
Research Article
IntelligentWarehouse Robot Scheduling SystemUsing aModified
Nondominated Sorting Algorithm

Jia Ma ,1 Shujun Yang ,2 and Hao Jing1

1College of Economics and Management, Shenyang Aerospace University, Shenyang 110136, China
2College of Software, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Shujun Yang; yangshujun@stumail.neu.edu.cn

Received 29 March 2022; Revised 24 April 2022; Accepted 13 May 2022; Published 15 June 2022

Academic Editor: Shi Cheng

Copyright © 2022 Jia Ma et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In intelligent warehouse, the problem of transporting goods in intelligent warehouse is becoming increasingly complex, and the
traditional way of automatically guiding vehicles (AGVs) is ine�cient, so automated robot systems are introduced into intelligent
warehouses. In this paper, a task assignment model for robots is presented with the transportation problem of robots in intelligent
warehouse as the research background. To solve the robot task assignment problem in intelligent warehouse, a novel Pareto-based
multiobjective optimization algorithm (MOEA) is proposed, and the aggregation function is invoked to replace the crowding
distance; the brain storm operator is used for crossover and mutation. Finally, the ability of the algorithm to solve the benchmark
test problem suite and real-world problems is experimentally con�rmed.

1. Introduction

Recently, the logistics industry is facing more �erce com-
petition, forcing the logistics industry to adopt cheap and
e�cient automatic robots to replace the traditional auto-
matic guidance vehicles (AGVs) and adopt new intelligent
robot scheduling system to reduce operating costs and
improve storage e�ciency [1]. From the perspective of
warehouse management, it is important to quickly transport
goods in the warehouse to reduce the production and
transaction cycles. In other words, the basic task of intel-
ligent warehouse multirobot scheduling system is to store,
transport, and extract goods [2]. �erefore, the task allo-
cation program needs to allocate tasks rationally and ef-
fectively. In the process of multirobot task scheduling, a
group of tasks need to be scheduled in an optimal way (for
example, allocation and execution).

At present, there are some metaheuristic algorithms to
handle the robot allocation problems. Whale optimization
algorithm (WOA) is used to handle mobile robot assign-
ment in the intelligent manufacturing system [3]. Hyper-
heuristic algorithms based on stigmergy and �ocking are
used to solve the robot search problem in the unmanned

space [4]. A generalized graph-based heuristic algorithm is
used to solve a dynamic route planning problem during
robot movement [5]. Sam uses metaheuristic algorithm to
provide carton manufacturers with an optimal robot
transportation strategy for cases with more autonomous
robots [6]. Faiza proposes a (Grey wolf optimization and
particle swarm optimization) PSO-GWO algorithm to solve
the problem of mobile robot avoidance of obstacles [7]. Liu
proposes two dynamic order planning algorithms to reduce
the order delay problem in smart warehouses [8]. Tan solves
the vertical picking problem in the warehouse using the PSO
algorithm [9].

However, most recent work on task assignment in in-
telligent warehouse has focused only on single-objective
minimization, i.e., it has considered only the minimization
of overall time and not the minimization of individual
autonomous robot time [10]. For this reason, we build
optimization problems based on the characteristics of robot
task assignment in intelligent warehouse, which includes
two objective functions; the �rst objective function is
minimization of overall time for the robots to perform tasks
and the other objective function is to maximize the time a
single robot spends performing tasks. �erefore, this is a
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multiobjective optimization problem (MOP) [11], where
multiple objectives need to be optimized simultaneously.
Meanwhile, with the increase of orders in warehouse, the
scheduling of multiple robots in the intelligent warehouse
will become more difficult [12].

For real-world MOPs with multiple attributes, the
multiobjective optimization algorithm (MOEA) appears
[13–15]. Among these MOEAs, Pareto-based method has
always been an effective method to solve MOPs [16], and the
most representative algorithms are NSGA-II [17] and SPEA2
[18]. In these algorithms, nondominated sorting has great
advantages in solving 2,3-objective optimization problems, it
allows nondominated stratification of the population and
then selects individuals which satisfy the conditions to the
next generation.

In summary, a novel algorithm which uses non-
dominated sorting and maximin aggregation function was
proposed for the task allocation problem in intelligent
warehouse. In this algorithm, nondominated sorting is used
to quickly select solutions, and maximin function and one-
by-one strategy are used to maintain the uniform distri-
bution of the population. Finally, brain storm operator is
used to generate new individuals [19]. Some effective op-
timization properties of maximin aggregation function will
be introduced in the following sections. For the proposed
algorithm, the maximin aggregation function can better
replace the crowdedness distance to evaluate the contri-
bution of individuals in the same nondominated layer to the
new population, the one-by-one comparison strategy can
more accurately select a more suitable new solution from the
candidate solutions, and the randomness of the brain storm
optimization operator helps the algorithm to jump out of the
local optimum and enhance the global search ability of the
algorithm.

(e contributions of this paper are as follows:

(i) (e task assignment problem for the intelligent
warehouse incorporating minimization of overall
multirobot time and maximization of individual
robot time is proposed. For this task scheduling
model, a different crossover mutation operator is
adopted.

(ii) For this multirobot scheduling problem, we propose
a new Pareto-based algorithm, which also uses
maximin function and one-by-one comparison
strategy as a supplement, and uses Brain Storm
operator to select the parents for crossover and
mutation.

(iii) (e results of simulation experiments on ZDT and
DTLZ benchmark test suites and task assignment
problem in intelligent warehouse verify the excel-
lent performance of the algorithm in solving MOPs.

(e other sections are as follows. Section 2 presents a
mathematical model for robot task assignment in the in-
telligent warehouse. In Section 3, related technologies and
the proposed algorithm MB-NSGA-II are shown. (e ex-
perimental results are summarized and analyzed in Section
4. Finally, Section 5 gives the conclusion.

2. Problem Formulation

2.1. BackgroundDescription. For the intelligent warehouse,
a batch of goods after delivery to the warehouse, the
manager will provide a list of tasks to the intelligent
warehouse system based on demand [20]. What the task
assignment in the intelligent warehouse needs to do is to
reasonably allocate this group of task sequences to the
autonomous robots. Among them, the tasks are divided
into the following categories: (1) Inbound task, trans-
porting goods to the warehouse; (2) Transportation task is
to move goods from one shelf to another according to the
needs of the manager; (3) Outbound task, transporting
goods out of the warehouse.

(e two-dimensional plane diagram of the intelligent
warehouse is shown in Figure 1, in which the neatly arranged
look grid represents the shelves.(e white cells in the shelves
indicate that the shelves are empty because there are no
goods stored on them.(e automatic robot walks in the aisle
to reach the position of the shelf to transport goods. In this
way, the information such as the shelf of the intelligent
warehouse and the walking range of the robot can be clearly
displayed. In the example Figure 1, all goods enter the
warehouse from the bottom right and leave the warehouse
from the top left.

For the robot task assignment issues, the two objective
functions of the task assignment model are minimizing the
total time for robots to perform tasks and minimizing the
time for a single robot to perform tasks, respectively. As-
suming that there are m intact robots that can move freely
and n tasks to be assigned in the intelligent warehouse, the
robots can assign inbound tasks, transportation tasks, and
outbound tasks, respectively. When a robot completes a
series of tasks, it will encounter the following situations. For
the inbound task and transportation task, the coordinates of
task ti are assumed to be (xi, yi). When the time consumption
between task and task is not considered, the time con-
sumption of robot executing task ti is TCinbound(ti). (ere-
fore, time required for outbound task TCoutbound (ti) is

TCoutbound ti( 􏼁 � xi − xin
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (1)

(e time consumption of the inbound task TCinbound(ti)
is

TCinbound ti( 􏼁 � xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi − yout

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (2)

Unlike the inbound task and the outbound task, the
transportation task is different. In the transportation task,
assuming that task ti needs to transport goods from (xi, yi) to
(mi, ni), its formula is as follows:

TCtrans ti( 􏼁 � xi − mi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi − ni

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (3)

In the robot task scheduling model, in addition to the
time consumption of autonomous robot executing tasks,
there is also the time consumption between tasks. Assuming
that the destination (xi, yi) of a robot executing task ti and the
starting point of the next task zi to be executed by the robot is
(mi, ni), the time consumption between two tasks is
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Cbetween ti, zi( 􏼁 � mi − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ni − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (4)

(erefore, the multirobot task assignment problem is
transformed into two objective functions: maximizing the
time consumption of a single robot and minimizing the total
time for robots to perform tasks. Maximizing the time
consumption of a single robot refers to the maximum time
consumption MRC of a single robot among the robots
completing the task, as shown in the following formula:

MRC � maxTCtotal ri( 􏼁,

TCtotal ri, Si( 􏼁 � 􏽘
k

j�1
TC ti,j􏼐 􏼑 + 􏽘

k

n�2
Cbetween ti,n− 1, ti,n􏼐 􏼑,

(5)

where TCtotal denotes the total time consumed by the robot ri
to execute a task sequence Si: ti1⟶ ti2⟶ ti3 · · ·⟶ tik,
tik denotes the ith robot performing the kth task. Cbetween (ti,
n-1, ti,n) represents the time consumed by the ith robot when
executing the task, k denotes the total number of tasks
performed by the ith robot, and n denotes the nth task in
execution.

Total robot time consumption minimization (MTC) is
the second objective function; we need to minimize the total
time for robots to perform tasks, and the formula is shown
below:

MTC � 􏽘
N

i�1
TCtotal ri, Si( 􏼁, (6)

whereN denotes the total number of robots in the intelligent
warehouse.

All the above time consumption functions can be cal-
culated using the Manhattan distance, since the speed of the
robot in the warehouse is set to 1m/s. (e total distance
traveled by the robots is also equal to the total time con-
sumed by the robots.

2.2. Generation of Offspring. In the iterative optimization of
discrete decision variables, some special crossover and
mutation methods are used to form new offspring.

To solve the robot task assignment problem, we rede-
signed chromosome part and divided the chromosome into
two parts. (e first part is a set of task sequences, and the
other part contains the number of tasks undertaken by each
robot, and the sum of numbers is the total number of tasks in
the task list. Figure 2 illustrates the relationship between the
first part of the chromosome and the second part of the
chromosome. As shown in Figure 2, robot 1 performs three
tasks, robot 2 performs two tasks, 4 and 5, and robot 3
performs the remaining tasks.

For discrete decision variables, the conventional cross-
over and mutation operators [21] are not appropriate.
(erefore, for this particular chromosome, two crossover
operators are used. For these two parts of the chromosomes,
we use order crossover [22] and simulated binary crossover.

Mutation operation can usually increase the random
exploration ability of the algorithm, preventing algorithms
from falling into local optimal. For discrete decision

variables, we use slight mutation to replace polynomial
mutation.(emutation process is shown in Figure 3. Firstly,
we select a point from these points as the mutation point,
then select a substring from the chromosome, and finally
insert the substring behind the mutation point to form a new
string of chromosomes.

3. The Proposed Method

In recent research, most of the literature studies tend to solve
MOPs based on Pareto-optimal, allowing the algorithm to
keep approaching the true Pareto optimal front through
nondominated sorting and many improved Pareto-based
methods [23]. In addition, some population diversity con-
servation mechanisms ensure that populations remain well
distributed in the objective space after nondominated
sorting.

3.1. Construction of Nondominated Solution Set. To reduce
the high time complexity of constructing nondominated
solution sets in NSGA, NSGAII proposed a new non-
dominated sorting method to select solutions for the new
population. Given the good performance of NSGAII in
dealing with MOPs, here we use this hierarchical non-
dominated solution set construction scheme to construct
new populations.

In the nondominated sorting process, the nondominated
individuals are first selected into the first stratum, then, the
second stratum is the set of nondominant individuals ob-
tained after removing the first stratum individuals from the
population, and so on. In the final selection, individuals in
the first stratum are considered first, and then individuals in
the second stratum is considered until the new population
size is satisfied. Specific details can be found in reference
[17]. Algorithm 1 is the process of constructing the non-
dominated solution set.

3.2. Maximin Fitness Function. In the continuous devel-
opment of multiobjective optimization, some fitness func-
tions are used as indicators to evaluate individuals in the
population, among which themaximin function is applied to
multiobjective optimization with its own characteristics.(e
formula is as follows:

fitnessi
� max

j≠i
mink fk xi( 􏼁 − fk xj􏼐 􏼑􏼐 􏼑􏼐 􏼑, (7)

where k denotes objective from 1 to m, i represents the ith
individual, and j denotes any individual except ith individual.
And the properties of the maximin function are as follows
[24, 25]:

(1) (e maximin fitness can reflect the dominance be-
tween individuals. (e maximin value greater than,
equal to, or less than zeromeans that the individual is
a dominated individual, the individual is weakly
dominated, and individual is nondominated in the
population, respectively.
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(2) (e maximin fitness reflects the presence or absence
of clustering around an individual, as shown in
Figure 4.

(3) (e maximin function can be used to reflect the
relationship between the dominated individual and
the nondominated front. (see Figure 4).

3.3. One-by-One Comparison Strategy. (e contribution of
individual to the population can be effectively assessed by the
maximin aggregation function. However, if only the
maximin aggregation function is used to select suitable
individuals, then the selection process may encounter the
equivalence selection dilemma, that is, some individuals
have equal maximin fitness, and there is no way to select a
better individual from them, and then it is necessary to use a
one-by-one comparison strategy to select a better individual
from these individuals. (e following figure shows an ex-
ample of using the one-by-one comparison strategy to
further select individuals [26].

(rough one-by-one comparison strategy, the problem
of equivalence selection can be solved efficiently. Suppose
that three individuals are selected from the four individuals

in Figure 5. First, the maximin aggregation function is used
to evaluate these individuals. A with the minimum value is
selected from these individuals to become the first candidate
individual, then continue to select individuals from the
remaining individuals through the maximin aggregation
function, and the individual D is selected into the new
population. Next, individuals B and C are compared with the
new population by maximin function, and we select indi-
vidual B to join the new population. Finally, the new
population is formed by individuals A, B, D. As can be seen
in the figure, the selected individuals remain well distributed.

3.4. Brain Storm Operator. Unlike most multiobjective al-
gorithms, we use brain storm operator as a strategy for
selecting parents, which increases the ability of the algorithm
in terms of exploration and makes it less prone to fall into
local optima. We demonstrate this part of the process with
Algorithm 2.

3.5. Proposed Algorithm: MB-NSGA-II. (e flow and
framework of the algorithm are described below. In the first
step, the population P is randomly initialized. And the brain
storm operator is used to cluster parent population and then
select appropriate chromosomes as parent chromosomes
based on suitable conditions and generate the new pop-
ulation Q by crossover and mutation. After this, parent P
and offspring Q are combined to form P’. Finally, the new
population is regenerated by comprehensive selection. Keep
cycling through the above steps until the MAX_ Fitness
Evaluations is reached. (e general framework of MB-
NSGA-II is shown in Algorithm 4.

3.5.1. Normalization. In multiobjective optimization algo-
rithms, normalization can effectively solve the problem that
different objectives have widely varying ranges of values
[27]. (e formula is as follows:

f
’
m(x) �

fm(x) − z
lower
m

z
upper
m − z

lower
m

, (8)

where zlowerm denotes the lower bound of the mth objective
function, zupper

m denotes the upper bound of themth objective

Entrance

Exit
Robot

Goods Shelves

Figure 1: Floor plan of intelligent warehouse.
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Figure 2: Example diagram of task assignment.
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Figure 3: Example diagram of slight mutation.

4 Discrete Dynamics in Nature and Society



A (–1)

f1

f2

0

1

2

1 2

C (–0.5)

E (–1)

D (–0.5)

B (0.5)

Figure 4: Properties of the maximin function.

Input: P (population)
Output: P1, P2, . . . , Pn (stratification results)

(1) ∀p ∈ P, Sp � 0, Dp � ∅,i� 1;// Sp denotes the size of set of solutions that dominate p, Dp i S denotes the set of solutions
dominated by p

(2) for ∀p ∈ P

(3) for ∀q ∈ P

(4) if (p≻q) then Dp � Dp ∪ q

(5) elseif (q≻p) then Sp � Sp + 1
(6) end for q
(7) if (Sp � 0) then P1 � P1 ∪p

(8) end for p
(9) while (Pi ≠∅) // Pi indicates the number of non-dominated layers
(10) {POP� ∅ ;
(11) for ∀p ∈ Pi

(12) for ∀q ∈ sp, nq � nq − 1 ;
(13) if (nq � 0) POP � POP∪ q

(14) end for p
(15) i� i+ 1;
(16) Pi � POP ;
(17) end for while
(18) end
(19) return P1,P2, . . . ,Pn

ALGORITHM 1: Nondominated sorting.
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Figure 5: Diagram of the process of solving the equivalence selection problem by one-by-one comparison strategy.
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function, m means this is the mth objective function, and
m ∈ 1, 2, . . . , M{ }.

3.5.2. Comprehensive Selection. As shown in Algorithm 3,
comprehensive selection consists of the following steps.
First, nondominated sorting for the population Pop is ex-
ecuted to divide Pop into strata from 1 to n. If there is only
one layer of nondominated layer, the maximin fitness value
of the population and the ideal point is calculated, and
individuals are selected into the new population one by one.
(en, individuals were selected layer by layer starting from
the first layer until the new population size is satisfied. When
proceeding to stratum i, if the predetermined S is less than
the number of individuals in the ith stratum, the set of in-
dividuals Ps is selected using a one-by-one comparison
strategy (Line 8 Algorithm 5), and finally Ps is merged with
Pop to obtain the new population Pop.

3.5.3. One-by-One Comparison Strategy. (e one-by-one
comparison strategy is shown in Algorithm 5. One-by-one
comparison strategy is used to compare individuals at the
same stratum and select a subset of individuals from them.
Firstly, let Pn be empty. First, each objective of the pop-
ulation P″ is normalized by (7).(en, if the population size
of S is larger than size, comparing individual fitness values in
S using the maximin aggregation function, select the indi-
vidual with the smallest maximin fitness from it to join the
MF, and so on, until Pn reaches the new population size.

3.6. Computational Complexity Analysis of MB-NSGA-II.
To study the computational cost consumption of the algo-
rithm, we summarize and discuss the time complexity of one
generation in Algorithm 3. In addition to crossover and
mutation operators, computational complexity is affected by
the nondominated sorting and one-by-one comparison
strategy.

First, normalization requires a computational com-
plexity of O(mN). And the nondominated sorting’s com-
putational complexity in Algorithm 1 is O(mN2). (e
complexity of calculating the maximin fitness value is

O(mN). (e step of one-by-one comparison strategy needs
O(mN2). In a word, the overall complexity of the algorithm
is O(mN2) in one generation.

4. Experimental Study

(e experimental part contains two sections; the first section
discusses and analyzes the effectiveness of MB-NSGA-II on
the benchmark test suites; the second part describes how we
use our proposed algorithm to solve practical problems in
intelligent warehouse.

4.1. Experimental Results on Benchmarks. (is section
provides the experimental results of MB-NSGAII with two
other start-of-art multiobjective algorithms, NSGAII and
IBEA, on the benchmark test suites DTLZ [28] and ZDT
[29]. On DTLZ, each test instance was experimented on the
2,3,5- objectives, and on ZDT, the experiments were run on
the 2-objective. Each algorithm needs to be run 20 times on
each test issue. We can discuss the results of this experiment
in terms of comprehensive performance indicator IGD.

4.1.1. Results and Discussion on ZDTs and DTLZs. (e ZDT
test suite contains six test problems with different charac-
teristics, each test instance involving a feature that would
cause the algorithm to have difficulty converging during
optimization (e.g., multimodality). (rough these test in-
stances, it is possible to analyze which problems the algo-
rithm excels in. DTLZ designs the problems through a
systematic approach, and its decision variables and objec-
tives are scalable, facilitating the algorithm to experiment in
solving MaOPs. DTLZ increases the difficulty of the test
problem by introducing manageable difficulties, facilitating
the algorithm to experiment on test problems with any
number of objectives. Tomore fully validate the effectiveness
of several compared algorithms in solving MOPs, we chose
to conduct experiments on 2,3, and 5 objectives.M in Table 1
indicates the objective number. (e numbers of decision
variable are set, as shown in Table 1. Details can be found in
reference [28,29].

(1) Objective normalization (P)
(2) for i� 1: S − 1
(3) Clustering: Dividing the population into m clusters using the k-means method.
(4) pgen � rand(0, 1)

(5) if pgen< pfixed
(6) pone � rand(0, 1) //Select a random cluster from m clusters
(7) if pone< pone-fixed//pone-fixed is a predetermined value
(8) Select the clustering center and the individual Popi as parent generation of population
(9) else
(10) Select a random individual and the individual Popi as parent generation of population
(11) end
(12) end
(13) Compare the newly generated individuals with the present ones by maximin function, where the better one is preserved.
(14) end

ALGORITHM 2: Brain storm operator (P, S).

6 Discrete Dynamics in Nature and Society



To more visually reflect the ability of the algorithm on
the benchmark test instances, we choose the comprehensive
evaluation indicator HV and IGD as the basis for judging the
performance of the algorithms. (ese two metrics are
composed of different formulas, so the final population
obtained by the algorithm can be evaluated from different
perspectives. (e formula and detailed description can be
found in [30,31].

4.1.2. Experimental Settings
(i) Population size and termination conditions: we use

population of size 100 for DTLZwith 2,3 objectives

and 200 for DTLZ with 5 objectives. For ZDTs, we
select population of size 100 for the three algo-
rithms. For DTLZ1-4 and ZDT1-6, the algorithms
will end after 500 generations.

(ii) Crossover and mutation: in this experiment, binary
crossover and polynomial mutation were used as
operators for crossover and mutation. Set 1.0 as the
crossover probability and set 1/D as the probability
of mutation, where D is the number of decision
variables.

(iii) Selection of indicator: for IBEA, we select I+
ε as a

performance indicator to evaluate the strengths and

Input: Off (Offspring population), S (population size)
Output: Pop (new population)

(1) P1, P2, . . . , Pn �Nondominated sorting (Off)
(2) Pop � ∅ ;
(3) if n� 1
(4) Pop �One-by-one comparison strategy (Off , z∗, S);
(5) else
(6) while m
(7) Pop � Pop∪Pi

(8) i� i+1
(9) end for while
(10) Ps �One-by-one comparison strategy (Si, Pop, S − |Pop|) ;
(11) Pop � P″ ∪Ps

(12) end for if
(13) return Pop

ALGORITHM 3: Comprehensive Selection (Off, S).

(1) Initialization: Initial population P containing N randomly individuals
(2) while Fitness Evaluations<MAX_Fitness Evaluations do
(3) Q�Brain Storm Operator (P, s) ;
(4) Off� P ∪ Q
(5) Pop�Comprehensive _Selection (Off, S);
(6) end for while
(7) return Pop

ALGORITHM 4: General Framework of MB-NSGA-II.

Input: S: individuals in stratum I, P″: new population, size: number of individuals needed for new population
Output: Ps: the set of individuals provided to the new population

(1) Pn � ∅;
(2) Objective normalization (Q);
(3) if |S|>size
(4) for i� 1: size-1
(5) MF� argmini� 1,2,...,|S|{ } fitnessi

􏽮 􏽯;//individual with minimal maximin fitness between individuals in Si and the new population P
(6) Pn � Pn, ≤ MF;
(7) end for
(8) end if
(9) Return Ps

ALGORITHM 5: One-by-one comparison strategy (S, P″, size).

Discrete Dynamics in Nature and Society 7



weaknesses of individuals. (e details of the indi-
cator can be seen in [32].

4.1.3. Analysis of Experimental Results. Comparison data of
MB-NSGA-II, NSGA-II, and IBEA on DTLZ and ZDT are
presented in Tables 2–5. (ese tables show the IGD and HV
means and standard deviations of these compared algo-
rithms on the benchmark test problems, and highlights the
algorithm that worked best on these test problems. (e
Wilcoxon rank sum test with a significance level of 0.05 was
used for the standard deviation analysis when conducting
the experiment. (e symbols “+,” “− ,” and “�” are used to
indicate that the algorithms are significantly better, signif-
icantly worse, or not significantly different between the
compared algorithms and MB-NSGA-II.

In Table 2 and Table 3, MB-NSGA-II has an outstanding
performance on both DTLZ test problems and ZDT test
problems, and it ranks first on 11 out of 18 test instances, and
it is also competitive on other test instances. In particular, it
achieved the best results on DTLZ1 for both 2,3,5 objectives,
and also ranked first on DTLZ3 for two objective problems.
Of course, NSGA-II also had good results, obtaining the best
results on the six problems. In Table 3, MB-NSGAII ranked
first in performance on 8 test problems, while NSGAII values
achieved good results on three problems. It can be seen that
MB-NSGA-II achieved the best results on all test problems
on DTLZ1 with hyperplane PF, which is a significant im-
provement over NSGAII. On DTLZ2, MB-NSGAII achieves
the best results on 5 objectives, which also proves the ef-
fectiveness of maximin aggregation function in high-di-
mensional objective space. For DTLZ3, which is easily
trapped in the local optimum and difficult to converge to the
global optimum, MB-NSGAII achieves the best results on all
three test problems except for the 2-objective. On DTLZ4,
obtained after modifying the DTLZ2 function, MB-NSGAII
achieves the best results on the 2-objective and 5-objective.
Next two tables show the results of the algorithm under HV
performance indicators. MB-NSGA-II has outstanding

performance on most test instances. It can be seen from this
that the validity of using the aggregation function to evaluate
the populations. Of course, IBEA andNSGA-II also achieved
the first in a few problems. (e results in the table also prove
that the strategy used in MB-NSGA-II is effective compared
to NSGA-II.

4.2. Results and Discussion on Task Assignment Model. To
confirm the ability of the algorithm to solve real-world
problems, we built the robot assignment problem in the
warehouse and solved it using the algorithm MB-NSGA-II.
We complement the intelligent warehouse’s situation
mentioned above by first setting a two-dimensional coor-
dinate system with the coordinates of the shipping gate of
the warehouse as (0,100) and the coordinates of the in-
coming gate of the warehouse as (100,0). (e intelligent
warehouse has a certain number of autonomous robots in
perfect condition and equal shipping speed of 1m/s. All
tasks to be performed in the warehouse are generated
randomly. For a uniform comparison, we set the population
of 500 for the compared algorithms and the termination
condition to 200 generations.

To fully validate the performance of the algorithm in
solving the task scheduling model, we assume that 5 or 10
robots are used to solve 100 randomly generated tasks; and
10 or 20 robots are used to solve 500 randomly generated
tasks.

For real multiobjective optimization problems, we
usually use the comprehensive performance indicator HV to
measure the merit of the algorithm. To use HV as an in-
dicator, the maximum values on each objective are selected
as a reference points. In this real-world MOP, we select the
maximum value that can be reached on each objective
separately, and the specific details of HV can be found in
[30]. Tables 6 and 7 show the HV values that the algorithm
can obtain on 100 and 500 tasks, respectively. From the
tables, the results show that MB-NSGAII obtains the
maximum HV on all these tasks. (at is, the populations

Table 1: Setting of decision variables.

Problem Number of decision variables
ZDT1-3 30
ZDT4,6 10
ZDT5 80
DTLZ1 M+ 4
DTLZ2-4 M+ 9

Table 2: Experimental results of IGD on ZDTs (mean and standard deviation).

Problem M NSGAII IBEA MBNSGAII
ZDT1 2 4.7879e-3 (1.31e-4) - 4.0901e-3 (1.01e-4) - 3.9627e-3 (6.92e-5)
ZDT2 2 4.9504e-3 (2.24e-4) + 8.4212e-3 (7.74e-4) - 5.3033e-3 (1.32e-4)
ZDT3 2 5.4102e-3 (1.31e-4) - 1.6020e-2 (8.05e-4) - 5.0404e-3 (1.24e-4)
ZDT4 2 5.0667e-3 (4.10e-4) + 2.2761e-2 (1.59e-2) - 6.3474e-3 (2.30e-4)
ZDT5 2 5.1086e-1 (8.31e-2) + 1.8513e+0 (4.39e-1)� 1.6593e+0 (7.13e-1)
ZDT6 2 3.7200e-3 (1.20e-4)� 4.4425e-3 (1.14e-4) - 3.7006e-3 (5.32e-5)
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Table 3: Experimental results of IGD on several DTLZs (mean and standard deviation).

Problem M NSGAII IBEA MBNSGAII

DTLZ1
2 2.2068e-3 (7.35e-5) - 7.9965e-2 (7.99e-3) - 2.0230e-3 (5.45e-5)
3 2.8447e-2 (1.33e-3) - 1.6616e-1 (2.51e-2) - 2.2376e-2 (3.68e-4)
5 1.7146e-1 (1.25e-1) - 1.8372e-1 (2.16e-2) - 5.1833e-2 (3.37e-4)

DTLZ2
2 5.0483e-3 (1.75e-4) + 1.6671e-2 (1.60e-3) - 8.5238e-3 (2.92e-4)
3 7.3058e-2 (2.57e-3)� 8.4162e-2 (2.51e-3) - 7.3973e-2 (1.57e-3)
5 2.0563e-1 (4.67e-3) - 1.9251e-1 (1.54e-3) - 1.7906e-1 (2.44e-3)

DTLZ3
2 7.1268e-3 (1.39e-3) + 3.3913e-1 (8.73e-3) - 9.8870e-3 (1.10e-3)
3 1.4200e-1 (2.06e-1)� 4.7891e-1 (4.51e-3) - 7.8834e-2 (2.64e-3)
5 7.5535e-1 (7.31e-1) - 5.9365e-1 (9.76e-3) - 1.8301e-1 (2.58e-3)

DTLZ4
2 1.5241e-1 (3.11e-1) - 4.5174e-1 (3.75e-1) - 8.1849e-2 (2.32e-1)
3 1.5811e-1 (2.77e-1) + 8.2918e-2 (2.68e-3)� 2.6157e-1 (2.41e-1)
5 2.0630e-1 (3.41e-3) - 2.1267e-1 (7.27e-2) - 1.8232e-1 (1.93e-3)

Table 4: Experimental results of HV on several DTLZs (mean and standard deviation).

Problem M NSGAII IBEA MBNSGAII

DTLZ1
2 5.8121e-1 (3.60e-4) - 3.9969e-1 (1.87e-2) - 5.8162e-1 (3.86e-4)
3 8.2082e-1 (5.02e-3) - 4.7837e-1 (5.50e-2) - 8.3698e-1 (1.86e-3)
5 6.9302e-1 (3.39e-1) - 7.5172e-1 (4.51e-2) - 9.7599e-1 (1.40e-3)

DTLZ2
2 3.4654e-1 (1.97e-4) - 3.4613e-1 (2.17e-4) - 3.4731e-1 (1.09e-4)
3 5.2551e-1 (3.99e-3) - 5.5477e-1 (1.48e-3) - 5.5689e-1 (9.61e-4)
5 6.7753e-1 (7.73e-3) - 8.0904e-1 (1.36e-3) + 8.0024e-1 (2.49e-3)

DTLZ3
2 3.4146e-1 (2.73e-3)� 1.6879e-1 (3.86e-3) - 3.4251e-1 (2.27e-3)
3 4.5747e-1 (1.56e-1) - 2.3645e-1 (9.09e-3) - 5.4725e-1 (3.20e-3)
5 4.0235e-1 (3.46e-1) - 3.8077e-1 (6.39e-3) - 8.0179e-1 (4.10e-3)

DTLZ4
2 2.9554e-1 (1.08e-1) - 1.9305e-1 (1.32e-1) - 3.2164e-1 (8.11e-2)
3 4.8619e-1 (1.39e-1)� 5.5574e-1 (9.75e-4)� 4.7330e-1 (1.09e-1)
5 6.8256e-1 (8.53e-3) - 8.0150e-1 (2.60e-2)� 8.0780e-1 (1.73e-3)

Table 5: Experimental results of HV on ZDTs (mean and standard deviation).

Problem M NSGAII IBEA MBNSGAII
ZDT1 2 7.1925e-1 (1.76e-4) - 7.2017e-1 (1.36e-4) - 7.2031e-1 (8.51e-5)
ZDT2 2 4.4399e-1 (2.03e-4) - 4.4410e-1 (1.58e-4) - 4.4485e-1 (6.70e-5)
ZDT3 2 5.9938e-1 (8.34e-5) - 5.9816e-1 (1.17e-4) - 5.9973e-1 (4.53e-5)
ZDT4 2 7.1800e-1 (1.09e-3)� 7.0312e-1 (9.85e-3) - 7.1735e-1 (5.54e-4)
ZDT5 2 8.1676e-1 (1.20e-2)� 8.1119e-1 (9.16e-3) 8.1451e-1 (3.26e-4)
ZDT6 2 3.8826e-1 (1.18e-4)� 3.8766e-1 (1.17e-4) - 3.8832e-1 (5.60e-5)

Table 6: Experimental results of HV when robots perform 100 tasks.

Number of robots IBEA NSGA-II MB-NSGAII
5 0.1379 0.1426 0.1445
10 0.2514 0.2341 0.2549

Table 7: Experimental results of HV when robots perform 500 tasks.

Number of robots IBEA NSGA-II MB-NSGAII
10 0.1388 0.1374 0.1452
20 0.1805 0.1804 0.1853

Table 8: Average time consumption of robots when using 5 robots for 100 tasks.

IBEA NSGA-II MB-NSGAII
Robot 1 3429.3 3358.3 3424.3
Robot 2 3589.9 3705 3719.2
Robot 3 3524.4 3520.3 3418.6
Robot 4 3424.3 3103.9 3031.7
Robot 5 3316.4 3301.3 3128
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Table 9: Average time consumption of robots when using 10 robots for 500 tasks.

IBEA NSGA-II MB-NSGAII
Robot 1 8894.5 9296.3 8227.2
Robot 2 8677.2 8882.1 8693.7
Robot 3 8516.4 7974.5 8681.3
Robot 4 8094.8 7616.1 7594.8
Robot 5 9015.4 8169 8170.3
Robot 6 7878 7454.1 7684.7
Robot 7 8511.7 7680.7 7364.1
Robot 8 8244.3 8189.8 9170
Robot 9 8665.4 9522.6 9233.9
Robot 10 8739.7 8210 8620.1
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Figure 6: Schematic diagram of the average time consumed by robots to perform tasks.
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obtained by MB-NSGAII have better convergence and
distribution. (rough the above experiments, it can be
proved that MB-NSGAII can give managers better solutions.

Tables 8 and 9 show the average time consumption of
robots when solving 100 tasks with 5 robots and 500 tasks
with 10 robots, respectively. Since each robot runs at a speed
of 1m/s, their average running distance can also be repre-
sented by Tables 8 and 9. As can be seen from the tables, the
time consumption of each robot is close to each other and
load balancing is achieved. Figure 6 shows the average time
consumption of the robot when performing 100 tasks and
500 tasks.

5. Conclusion

In this paper, we have proposed a corresponding mathe-
matical model for robot task assignment problem in an
intelligent warehouse and solve it by MB-NSGAII, which
uses nondominated sorting, maximin aggregation function,
and brain storm operator. MB-NSGA-II is validated on the
DTLZ and ZDTtest suites, and it achieves satisfactory results
in solving the real-world MOP with robot task assignment.

Next, we will continue to investigate the use of maximin
aggregation function and brain storm operator to solve
MOPs. We will also use this approach to solve more real-
world MOPs.
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