [10, 11, 52]. Therefore, the probability of the interbank
credit link between each node i and node j can be drawn as
pij=P(A,A)) =d(A/AL)" (Aj/Amax)ﬁ, where «, ,d are
parameters and A, . is the balance sheet size of the largest
bank. With the probability generation function, N, x N,
probability matrix P € My, ., can be obtained accordingly.
Then, each entry of the interbank network adjacency matrix A
can be drawn with the probabilities p;; and 1 - p;; so as to
make sure that the interbank credit link can be created.
Meanwhile, the selected probability generation function,
which can be used to capture the right-skew of the degree
distribution and the disassortative feature of link formation,
has been explored and testified in recent researches [10, 53].

Naturally, it is assumed that financial entities should
always have more intense links to the banks with high
balance sheet size; the volume of credit /;; between each bank
iand j can be calculated as [;; = (I;p;;A;/¥ keq, PicAx)> where
(), denotes the set of nodes with a;; = 1. Thus, the interbank
credit network can be constructed theoretically.

Figure 1: Simplified framework of two-layer bank-firm credit
network. The green squares and the blue circles represent banks
and firms, respectively. Meanwhile, connections of the black
dashed lines and the yellow dotted lines represent the interbank
credit and bank-firm credit, while the arrows mean the credit
direction.

2.2. Bank-Firm Credit Network. On bank-firm credit net-
work, let the average number of links of firms be A, so the
average number of links for each bank can be
Ap = A5 (N /Ny), but does not follow uniformly and shows
the means of linking probabilities across the banks and firms
varying by their balance sheet sizes. Therefore, the procedure
of reconstructing the bank-firm financial network should be
conducted on banks and firms separately.

For banks, each one’s total assets A;, i = 1,2, ..., N, can
be distributed as f (A) ~ ((aL®A; )/ (1 - (L/H)®)) that
the balance sheet sizes of banks could be got from a trun-
cated Pareto distribution randomly, where L and H are the
lower and the upper limit, respectively, and « is the Pareto
index. Besides, we also assume that the degree of each bank
(the links number of each bank) is distributed proportionally
to its balance sheets sizes, so that bank i, i € (1, N},) has an
expected degree A; = 1, A;. Therefore, the average expected
degree across the banking sectors can be calculated as
If LA, f (A)dA; = A, where the constant 1, is simply
obtained as A, = A,/A,, representing the average degree A,
divided by the mean balance sheet size A; within the fi-
nancial system.

For firms, the distribution of loan sizes and degrees can
also be consistent with those obtained for banks and the
typical facts represented above. Therefore, the mean size of
firms’ loan can be obtained as f; = GXL-(NI,/NJ(), where 0 is
the proportion of the assets as loans to firms in bank’s
balance sheets. Supposing that the distribution of firm size
also follows a Pareto distribution with the same parameter «
as for banks, the truncated Pareto distribution for firms can
be therefore obtained by adopting the minimum threshold /
and maximum threshold / in the same way that are [ =
HL(Nb/Nf) and h = HH(Nb/Nf). For the number of firms
being absolutely larger than that of banks, it is guaranteed
that the loans by firms should appear on the left side of the
size distribution of banks, with the distribution of aggregate
loans in banks’ balance sheet. Thus, the realization for the
ensemble of firms can be obtained just like the way for banks,
and the number of links of each firm j = 1,2,..., N can be
drawn with the above parameters 1; = AB;, so that the



average number of that can be obtained as Ap=21 f/E, where
As and B; are the average degree and the average loan size
across firms.

Opverall, in addition to the total loans from the banks to
firms, the obtained numbers of the degrees for all banks and
firms should be roughly accordingly set up to the initial
expectation. In order to make it more consistent with the
reality, especially for the difference of both numbers exactly,
the approach of static model for network reconstruction is
applied [54], which is operated by taking the minimum of
the aggregate links and adding connections one after an-
other. From this, the steps of network reconstruction can be
conducted as follows: first, each bank or firm will be assigned
a weight according to the realization of its degree. Then, we
pick one node from the weighted ensemble of banks and
firms, respectively, and create a link between them. Here-
after, the previous used link from the distribution of degrees
of banks and firms will be excluded from the set of possible
links each time, and the same operation of building the
connection will be preceded until the available links from
either banks’ or firms’ side run out. At last, the total loan
amount of each bank is allocated to its borrowers (firms)
proportionally to their loan sizes by Pareto distribution of
firms. If so, this could guarantee the possible increase of
degrees with loan size within firms to large extent, avoiding
the potential errors that the exact numbers would not be
absolutely the sum pertinent loan position of banks that have
been generated independently.

3. Systemic Risk Contagion Mechanisms in
Reconstructed Network

On the existing literatures, we go through the whole banking
and firm sectors and analyze how default or distress is
evolving in the two-layer financial credit network. Normally,
it is assumed that external shock on the financial network
system should damage the equity of the shocked firm(s) or
bank(s). Moreover, it is expected that the shocked firms or
banks should linearly transfer the loss of equity to the
creditor banks. In the network, the risk exposure is supposed
to be short-term loan, and the credit from banks to firms is
assumed to be a highly liquid asset for creditors. Normally, if
banks are faced with liquidity risk, credit risk, and the
parallel influences, they could adopt several solutions to
avoid these possible risks. Meanwhile, if a bank suffered
from liquidity crisis, regardless of the solutions to be taken
by the bank, negative effect would be placed on for different
reasons, which may be resulting from high interbank in-
terest’s rate, asset devaluation for fire sale, etc. In general, the
diagram of systemic risk contagion mechanism in financial
credit network within banks and firms can be portrayed as
shown in Figure 2.

According to the diagram of the systemic risk contagion
mechanism, the institutions face losses in all classes of assets,
both interbank market and the bank-firm financial market,
and the framework of dynamics of the relative loss in equity
for each institution as well as the whole system is concerned.
Systemic risk contagious process and how it places impact
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on the stability of the financial network system can be
depicted as the following two rounds.

(1) The first round of shock is on the external part of the
assets. Initially, it is supposed that one or more nodes
in the financial network that may be firms or (and)
banks suffered from external shock and we can let m
be the shock ratio, representing the loss extent of the
shocked agents’ external assets.

For banking system, after the first round of shock,
shocked banks may lose part of the assets amount to
mVOl(0), where m represents the extent of the
damage caused by the first round shock. However,
the liabilities will be unchanged for the book value
regardless of how the shocks are going. In the same
way, the equity of the shocked firms should be also
damaged and suffer from the loss of
E (1) = (1-m)E;(0).

Due to the external shock, even if the shocked
bank(s) should not default, the panic of default or the
probability of default still spreads within the network
system, placing especially negative impact on the
creditor banks or other correlated agents. Mean-
while, creditor banks also face the dilemma of re-
payment for their own debts and have to sell assets.

However, it is difficult for banks to sell assets without
realizing losses under market liquidity deteriorate;
that is, their assets should be traded at a certain
discount rate. Therefore, in this paper, we let g be the
asset flow rate reflecting the market liquidity, so that
the banks would sell the assets with the book value
((m[VOL(0) + a s (0)] + Xp, (-1 <09 (1))/q) to make
up for the funding shortage.

(2) The second round of shock is on the assets within the
bank-firm credit network. In this round, shocks on
the asset side of the balance sheet of the firm(s) or
bank(s) propagate along the network; even such
shocks are not large enough to trigger the default of
these agents. Banks would make the evaluation of the
shocked counterparties’ ability of paying the loans.
This is motivated by the fact that as one agent’s
equity decreases, so does its distance to default [55],
and it will be less likely to repay its obligations in case
of future distress. Therefore, banks should have in-
centives to draw back credit from the correlated
institutions or make liquidity hoarding to them in
case of the default. If so, banks can make self-rescue
when their assets are lower than a certain value,
which could be the benchmark of the bank’s com-
pulsory leverage. Meanwhile, it is also presumed that
the banks should make the decision of drawing back
the credit from the firms randomly, whoever has
credit-lending relationship with them.

As far as banks are concerned, drawing back credit
may avoid potential loss of assets, but it could place
negative impact on the counterparty agents. It is
assumed that being drawn back credit firms or banks
should go bankrupt potentially and their liquidation
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FIGURE 2: Diagram of systemic risk contagion mechanism in financial credit network within banks and firms.

of assets should meet the repayment of their loans to
the banks. So, the relative changes of the shocked
firms’ equity and the survival ones within the net-
work can be presented as ( (Ef(l))/(Ef (0))) =
L= m, (E; () (E; (1)) = 1, (E; GD/(E(2)) )
=L ((Ef(4)/(Ef(3)))=1... and ((E;(1 ))/
(E(0))=1L((E,@) E D) =1(E @)
(Ef(2)) =1, ((Ef(4))/ E;(3)))=1..., respec-
tively, where E ¥ (t)<0,t — co. Theoretically,
systemic risk contagion could last until all banks go
bankrupt, and E; () <0 will be the exact bankrupt
benchmark for each agent.

As a matter of fact, except for credit risk and liquidity
risk mentioned above, there are still lots of channels
or factors resulting in risk spreading in financial
networks. Specifically, the synchronization of these
possible factors should accelerate or strengthen the
risk contagion, which means that the impact of the
outbreak of financial systemic risk in reality is likely
to be worse than the analysis in this paper with
certain constraints.

4. Model of Systemic Risk Contagion in
Financial Network

The above reconstructed resulting bipartite network G =
(B, F) consists of two sets of nodes: banks B and firms F. In
network, the links connect banks not only with other banks
(interbank liabilities), but also with the firms (liabilities of
firms or credit from the banks). The weighted links between
each agent in all can be defined as liability matrix
Ly, #Np)# (NN where each entry L;; indicates the liability
that node 7 has to node j, excluding the null entries between
firms and the entries from firms to banks. Therefore, the
reconstructed multilayer financial network can be parti-
tioned into the following two types: interbank network and
bank-firm network.

Let Aj, = {aﬁ»)’}N N M) be the adjacency matrix of the
financial network; the credit relationship between each
agent can be represented by these entries, where a;,, in-
dicates the credit level of node i to node j in layer y and y
indicates the network layer with different value. Specifi-
cally, it is assumed that there should be no circle credit

relationship within each node’s own, which means that
aj,, =0 is a default setting.

For simplicity, in asset side of a bank i’s balance sheet, the
asset V; is subdivided into the following three parts: in-
terbank  assets VP'=Y, a,, bank-firm  assets
VH = Zy:l a;» and other assets VO, while in liability side of
the bank i’s balance sheet it is also divided into three parts:
interbank liabilities L®!, other liabilities L°!, and equity E', as
is shown in Table 1. For interbank asset in each bank’s
balance sheet, there is a corresponding liability in another
bank’s balance sheet; that is, L;; = a;, thus, interbank lia-
bilities is LP' = ¥, | a;, and the rest liabilities can be cal-
culated as LON(t) =V,(t-1)- LB~ E,(t-1). Overall,
equity E; is used as a buffer of loss, and the relationship V! +
VI 4 Ol = Bl 4 [OT+ E, is constant in common sense.
Similarly, the simplified firm balance sheet can also be
defined as that in Table 2.

4.1. General DebtRank Model. In order to measure the
systemic risk and its dynamics of contagious process in
financial network system, the DebtRank model, originally
proposed by Battiston et al. [14] and Bardoscia et al. [48], is
applied to be a special tool for measurement in this article.
The original DebtRank model, transformed from PageRank
algorithm [56], can be used to describe the dynamic process
of stress propagation within interbank market successfully in
several literatures. Briefly speaking, the DebtRank model
could be adopted to quantify the extent of the financial
distress that a particular node should face under the external
shocks and the corresponding risk contagion within dif-
ferent channels. Therefore, a transition matrix called in-
terbank market’s vulnerability matrix V € Bx B can be
created in the model, in which B is the set of banks, and the
vulnerability matrix can be defined as V;; = (4, /e;), where
Vi, j € B and V;; € [0,00). The entry A;; represents the
unsecured exposure of creditor bank i to debtor bank j,
while e; > 0 denotes the capital buffer of bank i. Thus, when
Vi;21, bank j leads bank i to default as well and the in-
termediate value of V; j € (0,1] leads bank i into distress but
not into default.

In the general DebtRank model, two indicators are
defined to measure the risk status of each node at each time
step. One indicator is H;(t) € [0, 1], which represents the



TaBLE 1: Simplified balance sheet of a bank.

Liabilities
Interbank liabilities LP!
Other liabilities L°!
Equity E;

Assets

Interbank assets VB!
Bank-firm assets V!
Other assets VO!

TaBLE 2: Simplified balance sheet of a firm.

Liabilities
Bank-firm liabilities LBF

Other liabilities LOF
Equity E

Assets
Liquid assets V!

Nonliquid assets V2

vulnerability of node 7, and the other one is C; (t) = {U, D, I},
a discrete variable, representing the status of each shocked
node i. By the way, the entries in the set of C; (¢) represent the
status of “Undistressed,” “Distressed,” and “Inactive,” re-
spectively. The specific modal indicators in the general
DebtRank model can be seen as follows:

H () =min{ LH,(t-1)+ Y WH;(t-1)t,
C;(t-1)=D
D, H;(t)>0;Ci(t - 1)#1,
C.(t)=11, C,(t-1)=D,
C;(t-1), otherwise.

(1

The above DebtRank model always converges for H; (t)
within the value by H;, (t) = 1, due to the operator min, and
shows nondecreasing monotonically, as a result of the
nonnegative value in vulnerability matrix V;; = A;/e;.

Consequently, for a sufficiently large number of iteration
steps T < 00, the system converges to a stable status. The
resulting DebtRank index DR is simply the additional stress
that the interbank market suffers apart from the initial
exogenous shock b(0) that can be defined as follows:

DR(b(0)) = ) (b; (1) - b;(0))g;, (2)

ieB

where ¢, represents the economic importance of agent i,
which can be simplified and designed to be the share of
liabilities that agent i has in the financial system. In this
formula, DR (b(0)) is conditional on the initial shock b (0).

4.2. Risk Measurement Model Based on General DebtRank
Model. The basic assumption of the general DebtRank
model is that the loss or distress should be linearly trans-
mitted from the debtor to the creditor and the devaluation of
the debtor’s equity leads to the devaluation of the creditor’s
assets on the same scale. Based on this, systemic risk con-
tagion may result in potential loss of creditor assets, and the
change of creditor’s asset is related to that of debtor’s equity.
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Therefore, in this paper, changes of each bank’s asset
within interbank network and bank-firm market are de-
scribed in the following formulas, respectively. Specifically,
the credit amount of banks’ drawing from the firms is
considered to be the changes of assets in bank-firm market.

E, (1)
@y () gy Bolt=1>0,
abi(t+1):
ay () = 0, E,(t - 1)<0,
(3)
E(t)
an()—21" E,(t-1)>¢,V,(0),
an+ny={ " Ert-D) :
a(t), E;(t-1) < 5V, (0).

(4)

Different from the original DebtRank model, where only
the credit risk was considered, both liquidity risk and credit
risk are taken into account in our optimized model, and the
loss caused by the liquidity risk can be calculated as

s,:% m[VO ) +an 0]+ Y ay®) . (5

E, (t-1)<0

Therefore, based on the risk contagion process through
the balance sheet in both asset side and liability side, the
dynamic changes of equity in financial network can be
microscopically drawn as

N
E(t)=) ay(t)+ Azd anp )+ V) -1 (6 - LY (1)
b=1 f=1
=S,

(6)

where  VOI(£) =VOI(1) = (1 -m)VPL(0), VOU(t) =g,
V;(0), L () = LP(0), and LP'(t) = LP1(0). The last two
terms show the assumption that the debt is unchanged
according to the face value.

According to the above analysis, the ration of risk ex-
posure to equity is defined as the risk leverage matrix [48].
Concerning the deterioration of liquidity risk, the risk ex-
posure should be magnified by (1/g) times potentially,
which is mostly significant in short-term loans with high
liquidity. According to formulas (3) and (4), the recursion
process of the risk contagion can be drawn as in the fol-
lowing formula, on the condition that the risk exposure
should not change in the first step; that is, a; , (1) = a;;, (0):

(1/q)aj;, (0)

E(0) Ej(t—1)>0,

W, () = (7)

0, Ej(t—l)SO.

Thus, the maximum eigenvalue |A .| of the interbank
leverage matrix can be calculated to characterize whether the
risk of the external shock could be augmented in the risk
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contagion and leads to individual default. Additionally,
concerning the reconstructed two-layer financial network,
the risk status of each layer in the risk contagion can be
measured by H;, (t) and H, (t), respectively, where H, | (t)
represents the banks’ risk level in interbank lending layer
and H;, (t) represents the banks’ risk level in bank-firm
lending layer.

N
Hi,l (t + 1) = mln{ I’Hi,l (t) + ZWbI[Hb(t) _Hb (t_ 1)] })
b=1

M
H,(t+1)= min<| LH, 0+ Y Wg[Hp(t)-H;(t-1)] }
f=1

(8)
{ m, under initial shock,

where H;,(0)=0, H; (1)= 0, otherwise

0, E.(t)>0,
and Hy ()= 1| Ej;(t)go :

In original DebtRank algorithm, the node propagates the
shock only once after receiving the shock. However, in this
article, shocks could propagate until the agents default.
Correspondingly, we optimize the DebtRank model so as to
fit the new designed mechanism; therefore, the indicator
C; (t) of the risk measurement can be adjusted into the one in
the following formula:

>

U, H,(t)=0,
D, H;(t) € (0,1)nC;(t-1)={U,D}, (9)
I, H,(t)=1N0C;(t-1)={U,D}.

Ci (t) =

It is assumed that there be X firms and Y banks in initial
distress state in this article. After a finite time step T, all
banks in the multilayer financial network are in status U or
status I, and eventually the dynamics could tend to be stable
in a certain scale.

5. Simulation on Systemic Risk Contagion in
Financial Network

5.1. Simulation Parameters. Based on the above theoretical
analysis, a series of computational simulations on systemic
risk contagion and its impact on the stability of the financial
network are conducted. Although various simulations with
different settings will run, we confine some baseline set of the
following parameters: the number of firms and banks should
be setas Ny = 1000 and N;, = 50, respectively. The bank size
distribution is assumed to be followed by a truncated Pareto
distribution with shape parameter « = 1.5, and the
boundaries of the nodes’ links are set as L = 5 and H = 200.
According to the empirical results in existing literatures, let
the average number of links be A, =100 and A, =10 for
banks and firms, respectively. Meanwhile, we make the
assumption that each agent should possess at least one
connection to the other ones and that each bank should be
involved in the interbank credit market. Meanwhile, the

parameter 0 (initially set up as 28%) of the amount of ex-
ternal assets will change systematically in the following
experiment so as to explore how the different scenarios
influence the vulnerability of the financial system. Addi-
tionally, the parameters of link-creating in interbank credit
market should be set as d = 0.5, a; = 0.25, and «, = 1 that
can be employed to generate the disassortative features
found in the actual market. Other than the above setting, we
presume that the initial proportion of equity of total assets of
the bank should be ¢, =12% and the ratio of the credit
drawn from the firm by the banks should be ¢; = 8%.

Besides the above parameters, eight types of scenarios
about the financial correlation condition within banking and
firm sectors are assumed and conducted in simulation
analysis, so that how the difference in risk contagion among
each scenario can be compared and explored. Initially, all
banks and firms are considered to be in the status of
“Undistress.” Concerning the eight types of scenarios, except
from the network structure and the behavior of the agents,
market liquidity and shock ratio are also the specific factors
to be taken into account in the simulation. Therefore, these
eight types of scenarios are divided into three categories in
this article that have different value definition for each fo-
cused factor. The first category consists of four scenarios
(Scenario 1-Scenario 4), which are conducted in the sim-
ulation to compare how the nodes’ different initial distress
states influence the risk contagion. The second category
consists of two scenarios (Scenario 5 and Scenario 6), which
are conducted in the simulation to compare how the dif-
ferent external shock ratios on assets influence the risk
contagion process. The third category consists of two sce-
narios (Scenario 7 and Scenario 8), which are conducted in
the simulation to compare how the different liquidity flow
rates influence the risk contagion process. By the way, all the
value setup of the related parameters is shown in Table 3.

Overall, in the whole eight scenarios, ten or more time
steps are allowed in the simulation, so that we can observe
the changeable state of banks’ equity E; and risk measure
indicators H;, (t) and C; (¢) until the time steps stop or the
financial network system comes to a relative stable state.
Therefore, the evolvement of systemic risk contagion process
influenced by the factors of network structure, the nodes’
initial risk status, the external shock ratio, and the asset flow
rate in the network is comprehensively analyzed in the
simulation.

5.2. Simulation Results. Based on the above assumption and
definition, the following figures derived from the simulation
experiment can absolutely prove the above theoretical
viewpoints and give some additional meaningful informa-
tion that all banks in the multilayered network would be
affected in different scales in risk contagion process.
Therefore, the simulation analysis is on how the systemic
risk contagion is comprehensively conducted from the
factors of the network structure, initial distress status of
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TABLE 3: Parameters in eight types of scenarios for simulation analysis.
Scenarios Descriptions Value
1 m =0.01%, g =95%, X =1, and
Y=0
) m =0.01%, g = 95%, X =0, and
Four scenarios are used to compare how the nodes’ different initial distress influences the Y=1
3 risk contagion m =0.01%, g =95%, X =1, and
Y=10
4 m =0.01%, g = 95%, X = 10, and
Y=1
5 m =0.1%, g = 95%, X =5, and
Two scenarios are used to compare how the different external shock rates influence risk Y=5
6 contagion m =10%, q = 95%, X =5, and
Y=5
” m =0.01%, g = 95%, X =5, and
Two scenarios are used to compare how the different assets flow rates influence risk Y=5
3 contagion m =0.01%, g = 50%, X =5, and
Y=5

m and q represent the proportion of shocked agents and the liquidity flow rate, while X and Y represent the number of shocked banks and firms.

agents, the external shock ratio, the liquidity rate, and the
layers of the network, by which the risk contagion process
can be compared and analyzed.

5.2.1. Impact on Risk Contagion from Network Structure.
How the linkage between each agent directly impacting the
systemic contagious process is extremely important to both
the speed of contagion and the extent of agent’s failure.
Therefore, in order to measure how the network structure
(there are many indicators that can be applied to reflect the
network structure, such as node density, degree distribution,
diameter, and clustering coefficient; in this paper, two in-
dicators of the average degree and the power law exponent of
degree distribution are used) influences the risk contagion
process, the related variables in simulation experiment could
be assigned specific value. Specifically, the external shock
ratio and the liquidity rate are defined as 0.01% and 95%,
respectively. Meanwhile, the average degree of interbank
layer network and bank-firm layer network is defined as
Avdy ek = 5-8 and Avdy, i _girm = 4.5, and the power law
exponent of the degree distribution is defined as y = 2.6 in
Figure 3(a). On the contrary, the average degree of interbank
layer network and bank-firm layer network is defined as
Avdyerpank = 8-9 and Avdy, i _frm = 14.9, and the power law
exponent of the degree distribution is defined as y = 2.9 in
Figure 3(b). On this assumption and definition, Figure 3
shows the losses of banks’ equity over the time influenced by
the different network structure of interbank credit network
and bank-firm credit network, when five banks and five
firms in the system are shocked to be in the status of
“distress.”

From Figures 3(a) and 3(b), it can be seen that almost all
of the banks in reconstructed financial multiplex network go
bankrupt within the fourth and tenth time step, which in-
dicates that the speed of contagion is very high and the
influential scope is relatively wide in both types of network
structure. In Figure 3(b), the banks’ equity drops suddenly

from the start of the simulation that is different and a little
bit slow in Figure 3(a). Comparing the banks’ relative loss in
Figure 3(b) with that in Figure 3(a), we can see that, in the
two scenarios, as the average degree of the network in-
creases, the speed and strength of risk contagion are sig-
nificant. Therefore, for the more linkages within bank-firm
credit network, distress or default from the bank-firm fi-
nancial network could cause relatively more severe risk to
the entire system, especially the postderived risk combined
with the interbank market, which is extreme disaster and
may be more intensive if the assumed credit relation is
decomposed by actual complex financial correlation.

5.2.2. Impact on Risk Contagion from Nodes’ Initial Distress.
In financial network, the initial status of the agents should lead
the whole financial system to different endings no matter what
kind of intervention is and how it will be carried out. Con-
sequently, let the average degree of interbank network and the
bank-firm network be Avdj ..k =5-8 and Avdy, fm
= 14.9, respectively. Meanwhile, four types of scenarios with
different quantity and category of shocked agents will be se-
lected to explore how the nodes’ initial status influences the risk
contagion, whose corresponding simulation results can be seen
in Figure 4. As shown in Figure 4, most banks in the recon-
structed two-layer financial network almost have significant loss
between the fourth and the fifth time steps, which shows that the
speed of risk contagion is absolutely high and the influence is
extremely wide no matter which scenario is tested.

Figures 4(a) and 4(b) show the relative loss of the banks
with external shocks randomly on one bank and one firm,
respectively, while it can be seen that the losses of banks’
equity come out in a little bit faster speed in Figure 4(b) with
almost no obvious difference. Meanwhile, the significant
different simulation results can be obtained between
Figures 4(d) and 4(c), where the scenario with five banks and
one firm being shocked simultaneously is assumed in
Figure 4(c), and the scenario with one bank and five firms
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being shocked simultaneously is shown in Figure 4(d). In
Figure 4(c), the decrease of the banks’ equity is slower than
that in Figure 4(d), and part of the banks survived as the time
goes at last. Besides, we can find that the speed of systemic
risk contagion in Figure 4(d) is nearly the fastest among all
the four scenarios, which implies that some firms in the
financial system also play crucial roles in risk contagion.
Therefore, from the simulation on all four types of scenarios
about the systemic risk contagion, the conclusion is that the
risks resulting from the failed firms should place more
negative effect on the financial systems than that only
happening in interbank market. According to that, risks
from the real economy in the measurement of systemic risk
contagion in financial system should be also taken into
account for the complex financial correlation in the econ-
omy especially the potential feedback mechanism in the
contagious process, which may cause unimaginable disaster.

5.2.3. Impact on the Systemic Risk Contagion from External
Shock Ratio. A sudden incidence on economy may cause a
huge loss even if the whole system collapses. Thus, how the
accidental events affect the systemic risk contagion should
be analyzed theoretically for the practical regulation. Based
on the fifth and the sixth scenarios, average degree of the
interbank network and the bank-firm network is also
defined as Avdj, i pank = 5.7 and Avd,, i firm = 14.9, re-
spectively, and the other parameters follow the default
definition. Figure 5 presents the changes of proportion of
the banks’ status during the systemic risk contagion
process under different external shock ratios, which are
defined as 0.1% in Figure 5(a) and 10% in Figure 5(b),
respectively.

From Figure 5, we can see that almost most of the banks
turn to the state of “I,” which means that these banks go
bankrupt, but the evolving process shows difference between
the two scenarios. In both Figures 5(a) and 5(b), there will be
no banks being totally healthy within the first three time
steps, and meanwhile almost all of the banks come to the
state of “D,” no matter what the external shock ratio is. As
time goes, the proportion of the banks with the state of “I”
goes up quickly and the proportion of the banks with the
state of “D” comes down accordingly. However, within the
twenty time steps, the proportion of banks with the state of
“D” is almost zero in Figure 5(b), while that proportion in
Figure 5(a) comes to 30%. Besides, the changes of proportion
of the banks’ state are rapid in Figure 5(b), which conveys the
implication that relatively high external shock ratio results in
more harmful risk contagion on the condition of the sim-
ulation. Therefore, some suggestion on financial risk man-
agement for the regulation authorities can be drawn that
proper intervention should be implemented in the specific
period of systemic risk contagion process. However, the
intervention from the outside of the financial system should
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not be simply considered as rescuing some banks or firms
unconditionally.

5.2.4. Impact on Systemic Risk Contagion from Liquidity
Rate. For liquidity rate could be an influencing factor in
credit network-based risk contagion, how it works should be
evaluated in the simulation more in detail. According to the
seventh and the eighth scenarios presumed above and all
other parameters being defined as the default setup, Figure 6
shows the losses of the proportion of banks’ equity over time
under different liquidity rates.

In Figures 6(a) and 6(b), most of the banks go bankrupt
within the fourth and fifteenth time step, and the changes of
banks’ equity follow almost similar track, while the liquidity
ratios are defined as 50% and 95%, respectively, for the
comparative simulation analysis. However, there is also
obvious difference between the two evolvement processes.
Compared with the evolving tract in Figure 6(a), the time
span of the banks’ bankruptcy lasts a little bit longer, and the
time span for banks’ failure and the banks’ equity decreases
to a relative state which are presented in more concentration
in Figure 6(b). Specifically, the survival of banks’ equity in
Figure 6(b) is also larger than that in Figure 6(a). From the
simulation results, we can find that liquidity rate indeed
places impact on the speed of risk contagion and the degree
of asset loss in that process. Thus, some advice may be
provided for risk management that liquidity control should
be a paramount means to prevent or manipulate risk con-
tagion, implemented dynamically not only in the risk
contagious process, but also in the specific polices or reg-
ulations for firm sectors and financial sectors in various
industries.

5.2.5. Impact on Risk Contagion from Network’s Different
Layers. Based on the above definition about the parameter
setting, this section aims to find out how the layers of the
reconstructed financial network, both interbank network
layer and bank-firm network layer, affect the systemic risk
contagion process. Just like the above sectors, let the average
degree of the interbank network and the bank-firm network
be Avd; i pank = 5-8 and Avdy,i_gom = 14.9, respectively.
Meanwhile, it is assumed that liquidity rate be defined as
95% and five banks and five firms be shocked by external
shock. Further, we conduct the simulation analysis to
measure the systemic risk by the variable H within conta-
gious process, which means the relative loss of the agents or
the system along the time steps shown in Figure 7.

From Figure 7, we can see that track of H values’ changes
over time in Figures 7(a) and 7(b) which is totally different.
Figure 7(a) shows the changes of value H of the banks over
time in interbank credit networks, while Figure 7(b) shows
that value in bank-firm credit networks. Obviously, com-
pared with the track of H values’ changes in interbank layer
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of the reconstructed multiplex networks, the bank-firm layer
is much more likely to cause banks’ bankruptcy eventually.
In Figure 7(a), only a few parts of banks will absolutely go
bankrupt, and most of the banks just come to be the stable
state of distressed or infectious ones as the time steps go.
However, in Figure 7(b), when it almost comes to the third
time step, all of the banks turn to be bankrupt suddenly. To
some extent, the simulation results can also propose an
obvious viewpoint that bank-firm credit market plays a
significant role in the process of risk contagion, so that the
regulatory authorities should take into account the complex
correlations between the industrial sectors and the financial
sectors systematically when establishing and implementing
related polices, and they cannot ignore the impact on the
financial system from real economy at all.

6. Conclusion

The theory of multilayer network provides a comprehensive
visualization and solution to explore complex financial
markets. In this article, a two-layer financial credit network
is reconstructed between banking and firm sectors on the
structure of each agent’s balance sheet generally, consisting
of interbank lending layer and bank-firm lending layer.
Based on the reconstructed financial network, systemic risk
is considered as a status of loss or distress of the financial
system including credit risk and liquidity risk in this article,
and its contagion mechanism has been systemically ana-
lyzed. Thereafter, systemic risk contagion model is con-
structed on the DebtRank model, originally proposed by
Battiston et al. [14] and Bardoscia et al. [48]; and the
simulation analysis is conducted to investigate how the key
factors influence risk contagion process due to external and
internal shocks.

The main conclusions are drawn as follows: (1) in
reconstructed financial network, network structure is an
important factor influencing the risk contagious process, no
matter how different the average degree of each layer net-
work is. For the scale-free characteristic of the designed
network, nearly all of the banks should be bankrupt over
time in the simulation without any external intervention on
the basic definition of the risk contagion circumstance, but
the changes of banks’ equity show different evolving process.
Opverall, the higher the average degree of the network is, the
more influential and faster the risk contagion is. (2) In the
two-layered financial networks, risks that originated from
the failed firms in bank-firm layer should place more
negative effect on the financial systems than that only
happening in interbank market, especially the firm sectors
with highly financial linkage with the financial departments.
Meanwhile, how the external shock ratio placing impact on
the risk contagion can also be obtained that the higher the
initial shock ratio, the lower the peak proportion value of the
distressed banks. (3) As a major cause of systemic risk,
different liquidity rate in market could lead to discrepancy of
the risk contagion speed and the degree of asset loss during
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the process, which implies that liquidity control should be a
paramount and effective means to risk manipulating and the
methods should be developed and implemented for the
industries collaboratively. (4) In the same assumed market
condition, track of H values’ changes over time presents
obvious difference in interbank layer and bank-firm layer,
respectively, where nearly all of the banks go bankrupt
eventually in bank-firm layer and most of the banks are not
in bad condition in interbank layer. Therefore, these sim-
ulation results give clear evidence that a series of diverse and
associated policies for risk management should be estab-
lished and implemented in the market.

However, the reconstructed financial credit network
within banking and firm sectors in this article mainly focuses
on the credit relationship between banks and from banks to
firms, while the financial correlation between firms and from
firms to banks is not considered comprehensively that would
result in underestimating the systemic risk. Besides, there are
more financial correlations within different types of agents,
directly or indirectly, such as common exposure, derivatives
holding, and payment transaction. What is more, con-
cerning the systemic risk model and its simulation analysis,
attention has been paid to how banks go in risk contagious
process, while it is also important to care about the firms’
status and the feedback mechanism between both sectors.
Therefore, all these gaps should be fulfilled in future
research.
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