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Economic progress is built on the foundation of energy. In the industrial sector, smart factory energy consumption analysis and
forecasts are crucial for improving energy consumption rates and also for creating profits. The importance of energy analysis and
forecasting in an industrial environment is increasing speedily. It is a great chance to provide a technical boost to smart factories
looking to reduce energy usage and produce more profit through the control and optimization modeling. It is tough to analyze
energy usage and make accurate estimations of industrial energy consumption. Consequently, this study examines monthly
energy consumption to identify the discrepancy between energy usages and energy needs. It depicts the link between energy
consumption, demand, and various industrial goods by pattern recognition. The correlation technique is utilized in this study to
figure out the link between energy usage and the weight of various materials used in product manufacturing. Next, we use the
moving average approach to calculate the monthly and weekly moving averages of energy usages. The use of data-mining
techniques to estimate energy consumption rates based on production is increasingly prevalent. This study uses the autoregressive
integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) to compare the actual
data with forecasting data curves to enhance energy utilization. The Root Mean Square Error (RMSE) performance evaluation
result for ARIMA and SARIMA is 8.70 and 10.90, respectively. Eventually, the Variable Important technique determines the smart
factory’s most essential product to enhance the energy utilization rate and obtain profitable items for the smart factory.

1. Introduction

Electricity is now the strongest adaptable energy source and
one of the most important infrastructure inputs for eco-
nomic development. In the present world, so much energy is
used for both economic and population expansion. So, we
have to think about ways to reduce our energy consumption.
Due to rapid economic expansion, global electric power
consumption and other energy consumption have increased.
In the meantime, electricity is a need in our everyday ac-
tivities and one of the essential drivers of economic progress
[1, 2]. Electricity is used by industrial customers’ facilities
and equipment to process, produce, or assemble com-
modities in industries as diverse as producing, mining,
farming, and construction. The industrial sector consumes

over a third of the country’s electricity power. Consequently,
predicting electrical energy consumption for a country or
region has become crucial [3]. In smart factories, energy
modeling and analysis have become a time-consuming
procedure. Industrial energy consumption predictions can
make a better decision to reasonably control all kinds of
equipment for reducing energy consumption and make
good things for industrial factories. Industrial firms rec-
ognize the need to monitor and forecast energy consump-
tion data in conjunction with production data for profit. For
improving the energy utilization of a factory, this is the best
time to work as a supportive technological hand with in-
dustrial plants.

The industrial division is one of the essential divisions
that require vitality steadiness. Since about the early 1990s,
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South Korea’s fabricating industry has proceeded to create at
high speed and has ended up the most driving drive of the
proceeded quick improvement of South Korea’s economy.
During the 1990s, essential vitality use increased at a yearly
rate of 7.5 percent, which was greater than the 6.5 percent
annualized rate of financial growth during the same era. It
was inferable to the sharp development of energy-intensive
businesses, which incorporates the petrochemical industry.
The sharp rise in power utilization for mechanical use ex-
tended the vitality transformation misfortune, which ad-
vance undermined vitality escalated. The growth of energy
enterprises after 2009 helped the country weather the global
financial crisis, but it had the opposite effect on the country’s
overall energy proficiency [4, 5]. Numerous ambiguous
elements, such as industry framework, innovation degree,
energy cost, financial scale, and national arrangement, im-
pact how firms use energy.

The accomplishments of the third development of sci-
ence and technology have made the life more approachable.
Industrial production seems to be a crucial component of the
economy and a massive economic indicator for both the
government and the nation. It has already campaigned for
technological innovations and structural change in
manufacturing sectors. The third scientific and technological
revolution’s productive triumphs have brightened people’s
lives and encouraged technical development institutes and
institutions in traditional regions. Production and
manufacturing industry reflects a country’s or nation’s fi-
nancial strength. Many high-tech industrialized nations
have advanced sectors as well. Despite this, they keep
looking for new possibilities and restructure existing in-
dustries to maintain their unstoppability in the face of
modernity and technological advancement. Germany is an
excellent demonstration since the “Industry 4.0” initiative
emphasizes smart growth, focusing on product quality,
resource utilization, and energy consumption [6].

A smart factory is an Internet of Things concept in which
a manufacturing operation is viewed as a completely ad-
vanced automated system of technology that enables facil-
ities, technology, and transportation chains to operate
without the need for human interaction [7]. All of these
instances occurred in a smart factory as a result of data flow
among all components of the industrial automation chain,
not just the manufacturing plant and machines. The fol-
lowing elements make machine learning more achievable,
permitting processes to operate better efficiently and save
costs than if people were monitoring industrial processes.
The smart factory idea relies on data gathering and analysis
to unlock the potential hidden in infrastructure, people, and
resources. Without the aid of a human supervisor, data may
reach a suitable area in the production chain at the ap-
propriate time in the smart factory. Data from various in-
dustrial circumstances must be gathered, evaluated, and
combined to provide meaningful insights and enhance ef-
ficiency. The Internet of Things (IoT) and linked smart
sensing devices are used in smart factories to make
manufacturing actionable data-driven and data-enabled.

Many studies have shown that further developing energy
productivity is vital for financial development [8-10].
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Nasreen and Anwar have inspected the relationship between
financial improvement, exchange, and assets in Asia. They
found that economic development and exchange straight-
forwardness positively impacted vitality utilization [11].
Mechanical plant owners are also beginning to recognize
that separating and deciding vitality data from generating
data is extremely important for the success of their busi-
nesses or facilities. Overconsumption, weak frameworks,
and squandered vitality are all factors that contribute to this
problem. Due to the consequence of the rising demand,
energy is regarded as one of the most vital and valuable
assets. To further develop a modern processing plant’s en-
ergy usage, it is about to work with the leading adminis-
tration group of mechanical industrial facilities as a solid
improvement [10, 12].

This study has two types of data sets: industrial energy
consumption data set and industrial manufacturing data set
or productions data set. This study deals with analyzing
usages of energy consumption for every month with every
hour data to find out the difference or relation between
usages of energy consumption and demands of energy
consumptions. Make a relation curve among usages of
energy and energy demands, with different materials weight
for manufacturing product. This study used the correlation
technique to identify the significant association between
energy and the importance of other materials used in
producing things. Also, find out monthly and weekly
moving averages for different types of materials, usages of
energy, and energy demands. We use the ARIMA and
seasonal AIMA to compare actual data with anticipated data
curves to increase the energy consumption rate. Finally, the
variable importance approach is used to determine the most
significant product for the smart factory in order to enhance
the energy utilization rate for industrial factory profit.

2. Related Works

Several scholars have studied the topic of estimating energy
demand using data-mining techniques for a long time. A
number of statistical and Artificial Intelligence (AI) algo-
rithms have been developed to estimate energy consumption
patterns. Machine learning techniques are beneficial and
convenient for a normal operator to utilize after con-
structing the model; they are becoming increasingly wide-
spread in a number of applications [12, 13].

The IoT idea anticipates a constant rise in the number of
devices, which creates the challenge of categorizing them for
various reasons. The system classes have been established so
far focused on their semantic qualities, meaning, perfor-
mance, or usage domain. As the Internet of Things has risen
in popularity, numerous professional standards bodies,
corporations, and associations in IK technologies and aca-
demia have defined the notion [14, 15].

National governments need to anticipate the use of force
in setting energy policies and adjusting industrial structures.
Consequently, it goes without saying that a strong prediction
strategy is essential for the study of energy systems. Energy
consumption is historically difficult due to the limited
sample size, nonlinearity, and unpredictability of yearly
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energy consumption sequences. It carries high levels of
uncertainty of supply and use [16-18]. The Nonlinear Grey
Bernoulli Model (NGBM) is a one-of-a-kind grey fore-
casting model that has already been utilized to solve the
challenge of predicting energy consumption in nonlinear
small sample data. Pao and colleagues devised an iterative
numerical approach to enhance the NGBM (1, 1) and used it
to anticipate Russia’s consumption of renewable, nuclear,
and total energy [19, 20].

Predicting energy consumption has long been consid-
ered a critical and challenging problem in industry and
academics. Accurate energy consumption forecasting may
aid in the allocation of energy resources, the formulation of
energy-saving strategies, and the improvement of the energy
system. Meanwhile, precise energy forecasting may assist
managers in adopting market research management and
accelerating economic growth. Its breakthroughs may the-
oretically be used to anticipate a wide range of time series,
including traffic flow, weather, temperature, stock price
prediction, and solar radiation prediction [21, 22].

Building Management Modeling is promoted chiefly and
used in the cost management of civil and public structures,
but it is rarely used in the power construction industry [12].
Electric power construction projects encompass a wide
range of professions as well as many types of buildings and
structures. Significant bottlenecks arose when these qualities
were paired with Chinese laws on particular quantity
computation. When these variables were paired with Chi-
nese certain quantity computation norms, BIM imple-
mentation presented specific issues [23, 24].

The prosperity of the global economy is dependent on
production. On the other hand, environmental resources
have been rapidly destroyed in current history, culminating
in a host of ecological and societal challenges, owing in
significant part to the industry’s expansion. According to
trustworthy data, the industry consumes more energy than
other sectors, accounting for more than 37 percentage points
of total world energy provided. In the industrial sector,
manufacturing necessitates substantial energy [12, 25].

The energy-saving and emission-reduction (ESER) plan
are critical in ensuring the industrial industry’s long-term
viability in the green transition. This research looks at
current ESER methodologies and their limitations in the
manufacturing business. It introduces the lean energy-
saving and emission-reduction (LESER) idea and a strategy
for increasing energy efficiency and lowering waste emis-
sions. The following phases are used to build a technique for
executing the LESER strategy: (i) explanation of the existing
condition; (ii) investigation of the underlying cause; (iii)
development; (iv) greenhouse gas evaluation; (v) main-
taining and standardizing [26]. Hsiao Tien Pao has released a
study using state-space modeling to anticipate Taiwan’s
power consumption and economic growth. SARIMA
models are as good as STSP or ECSTSP models for short-
term predictions. ECSTSP is the best model for long-term
projection because it considers the counteraction relation-
ship between real GDP and EL [27].

In the manufacturing industry, smart manufacturing
and data analytics may help since the current situation
transmission, and data analysis from across the plant gives
manufacturing intelligence that may favorably affect all parts
of operations. The predictive analysis aids smart
manufacturing in a variety of ways. In this work, the authors
aimed to extract values from a smart manufacturing orga-
nization using predictive analysis to derive energy use based
on previous data [28]. Figure 1 depicts the components of a
smart factory. Smart factories are powered by the Industrial
Internet of Things (IIoT), which connects smart devices and
sensors to the factory to make industrial activities data-
driven and data-enabled. We can easily discover the smart
factory content with the smart security system, sensor
technologies, application software, smart management,
processing facilities, data analytics solutions, and organi-
zational efficiency. The Industrial Internet of Things (IIoT) is
a full bundle in a smart factory (IIoT).

3. Methodology

3.1. Correlation. Use Measurement of linear connection
between two quantitative variables is commonly referred to
as correlation. If there is no identifiable response variable,
correlation is typically employed. It assesses the quality
(quantitatively) and direction of a linear relationship be-
tween two or more variables [29]. A correlational investi-
gation can provide three outcomes: a positive correlation, a
negative correlation, and no correlation. A two-variable
association with a positive correlation is one in which both
parameters move in similar directions. As a result, when one
variable rises the other falls, or when one variable falls the
other falls. Height and weight are an example of a positive
association. Taller folks are often heavier. A negative cor-
relation is a link among two variables in which an increase in
one variable causes the other to drop. Height above sea level
and temperature is an example of a negative association. It
gets colder as we climb the mountain (ascend in elevation)
(decrease in temperature). When there is no connection
between two variables, a zero correlation is called. For ex-
ample, there is no link between the amount of tea consumed
and cognitive level. The most widely used correlation
measurement is Pearson’s product-moment correlation,
which is generally applied as the correlation or the corre-
lation coefficient. The Pearson correlation coeflicient mea-
sures the linear connection between X and Y variables, often
known as bivariate correlation. It has a range of values from
+1 to —1, with +1 denoting total positive linear correlation,
—1 denoting actual negative linear correlation, and 0
denoting no linear correlation.

The characteristic features of the correlation are pro-
vided in the following:

(i) A complete positive correlation is characterized by a
correlation of 1

(ii) A complete negative correlation is characterized by
a correlation of 1
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Figure 1: Components of the smart factory.

(iii) A correlation of 0 means that the variables have no
connection

(iv) Values between —1 and 1 represent the strength of
the relationship

We assumed a model:
;o Z(x_mx)(y_my)
\/Z (x - mx)2 Z(y - my)z

The mean value of the x and y variables are m and y,
respectively.

(1)

3.2. Moving Average. A moving average (MA) is a wide
marker in specialized examination that makes a difference in
a smooth-out cost activity by sifting out the commotion
from irregular short-term cost determinations. It is a trend-
following or lagging indicator based on the past. The two
fundamental and commonly utilized moving midpoints are
the simple moving normal (SMA), the basic normal of a
security over a characterized number of periods, and the
exponential moving average (EMA), which typically gives
more significant weight to more later costs [30]. The fore-
most typical applications of moving average are recognizing
the slant heading and deciding back and resistance levels.
We assumed a model:

A +A+---+ A
n

SMA = " (2)

The simple moving average calculates the arithmetic
mean over a number of n periods, A.

3.3. Time Series Forecasting. The time series is a collection of
very sound data points that are obtained at regular intervals
across time. By fitting appropriate models to time series data
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points, time series analysis helps us understand the un-
derlying processes that contribute to a specific pattern in the
data points and forecast and monitor the data points [31].
This study uses two types of time series forecasting models:
ARIMA and seasonal ARIMA (SARIMA).

3.4. ARIMA Forecasting. Attach ARIMA models are a well-
known and adaptable course of determining models that
utilize chronicled data to create the forecast. The autore-
gressive integrated moving average, or ARIMA, is defined by
three order parameters (p, d, and g). The method of fitting an
ARIMA is demonstrated now and then alluded to as the
Box-Jenkins strategy [32, 33]. An autoregressive component
relates to past values in the regression equation for series Y.
The autoregressive parameter p specifies the number of lags
used in the model.
Assume the model equation for ARIMA:

Ve=CH Pyt H Gy, Orepy +--+ eqetfq + €.

(3)

Here, y, is the variable described at time t, ¢ is the
constants or intercept, ¢ is the coefficient of each parameter
p»> 0 is the coefficient of each parameter g, and e, is the
residuals or errors in time t.

3.5. Seasonal ARIMA Forecasting. A seasonal structure can
also be used to specify an ARIMA model. It is called seasonal
ARIMA (SARIMA). This example defines the model by two
sets of order parameters (p, d, q) as order parameters and
(P, D, Q),, parameters that describe the seasonal pattern of m
intervals [34, 35].
For SARIMA, the assumed model equation (p, d, q)
(P, D, Q) [s] is
@, (B)¢, (BIVOVZ, = 0, (B)d, (B')a,. (4)
Here,
(i) @,(B°) = (1-®,B° —... - ®,BF) is the seasonal
autoregressive operator of order P
(ii) ¢, = (1 = ¢B—---—¢,BF) is the autoregressive
operator of order P
(iii) VSD = (1 - B%)P represents the seasonal differences
and V¥4 = (1 — B)? is the regular difference
(iv) @ (B) = (1 +@OB° +--- + ®QBSQ) is the seasonal
moving average of order Q
v) Oq(B) =(1+6,B+---+ Gqu) is the regular mov-
ing average operator of order Q

(vi) a, is a white noise process

3.6. Recorded Data Description. In this study, two types of
data sets are available from Daewoo Steel Factory, South
Korea. One of these data sets is for smart factory energy
consumption data, while the other is for manufacturing or
production data. From energy data sets, we get twenty-four
hours’ usages of energy, demands of energy, lagging reactive
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power of the current, leading reactive power of the current,
percentage of leading power, and the percentage of lagging
powers available. From productions data, we get details
about manufacturing like date of manufacturing product,
product name, materials length, materials weight, product
item, and lots of information. From manufacturing, there
are three types of products manufactured in that steel fac-
tory, and the products are “Sheet,” “Skelp,” and “Cyong.”

As shown in Figure 2(a), the smart meter is associated
with the electrical energy meter for the Daewoo steel in-
dustry. The smart meter computes the power values for the
energy consumed and sends to the smart website where the
energy consumption data is stored (https://pccs.kepco.go.
kr). Figure 2(b) represents the manufacturing or production
sector of the Daewoo steel industry.

Table 1 presents different types of load and their timings
concerning each month. The table information is collected
from KEPCO (Markets, Technologies, and Strategies for the
Smart Grid in Asia, 2012-2016). Based on two data sets, we
analyze the total energy consumption of the year 2017, then
analyze per-month energy consumption for the year 2017,
and make a comparison graph between usages of energy and
demands of energy in the year 2017. Figure 3 depicts the
suggested design’s overall flow.

The general flow of the recommended architecture is
seen in Figure 3. Energy usage for manufacturing items and
other energy consumption are documented using IoT-based
smart meters in smart factory flowcharts. Furthermore, the
structural and data modeling phases of data on energy usage
are near completion. In the structured and data modeling
phases, preprocessed data is employed, and energy data is
captured and saved in the cloud system following this step.
The same cloud-based solution is used to gather and store
production data. Big data analytics techniques are utilized to
estimate demand, and they are also employed for effective
energy policy and product management.

Analysis usages of energy data with different material
weight make a comparison graph of total usages of energy
and total demands of energy with corresponding total
materials weight. The industry’s energy (kWh) data every 1
hour is the focus of this analysis. The one-hour reporting
interval has intended to capture major energy use changes.
All the data analysis is carried out in R [36]. The timespan of
data is 365 days (12 months). The correlations function
determines the connection between total electrical energy
consumption and the material weight of three different types
of manufacturing goods. We use the moving average method
to find weekly and monthly moving averages for
manufacturing products materials and usage of energy
consumption and demands. Finally, we use ARIMA and
seasonal ARIMA to forecast the energy consumption and
then compare the graph between actual and forecasted data
for ARIMA and SARIMA. Figure 4 illustrates the period’s
energy consumption profile. Figure 4 illustrates the energy
consumption pattern for the whole period, and we can see
from the graph that the pattern is quite variable. Figure 4(a)
depicts the steel industry’s energy consumption in 2017,
whereas Figure 4(b) depicts the steel industry’s energy
consumption during the first week. Figure 4(b) shows that,

every day for a fixed time, energy consumption is getting
high peak and after a sudden or fixed period energy con-
sumption again gets low. After analyzing Figure 4(b), we can
easily say that when the uses of energy start to rise, actual
working hours start for the Daewoo Steel Factory that time
and then when again uses of energy are low that time
working hours are finished. Daewoo Steel Factory working
hours starting and finishing times are almost the same for
every day.

Figures 5 and 6 use a histogram and a boxplot to show
the details of the steel factory’s energy use in 2017. The data
distribution displays a lengthy tail. The black line in the
boxplot shows the median location, while the histogram plot
depicts the current level of energy usage. Only circles
considerably above the upper feathers are used to identify
outliers. The median in the boxplot is depicted by a thick
black line inside the grey rectangle and has a value of
2700 kWh. The bottom whisker is 10 kWh, whereas the top
whisker is 3500 kWh. The outliers are branded with circles
over the upper whisker. Temperature and other environ-
mental conditions have no effect on energy usage in the steel
sector since it is in an open area with no temperature control
system.

3.7. Evaluation Indices. Assessing criteria are used to
compute the execution of expectation models. The Root
Mean Squared Error (RMSE) is used to compute the pre-
diction’s square error compared to genuine values in order
to obtain the square mistake relative to actual values and, as a
result, the root of the summation [37]. RMSE can also be a
level-dependent parameter made up of comparable mea-
suring unit values.
We have the following equation:

(5)

The Mean Absolute Error (MAE) measures how accurate
a forecast is. It is a scale-dependent metric that accurately
captures prediction error by eliminating the offset of neg-
ative and positive errors.

Using the equation below, we can determine MAE

MAE = M (6)
n

Here, Y is the actual value of the computation, Y j, is the
expected value, and z is the number of successful Y, i is the
actual value of the computation, Y (j) is the predicted value,
and z is the number of successful observations.

A margin of error (ME) tells you how many percentages
points your results will differ from the important population
value. A 95 percent significance level with the 4 percent
margin of error, for example, suggests your statistic will be
within four percentage points of the key population number
95% of the time. In more technical terms, the margin of error
is the measure of values below and above the sample statistic
during a confidence interval. The arrogance interval may be
showing what the uncertainty is with a particular statistic.
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FIGURE 2: (a) Smart meter. (b) Steel industry manufacturing sector.
TasLE 1: Different types of load and their timings concerning.
The cost of energy is expressed in won per kilowatt-hour
: Charge on demand
Categories 5 Period of Summer Spring/fall (Mar 1~Jun 30/Sep Winter (Nov 1~Feb
(won/kW) . (Jul 1~Aug
time 1~Oct 31) 28)
31)
Oflzggak 45.80 45.80 49.30
Option 1 2710 Mid-load 87.30 59.30 85.90
High voltage Peak-load 147.00 77.60 120.70
@ . Off-peak 41.60 41.60 45.20
Option 6540 load
II Mid-load 83.20 55.20 81.70
Peak-load 142.90 73.50 116.60
Oflig’gak 44.40 44.40 47.90
Option I o710 Mid-load 84.80 57.70 83.30
High voltage Peak-load 141.80 75.40 116.70
(B) . Off-peak 40.20 40.20 43.70
Option 6540 load
II Mid-load 80.60 53.50 79.10
Peak-load 137.70 71.30 112.60
3.8. The Equations. manufacturing products material weight. We find out
— monthly and weekly moving averages for manufacturing
ME = »* j(1-)) (7)  products and the moving average of usages and demand of
-p n energy consumption. Finally, we forecast the uses of energy

Here, j is sample proportions, 7 is sample size, and z is z-
score.

4. Results and Discussion

In this sector, we analyze data to find out twenty-four hours
of energy usage and energy demands and find out relations
between different materials weight with uses and energy
demand. We make a correlation among usages of energy and

and compare actual data and forecasted data to make a
decision for improving energy utilization.

4.1. Analyzing Per-Day Energy Data. To check the per-hour
usages of energy consumption for every day, we analyze 2017
energy consumption data. We analyze every hour energy
consumption data of the year 2017 to identify each hour’s
energy consumption and determine the period of the high
amount of energy consumption and determine the time
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FIGURE 5: A histogram illustrating appliance energy usage allocation. The graph depicts the interval’s frequency (bar width) of energy use.

period for less amount of usages energy. Figure 7 shows the
twenty-four hours of energy consumption for each day in
2017. The x-axis represents time duration, while the y-axis
represents total energy use in kWh in 2017 in the graph. We
can see from the graph that energy consumption is high

most days from 8 a.m. to 10 p.m., and on some days, it
continues until 11 p.m., and that energy consumption is low
from 11 p.m. to 8 a.m. On the basis of the diagram, we can
clearly conclude that steel mill working hours begin at 8 a.m.
and end at 11 p.m.
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FIGURE 7: Energy consumption of the Daewoo Steel Factory for the year 2017.

4.2. Analyzing Per-Month Energy Data. To determine the
per-hour usages of energy consumption for twelve months,
we analyzed 2017 energy consumption data. We analyze
total energy consumption per hour for every month from
energy consumption data of the year 2017 to determine each
hour’s energy consumption and the time period of the high
amount of energy consumption usages and the time period
of less amount of usages energy.

Figure 8 shows the twenty-four hours’ usages of energy
of working days consumption for every month in 2017. The
x-axis represents time duration, while the y-axis represents
total energy use in kWh in 2017 in the graph. We can see
from the graph that energy usage is quite high from 8 a.m. to
10 p.m. every month and that energy consumption is very
low from 11 p.m. to 8 a.m. From the figure, we can simply
deduce that the Daewoo Steel Factory working hours begin
at 8 am. and end at 10 p.m.

4.3. Analyzing Energy Data with Materials Weight of
Manufacturing Products. As we mentioned before, three
types of products are manufactured in Daewoo Steel Factory.
Here we analyze different types of materials weight of
manufacturing products with total usages of energy for the
number of working days. Figure 9 depicts the various types
of material weights used in produced items as well as per-day
total energy usages for the number of working days. In 2017,
the x-axis represented the number of working days, while the
y-axis represented material weight in kilograms. The blue
line depicts daily energy use for working days, while the red
dots depict daily material weight for sheet productions, the
green dots depict daily material weight for Skelp products,
and the purple line depicts daily material weight for Cyong
productions. From the figure, we can say that energy con-
sumption also increases when the density of materials

increases. It means when productions are high, usages of
energy consumption is also high.

Figure 10 shows the everyday total material weight of
manufactured products with total usages and demands of
energy consumptions for the number of working days. In
2017, the x-axis represented the number of working days,
while the y-axis represented material weight in kilograms.
According to the graph, the blue line represents energy use
for the number of working days, the red line represents
maximum energy demand, and the green line represents
total weight of materials for the number of working days.
From the figure, we can see that when production is in-
creased, usages of energy also increase, and low production
means usages of energy also decrease.

4.4. Correlation. The correlation coefficient is the measure of
relations between two or more variables. This study uses the
correlations method to determine the strength of a rela-
tionship and the strength between two variables we can
easily calculate by correlation coefficient. We find out the
correlation between total usages of energy with three dif-
ferent types of manufactured products.

In Figure 11, the top left histogram plot shows the total
usages of energy, the bottom right histogram plot shows the
total sheet weight, and the bottom left shows the merging of
usages energy and total sheet weight. The correlation value of
total usages of energy with total sheet weight is 0.29 ***. The
star (*) values refer to the significant factor.

In Figure 12, the top left histogram plot shows the total
usages of energy, the bottom right histogram plot shows the
total Skelp weight, and the bottom left shows the merging of
usages energy and total Skelp weight. The correlation value
of total usages of energy with total Skelp weight is 0.49***.
The star (*) values refer to the significant factor.
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FIGURE 8: The diagram shows the per-month usage of energy for a steel factory in 2017.
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FIGure 9: Different type’s material weight of manufactured products with usages of energy for the number of working days in 2017.
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F1GURE 10: Total materials weight of manufactured products with the demand of energy and usages of energy for the number of working

days in 2017.

In Figure 13, the top left histogram plot shows the total
usages of energy. The bottom right histogram plot shows the
total Cyong weight. The bottom left shows the merging of
usages energy, and the bottom right shows the merging of
total Cyong weight. The correlation value of total usages of
energy with total Cyong weight is 0.27**. The star (*) values
refer to the significant factor.

4.5. Moving Average. Simple moving averages are the most
fundamental type of moving average (SMA). The arithmetic
average of a set of data is used to calculate it. A collection of
numbers or prices is assembled in financial instruments and

then split by the number of costs produced. In this study, we
use weekly and monthly moving average methods based on
total energy demand and total usages of energy.

Figure 14 shows the weekly and monthly moving average
of total usage and energy demands for 2017. The red line
shows the entire energy demands in the diagram. The green
line depicts actual energy use, the purple line depicts the
weekly moving average, and the blue line depicts the
monthly moving average of total energy consumption in
2017. From the figure, we can see the October 2017 weekly
moving average for usages of energy and energy demands is
very low. December 2017 weekly moving average for usages
of energy and energy demands is higher than any month.
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FiGUure 11: Diagram showing correlations values of total usages of energy and total sheet productions.
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FIGURE 12: Diagram showing correlations values of total usages of energy and total Skelp productions.
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FIGURE 14: Diagram showing the weekly and monthly moving average of total usages and total demand of energy for the year 2017.

The figure shows that the weekly moving average is close to
real data of total uses and energy demands.

4.6. ARIMA and SARIMA Forecasting. ARIMA and SAR-
IMA are a set of well-defined data points that are recorded at
regular intervals across time. ARIMA and SARIMA assist us
in comprehending the underlying processes that contribute
to a certain pattern in data points and forecast and monitor
the data points.

Figure 15 shows decomposed usage of energy data in 2017.
The first row is the actual usage of energy data and, based on
this data, needs to extract seasonal trends and reminders, to
identify the patterns, whether seasonal or not, and also check
the line’s slope (trend). Remainder values have been shown in
the plot’s last row after extracting seasonal and trend. In the
plot, the X-axis shows months or time, and Y-axis shows actual
data, extracted seasonal trend, extracted trend, and remainders.
Finally, based on this plot, identified energy data have seasonal
patterns and the slope of the line (trend).

Figure 16 shows forecasted energy data based on 2017 to
predict the January month of 2018 using the ARIMA Model
in the order of (7, 1, and 4). The X-axis represents the
number of months in 2017, while the Y-axis represents the
amount of energy consumed in kWh. Actual energy con-
sumption is depicted in black, expected energy consumption
is depicted in blue, and the maximum and minimum ranges
of estimation prediction are depicted in grey. This plot is
based on 2017 data to predict the January month of 2018
energy consumption.

Figure 17 shows forecasted energy data based on 2017 to
predict the January month of 2018 by using the SARIMA
Model in the order of (7,1,4) (0,0,1) [30]. The X-axis shows
the number of months in 2017, while the Y-axis shows the
amount of energy used in kWh. The black line shows actual
energy consumption, the blue line represents expected en-
ergy consumption, the grey line represents the maximum,
and the grey line represents the lowest range of estimation
prediction. This plot is based on 2017 data to predict the
January month of 2018 energy consumption. The past and
predicted data are more connected because both have more
fluctuation (variations).

Figure 18 depicts a comparison between actual and
anticipated energy usage statistics. The X-axis represents the
number of days between January 1 and December 31, 2018,
while the y-axis represents the quantity of energy consumed
in kWh. The data projected by the ARIMA model is shown
by the blue line, while the pink line represents the actual
energy usage. The green dotted line represents the highest
and lowest ranges of 80 percent confidence intervals. The
grey dotted line represents the top and bottom ranges of 95
percent confidence intervals. So, based on the predicted data,
we suggest taking the upper range of 95 percent confident
intervals and the lower range of 80 percent confident
intervals.

Figure 19 depicts a comparison between original and
predicted energy usage statistics. The X-axis represents the
number of days between January 1 and January 31, 2018, while
the Y-axis represents energy usage in kWh. The blue line
represents data that was forecasted using the SARIMA Model.
The pink line shows real energy use, while the green dotted line
shows the upper and lower ranges of 80 percent confidence
intervals. The grey dotted line represents the top and lower
range of 95 percent confidence intervals. As a result, we rec-
ommend using the top range of 95 percent confident intervals
and the lower range of 80 percent confident intervals based on
the forecasted data. From Table 2, we can easily find the
performance of ARIMA and SARIMA forecasting models.
Table 2 shows the forecasting model performance for the
Daewoo Steel Factory for ARIMA and SARIMA. From the
table, we can find the performance evaluation results for
ARIMA by ME, RMSE, and MAE are 0.59, 8.90, and 6.72.
Performance evaluation results for SARIMA by ME, RMSE,
and MAE are 0.24, 10.90, and 8.79.

The Daewoo steel plant produces a variety of energy-
related and manufacturing items under the names of Skelp,
sheet, Cyong, and packaging. The variable importance for
the Daewoo steel plant manufacturing items is depicted in
Figure 20. We can see from the diagram that Skelp is the
essential product for the Daewoo Steel Factory and that
creating Skelp requires the most energy. Table 3 shows the
using percentage of energy for each manufacturing product,
and from the table, we find out that Skelp uses 49.82 percent
of energy from total uses of energy.
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FIGURE 15: Diagram showing decomposed data in the year 2017.
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FIGURE 16: Diagram showing forecasting of energy consumption of January 2018 based on 2017 energy data by using ARIMA (7, 1, and 4)
order.
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FIGURE 17: Diagram showing forecasting of energy consumption of January 2018 based on 2017 energy data by using seasonal ARIMA
(7,1,4) (0,0,0) order [30].
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TaBLE 2: Forecasting model performance for Daewoo Steel Factory data set for ARIMA and SARIMA.

Model

ME RMSE MAE

ARIMA
SARIMA

.59 8.70
24 10.90

6.72
8.79
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FIGURE 20: Variable importance for the Daewoo Steel Factory.

TaBLE 3: Daewoo Steel Factory energy consumption table for the year 2017.

Product name

Usages of energy (kWh)

Using percentage

Sheet
Skelp
Cyong
Packaging
Total

322522.80
404568.10
45508.81
34836.55
807436.97

39.70
49.82
5.62
4.32
99.46




14

5. Discussion

All results and analyses provided us an acuteness between
usages of energy and the different material weight of
manufactured products. Those results show us energy usage
and energy demands with corresponding materials weight
for manufactured products. The energy consumption pat-
tern of the Daewoo steel industry is extraordinarily com-
plicated, as illustrated in Figure 3, with practically
continuous demand cycles followed by large spikes. Figure 4
shows energy consumption for 2017 in A, and B shows the
first-week energy use for the Daewoo Steel Factory. In this
study, we find the correlation value between usages of energy
and three manufacturing products in Figures 11-13. From
there, we find out Skelp has gotten higher correlations than
the other two products. The correlations value is 49 between
Skelp and usages of energy and a high significance factor
(***). We can conclude that Skelp is the most important
product for the Daewoo Steel Factory based on the corre-
lation value. Figures 16 and 17 show the one-month fore-
casting curve for the Daewoo Steel Factory using the ARIMA
and SARIMA time series models. We also find out the
comparison curve among actual value and forecasting value
from Figures 18 and 19. Table 2 shows the performance
evaluation results for ARIMA by ME, RMSE, and MAE are
0.59, 8.90, and 6.72. Performance evaluation results for
SARIMA by ME, RMSE, and MAE are 0.24, 10.90, and 8.79.

According to the variable importance functions in
Figure 20, Skelp is the most important factor for energy
utilization. Table 3 shows the percentage of energy for each
manufacturing product, and from the table, we find out that
Skelp uses 49.82 percent of energy from total uses of power.
Table 1 shows that energy load prices are lower during off-
peak hours than during mid-load and peak-load hours. As a
consequence of the findings, we can observe that industrial
energy consumption is relatively high in the summer and
winter and that Skelp output is significantly associated with
energy usage with a high significance factor. As a result, if
factory officials decide to run two shifts in the factory, one
during the day and one at night, as peak and oft-peak hours,
the plant’s energy expenses will be reduced. Because Skelp
production is closely connected with energy use, we can
produce Skelp during the night shift.

6. Conclusions

We examined energy consumption and manufacturing data
sets to determine how much energy is consumed and
demanded based on the weights of the materials used in
manufactured items. For 2017, we see the relationship curve
between per-day energy usages and various types of mate-
rials weight for multiple types of manufacturing products
and the relationship curve between per-day energy usages,
demands for energy, and total materials weight for steel
factory manufacturing products. In the steel plant, we can
see the link between overall energy use and different types of
material weight for making items. This study focuses on
industrial energy usage analysis and forecasting to enhance
energy utilization rates and make steel plants more
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profitable. This study shows the one-month forecasting
curve for steel factories using the ARIMA and SARIMA time
series models and finds the comparison curve between the
actual and forecasting values. Table 3 shows that majority of
energy is used for sheet production at 39.70 percent, Skelp
production at 49.82 percent, and Cyong production at 5.62
percent. In the year 2017, this smart factory produced the
most Skelp with the maximum amount of electricity. Power
costs are determined using three different daily rates in
Korea: off-peak, peak, and mid-peak. Different voltage levels
are also available to customers, including low voltage (220 V
and 380 V) and three voltage levels ranging from 3.3kV to
345KkV. We can observe that there is a considerable pricing
difference between peak, mid-peak, and off-peak hours. The
energy rate is more significant during peak and mid-peak
hours than during off-peak hours. So, in order to make
energy a profitable item for the business, our idea is to run
two shifts in the factory, one throughout the day and one
throughout the night, or during peak and off-peak hours,
respectively, to lower the firm’s energy expenditures. As we
have discovered, Skelp production is closely connected with
energy use, so allowing authorities to manufacture Skelp
during the night shift.

Data Availability

Two types of data sets are available from Daewoo Steel
Factory, South Korea.
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