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Te grey model, which is abbreviated as GM (1, 1), has been widely applied in the felds of decision and prediction, particularly in
the prediction of time series with few observations, referred to as the poor information and small sample in the literature related to
grey model. Previous studies focus on improving the accuracy of prediction but pay less attention to the robustness of the grey
model to outliers, which often occur in practice due to an incorrect record by chance or an accidental failure in equipment. To fll
that void, we develop a robust grey model, whose structural parameters are obtained from the least trim squares, to forecast
Chinese electricity demand. Also, we use the last value in the frst-order accumulative generating time series as the initial value,
according to the new information priority criterion. We name the novel grey model, proposed in this paper, the novel robust grey
model integrating the new information priority criterion, which could be abbreviated as NIPC-GM (1, 1). In addition, we
introduce a novel approach, that is, the bootstrapping test, to investigate the robustness against outliers for the novel robust grey
model and the classical grey model, respectively. Using the data on Chinese electricity demand from 2011 to 2021, we fnd that not
only does the novel robust grey model integrating the new information priority criterion have a better robustness to outliers than
the classical grey model, but it also has a higher accuracy of prediction than the classical grey model. Finally, we apply the novel
robust greymodel integrating the new information priority criterion to forecasting the future values in Chinese electricity demand
during the period 2022 to 2025. We see that Chinese electricity demand would continue to rise in the next four years.

1. Introduction

Electricity demand monitoring, forecasting, and warning
early are of importance in both energy and economic felds,
which is very close to industrial activities and human ac-
tivities [1–3]. Also, electricity demand is referred to as an
important impact factor in electricity generation, which is
benefcial to regulate the schedule of electricity generation
for the operator in the electricity system [4–6]. In addition,
electricity demand, to some degree, serves as an important
indicator in macroeconomic performance for policymakers
around the world, which is highly associated with a large

number of economic variables, such as gross domestic
product and gross national product [7–9]. Terefore, the
fuctuation in electricity demand would have a great efect on
the society [10]. An accurate and reliable approach to the
prediction of the future demand in electricity is needed by
policy maker and electricity producer.

However, it is not an easy task to predict the future
demand in electricity in practice [11–13]. On the one hand,
electricity demand would be afected by a large number of
factors, including population, economic growth, and climate
change [14, 15]. Tese factors also have a large uncertainty
and fuctuation, which adds the difculty in forecasting the
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future demand in electricity [16]. On the other hand, the
time series of electricity demand itself displays less stability,
which makes the prediction of electricity demand be full of
challenges [17]. Tus, a robust and reliable approach to
forecast the future demand in electricity is needed from a
methodological perspective.

According to previous research by Hernandez et al., who
reviewed the literature related to the techniques of the
prediction of electricity demand over the past 40 years, these
techniques of the prediction of electricity demand could be
divided into three groups [18]. Te frst group applies
machine learning techniques [19]. Te second group uses
statistical approaches [20]. Te third group adopts grey
models [21]. Tese machine learning techniques include
artifcial neural network and support vector machine. Te
disadvantage of the machine learning technique is that it
requires a lot of observations in the sample for learning.
Tese statistical approaches include parametric regression,
semi-parametric regression, and non-parametric regression.
In the feld of time series, statisticians often employ the
autoregressive moving average model, or the vector autor-
egressive model, to ft the data in sample and to make
predictions out of sample. Te statistical model has its
drawback, although it is easy to know the idea behind the
statistical model. Tat is, these statistical models, like
autoregressive moving average and vector autoregressive,
heavily rely on data collection and parametric estimation.
Te grey model is likely to be themost appreciative approach
to make predictions of electricity demand, across these three
groups that we mentioned previously, which is very spe-
cialized in coping with poor information and small samples.

Te grey model was proposed by Professor Deng in the
year of 1982 [22]. It is quite popular among a great number
of applications in prediction because the grey model has a
strong capability of capturing the characteristics of a system
with uncertainty. Besides, the greymodel has a high accuracy
of prediction when it is applied in a sample with few ob-
servations. Like the machine learning technique and the
statistical approach, the grey model is also a collection of a
series of grey models. Among them, the classical grey model,
which is abbreviated as GM (1, 1) in the literature related to
the grey theory, is the most popular and the most used one.
Previous studies have pointed out that the classical grey
model efciently deals with these problems faced by the grey
system, particularly insufcient observations and uncertain
circumstances.Tus, it is a good choice to use the greymodel
to predict the future demand in electricity.

Te prediction of the electricity demand, also, should be
referred to as a grey system problem because it could be
afected by great quantities of uncertainty. Tese factors,
including the total population, the level in economic de-
velopment, and weather conditions, all afect the accuracy
and the reliability of prediction. It is a pity, however, that we
do not exactly know how many factors would afect the
electricity demand, as well as how these factors afect the
electricity demand. Besides, as we know, some emerging
countries like China have a short duration of time series of
the electricity demand, and at the same time, the electricity
demand in these countries is rapidly increasing, which adds

difculties in forecasting the future demand in electricity
using the predictive models, such as machine learning
techniques and statistical approaches.Terefore, the classical
grey model provides a good alternative to machine learning
techniques and statistical approaches to predict the future
demand in electricity.

Te literature related to the prediction of electricity
demand using the grey model is quite large and is expected
to continue to rise in the future [23, 24]. Hu used a neural
network-based grey model to forecast the future demand in
electricity [25]. Zhao et al. proposed a rolling grey model and
provided predictions of the electricity demand over a rel-
atively long period [26]. Bahrami et al. developed a grey
model with a microwave transformation and used it to
forecast the future demand in electricity in a relatively short-
run term [27]. Xu considered an optimized algorithm to
update the grey model for the projection of Chinese elec-
tricity demand [28].

Although these grey models, proposed by the previous
studies, have a great amount of obvious advantages and are
better than those traditional models, such as machine
learning techniques and statistical approaches, they have
some problems. For example, a large number of the existing
grey models estimate the structural parameters using the
ordinary least squares estimation, which assumes that there
do not exist outliers in the sample. Recent studies have
demonstrated that due to outliers occurring in the sample,
the grey model sufers from poor robustness as well as a low
predictive accuracy [29, 30]. In order to solve this problem,
we introduce least trim squares estimation into the classical
grey model, that is, GM (1, 1), and propose a novel robust
grey model to predict the Chinese electricity demand. In
addition, we consider to use the new information priority
criterion to further improve the novel proposed robust grey
model. Up to this point, we name the novel grey model the
novel robust grey model integrating the new information
priority criterion, which could be abbreviated as NIPC-RGM
(1, 1).

Te rest of this paper is organized as follows. Section 2
describes the classical grey model and the novel proposed
robust grey model. Section 3 reports the results, which
include the robustness and the accuracy of the novel pro-
posed robust model, compared with the classical grey model.
To test the robustness of the grey model, we introduce a
novel approach, that is, the bootstrapping test, whose
implementation steps would be explained in corresponding
part. Section 4 concludes this paper.

2. Methods

In this section, we frst describe the existing greymodel, which
is also called GM (1, 1) in the literature on grey theory. Ten,
we illustrate how the novel robust grey model, which we
propose in this paper, is implemented by researchers and
analysts in practice. Te novel model, proposed by us, using
the least trim squares to estimate the structural parameters
and using the new information priority criterion to improve
its capability of prediction is abbreviated as NIPC-RGM (1, 1).
Finally, we present approaches, which are used to test the
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robustness to outliers for models, as well as indicators, which
indicate the accuracy of prediction.

2.1. Te Existing Grey Model, GM (1, 1). In this section, we
provide a brief introduction to the existing grey model, that
is, GM (1, 1). Suppose that there is a time series, whose
entries are not negative. Te time series is described as
follows:

X
(0)

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(m)􏽮 􏽯. (1)

Using the frst-order accumulative generation operation,
we obtain a new time series, which is described as follows:

X
(1)

� x
(1)

(1), x
(1)

(2), . . . , x
(1)

(m)􏽮 􏽯, (2)

where x(1)(k) � 􏽐
k
i�1 x(0)(i) and k � 1, 2, . . . , m.

Te following equation:

x
(0)

(k) + αz
(1)

(k) � β, (3)

is called the basic diferential equation for the classical grey
model, that is, GM (1, 1).

z(1)(k) is calculated by the following formula:

z
(1)

(k) � 0.5 × x
(1)

(k) + x
(1)

(k − 1)􏼐 􏼑, (4)

which is known as the background value in the literature on
the grey model.

Te following equation:

dx
(1)

(k)

dt
+ αx

(1)
(k) � β, (5)

is defned as the whitening diferential equation for the
classical grey model, that is, GM (1, 1).

If we let
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(6)

then the structural parameters, [α, β]T, in the classical grey
model, that is, GM (1, 1), could be estimated using the least
squares, which is described as follows:

[􏽢α, 􏽢β]
T

� B
T
B􏼐 􏼑

−1
B

T
Y. (7)

Te general solution for the classical grey model, that is,
GM (1, 1), could be written as

x
(1)

(k) � Ce
− αk

+
β
α

, (8)

where C represents an arbitrary constant.

If we set x(1)(1) to be x(0)(1) and we set k to be 1, then
the constant C could be calculated by the following formula:

C � x
(0)

(1) −
β
α

􏼠 􏼡 · e
α
. (9)

We substitute equation (9) into equation (8) and obtain
the time response for the classical grey model, that is, GM (1,
1). Tat is,

x
(1)

(k) � x
(0)

(1) −
β
α

􏼠 􏼡e
− α(k− 1)

+
β
α

. (10)

Tus, using the estimates in the structural parameters
obtained from the least squares, the prediction of x(1)(k)

could be calculated using the following equation:

􏽢x
(1)

(k) � x
(0)

(1) −
􏽢β
􏽢α

􏼠 􏼡e
−􏽢α(k− 1)

+
􏽢β
􏽢α

. (11)

Te prediction of x(0)(k) is obtained by the inverse frst-
order accumulate generation operation, which is

􏽢x
(0)

(k) � 􏽢x
(1)

(k) − 􏽢x
(1)

(k − 1). (12)

2.2. Te Novel Robust Grey Model Integrating New Infor-
mationPriorityCriterion. Here, we illustrate the structure of
the novel robust grey model that is proposed in this paper,
which is expected to be robust to outliers. Te novel model
applies the least trim squares to estimating the structural
parameters and adopts the new information priority crite-
rion to enhance the accuracy of prediction. We name the
novel model the robust grey model integrating the new
information priority criterion, which could be abbreviated to
NIPC-RGM (1, 1). In the following, we frst explain the least
trim squares method that is used to estimate the structural
parameters. Ten, we demonstrate the new information
priority criterion that is used to optimize the initial con-
dition for the grey diferential equation. Finally, we present a
complete algorithm for the novel robust grey model inte-
grating the new information priority criterion, that is, NIPC-
RGM (1, 1).

2.2.1. Te Least Trim Squares. Distinguished from the or-
dinary least squares estimation, used to estimate the
structural parameters in the classical grey model, the least
trim squares estimation shows two advantages. On the one
hand, it investigates the order of residuals squared, which
probably is benefcial to improve the accuracy of prediction.
On the other hand, it reduces the infuence due to outliers
and enhances the robustness to outliers.

Defnition 1. Suppose that there is a series of points,
arranged according to the order of the time, that is,
(x(0)(2), z(1)(2)),􏼈 (x(0)(3), z(1)(3)), . . . , (x(0)(m), z(1)

(m))}. It satisfes a simple regression model, that is,

x
(0)

(2) � β +(−α) × z
(1)

(2). (13)
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Defnition 2. Te structural parameters in the classical grey
model are obtained using the ordinary least squares

estimation, that is, equation (7), which could be rewritten
using the following formula:

min
(􏽢α,􏽢β)
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2
. (14)

Defnition 3. Te structural parameters in the novel robust
grey mode are obtained from the least trim squares esti-
mation. Tat is,

min
􏽢αlts ,

􏽢βlts( 􏼁
􏽘

h

k�2
x

(0)
(k) − 􏽢x

(0)
(k)􏼐 􏼑

2
� 􏽘

h

k�2
x

(0)
(k) − 􏽢βlts + −􏽢αlts( 􏼁 × z

(1)
(k)􏼐 􏼑􏼐 􏼑

2

k
, (15)

where h represents the trimming constant, indicating that
there are h observations with the relatively small residuals,
which would be used to estimate the structural parameters in
the novel robust grey model. In this paper, we set the
trimming constant to be m/2. Tat is, we keep half of ob-
servations with the relatively small residuals to estimate the
structural parameters in the novel grey model.

Comparing Defnition 2 and Defnition 3, we could see
that if the trimming constant is equal to the number of
observations in the total time series, then the estimates
obtained from the least trim squares estimation would be the
same as the estimates obtained from the least trim squares
estimation. By Defnition 3, we also see that the least trim
estimation eliminates these observations with the relatively
large residuals, which could be referred to as outliers.

2.2.2. Te New Information Priority Criterion. In the liter-
ature on the classical grey model, most of articles use x(0)(1)

as the initial value, that is, the oldest value in the original
time series. According to the new information priority
criterion, we use the newest value, that is, x(1)(m), as the
initial value.

Theorem 1. Given 􏽢αlts and 􏽢βlts, obtained from equation (15),
the following conclusion could be summarized.

Te solution of the whitening grey diferential equation for
the novel robust grey model integrating new information pri-
ority criterion, that is, NIPC-RGM (1, 1), could be written as

x
(1)

(k) � x
(1)

(m) −
βlts

αlts

􏼠 􏼡e
− αlts(k− m)

+
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. (16)

Te prediction from the above time responses is

􏽢x
(1)

(k) � x
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(m) −
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􏼠 􏼡e
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+
􏽢βlts

􏽢αlts

. (17)

Proof. First, we consider a general solution for the novel
robust grey model based on least trim squares estimation:

x
(1)

(k) � Ce
− αltsk +

βlts

αlts

. (18)

We set k to be m and obtain

x
(1)

(m) � Ce
− αltsm +

βlts

αlts

. (19)

Ten, we have

C � x
(1)

(m) −
βlts

αlts

􏼠 􏼡e
αltsm. (20)

Terefore, the time responses would be

x
(1)

(k) � x
(1)

(m) −
βlts

αlts

􏼠 􏼡e
− αlts(k− m)

+
βlts

αlts

. (21)

So far, Teorem 1 is proved.

2.2.3. Te Novel Robust Grey Model Integrating the New
Information Priority Criterion. Now, we present the com-
plete implementation steps, which could be described as
follows:

Step 1. Obtain the raw time series, that is, X(0), as well as
its frst-order accumulative generating series, that is,
X(1).
Step 2. Calculate the background values, that is, Z(1).
Step 3. Estimate the structural parameters using the
least trim squares estimation.
Step 4. Calculate the predictions of the frst-order ac-
cumulative generating series, that is, 􏽢X

(1).
Step 5. Obtain the prediction of the raw time series, that
is, 􏽢X

(0).

2.3. Tests for Robustness and Accuracy. Te evaluation of the
capability of the novel robust grey model integrating the new
information priority criterion includes two aspects, that is,
the robustness and the accuracy of the novel proposed
model.
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In order to evaluate the robustness of the novel robust
grey model integrating the new information priority
criterion, we perform a series of bootstrapping tests. Tat
is, frst, we randomly choose a number from the interval
between the maximum and the minimum in the original
time series. Second, we replace the original value in a
particular year, such as the year of 2020, with the
aforementioned number chosen randomly, which forms a
simulated time series with an outlier in the particular year.
Tird, we apply the novel robust grey model integrating
the new information priority criterion to make predic-
tions based on the aforementioned formed simulated time
series. Fourth, we calculate the mean absolute percentage
error using the prediction and the values in the original
time series. Fifth, we repeat the above steps 1000 times and
obtain an empirical distribution of mean absolute per-
centage errors in a particular year when an outlier occurs.
Sixth, we perform the bootstrapping test for the classical
grey mode. Seventh, we compare the distribution from the
novel robust grey model integrating the new information
priority criterion with the distribution from the classical
grey model. If the range of the distribution from the novel
robust grey model integrating the new information pri-
ority criterion is smaller than the range of the distribution
from the classical grey model, then we would integrate
that the robustness of the novel robust grey model in-
tegrating the new information priority criterion is better
than the robustness of the classical grey mode, GM (1, 1).
If, on the other hand, the novel robust grey model inte-
grating the new information priority criterion has a larger
range of the distribution than the classical grey model,
then our integration would be that the robustness of the
novel robust grey model integrating the new information
priority criterion is not better than the robustness of the
classical grey model.

On the other hand, to compare the novel robust grey
model integrating the new information priority criterion to
the classical grey model, we use two statistical indicators.
Tey are correlation coefcient and mean absolute per-
centage error, which are defned as

r �
Cov X

(0)
, 􏽢X

(0)
􏼒 􏼓

���������

Var X
(0)

􏼐 􏼑

􏽱 ���������

Var 􏽢X
(0)

􏼒 􏼓

􏽲 ,

MAPE �
1

m − 1
􏽘

m

k�2

􏽢x
(0)

(k) − x
(0)

(k)

x
(0)

(k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(22)

3. Results

In this section, we frst investigate the robustness of the
novel robust grey model integrating the new information
priority criterion, using the bootstrapping technique that
is described in the previous section in details. Ten, we
compare the accuracy of prediction for the novel robust
grey model integrating the new information priority
criterion and the classical grey model. Finally, we forecast

the future values in Chinese electricity demand during
the years 2023 to 2025.

3.1. Te Robustness to Outliers. In Figure 1, we plot the
empirical distribution of mean absolute percentage errors
from the bootstrapping test for a particular year, when an
outlier occurs, using the classical grey model over the period
from 2011 to 2018. Figure 1 is divided into eight panels. In
Panel A, we set the value in the year of 2011 as an outlier,
which is repeatedly obtained using the bootstrapping
technique at the interval between the maximum and the
minimum of the original time series. In Panel B, we set the
value in the year of 2012 as an outlier, which is repeatedly
obtained using the bootstrapping technique at the interval
between the maximum and the minimum of the original
time series. In Panel C, we set the value in the year of 2013 as
an outlier, which is repeatedly obtained using the boot-
strapping technique at the interval between the maximum
and the minimum of the original time series. In Panel D, we
set the value in the year of 2014 as an outlier, which is
repeatedly obtained using the bootstrapping technique at the
interval between the maximum and the minimum of the
original time series. In Panel E, we set the value in the year of
2015 as an outlier, which is repeatedly obtained using the
bootstrapping technique at the interval between the maxi-
mum and the minimum of the original time series. In Panel
F, we set the value in the year of 2016 as an outlier, which is
repeatedly obtained using the bootstrapping technique at the
interval between the maximum and the minimum of the
original time series. In Panel G, we set the value in the year of
2017 as an outlier, which is repeatedly obtained using the
bootstrapping technique at the interval between the maxi-
mum and the minimum of the original time series. In Panel
H, we set the value in the year of 2018 as an outlier, which is
repeatedly obtained using the bootstrapping technique at the
interval between the maximum and the minimum of the
original time series.

In Figure 2, we plot the empirical distribution of mean
absolute percentage errors from the bootstrapping test for a
particular year, when an outlier occurs, using the novel
robust grey model integrating the new information priority
criterion over the period from 2011 to 2018. Figure 2 is
divided into eight panels. In Panel A, we set the value in the
year of 2011 as an outlier that is repeatedly obtained using
the bootstrapping technique at the interval between the
maximum and the minimum of the original time series,
which is in regard to Panel A in Figure 1. In Panel B, we set
the value in the year of 2012 as an outlier that is repeatedly
obtained using the bootstrapping technique at the interval
between the maximum and the minimum of the original
time series, which is in regard to Panel B in Figure 1. In Panel
C, we set the value in the year of 2013 as an outlier that is
repeatedly obtained using the bootstrapping technique at the
interval between the maximum and the minimum of the
original time series, which is in regard to Panel C in Figure 1.
In Panel D, we set the value in the year of 2014 as an outlier
that is repeatedly obtained using the bootstrapping tech-
nique at the interval between the maximum and the
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Figure 1: Continued.
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Figure 1: Te results from bootstrapping tests for GM (1, 1).
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Figure 2: Continued.
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Figure 2: Te results from bootstrapping tests for NIPC-GM (1, 1).
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minimum of the original time series, which is in regard to
PanelD in Figure 1. In Panel E, we set the value in the year of
2015 as an outlier that is repeatedly obtained using the
bootstrapping technique at the interval between the maxi-
mum and the minimum of the original time series, which is
in regard to Panel E in Figure 1. In Panel F, we set the value
in the year of 2016 as an outlier that is repeatedly obtained
using the bootstrapping technique at the interval between
the maximum and the minimum of the original time series,
which is in regard to Panel F in Figure 1. In Panel G, we set
the value in the year of 2017 as an outlier that is repeatedly
obtained using the bootstrapping technique at the interval
between the maximum and the minimum of the original
time series, which is in regard to Panel G in Figure 1. In
Panel H, we set the value in the year of 2018 as an outlier that
is repeatedly obtained using the bootstrapping technique at
the interval between the maximum and the minimum of the
original time series, which is in regard to Panel H in Figure 1.

Comparing Figure 1 with Figure 2, we could see that
across all the panels except Panel A, the range of the dis-
tribution from the novel robust grey model integrating the
new information priority criterion is smaller than the range
of the distribution from the classical grey model, in the
corresponding year when an outlier occurs. For example, the
range of the distribution in Panel D of Figure 2 is about half
size of range of the distribution in Panel D of Figure 1,
suggesting that the robustness of the novel robust grey
model integrating the new information priority criterion is
better than the robustness of the classical grey model.

Besides, we see that the mean of the distributions from
the novel robust grey model integrating the new information
priority criterion is more close to zero than the mean of the
distributions from the classical grey model in the corre-
sponding year when an outlier occurs. For example, the
mean in Panel B of Figure 1 is larger than 0.04, while the
mean in Panel B of Figure 2 is smaller than 0.04, indicating
that the novel robust grey model integrating the new in-
formation priority criterion could have a higher accuracy of
prediction than the classical grey model.

3.2. Te Accuracy of Prediction. Here, we test the accuracy
of prediction. We divide the total dataset into two datasets.
One represents the data during the period 2011 to 2018,
while the other represents the data during the period 2019 to
2021. Te former is referred to as the training set, while the
latter is referred to as the test set. In order to illustrate that
the novel robust grey model integrating the new information
priority criterion has a better capability of prediction than
the classical grey model whether an outlier occurs in the
sample, we provide two settings in the current analysis. One
represents the setting with an outlier, while the other rep-
resents the setting without an outlier. In the setting with an
outlier, we consider the value in the year of 2015 as an outlier
with 9.180, whose real value is 5.801.

3.2.1. Tere Is an Outlier in Sample. Table 1 reports the
results during the period 2011 to 2021, when there exists
an outlier in the sample. In columns (1) and (2), we

provide the predictive values and absolute percentage
errors, respectively, obtained from the classical grey
model, that is, GM (1, 1). In columns (3) and (4), we
provide the predictive values and absolute percentage
errors, respectively, from the novel robust grey model
integrating the new information priority criterion, that is,
NIPC-RGM (1, 1). In the bottom of Table 1, we report
mean absolute percentage error and correlation coef-
cient, which are the indicators of accuracy of prediction.
From Table 1, we see that the correlation coefcients are
the same for the two models, while the novel robust grey
model integrating the new information priority criterion
has a lower mean absolute percentage error in the test set
than the classical grey model, indicating that the former
has a higher predictive accuracy than the latter when an
outlier occurs in the sample.

3.2.2. Tere Is No Outlier in Sample. Table 2 reports the
results during the period 2011 to 2021, when there does exist
outliers in the sample. In columns (1) and (2), we provide the
predictive values and absolute percentage errors, respec-
tively, obtained from the classical grey model, that is, GM
(1, 1). In columns (3) and (4), we provide the predictive
values and absolute percentage errors, respectively, from the
novel robust grey model integrating the new information
priority criterion, that is, NIPC-RGM (1, 1). In the bottom of
Table 2, we report mean absolute percentage error and
correlation coefcient. Tey are referred to as the indicators
of accuracy of prediction. From Table 2, we fnd that the
novel robust grey model integrating the new information
priority criterion has the same value in correlation coef-
cient as the classical grey model, while the former has a lower
mean absolute percentage error in the test set than the latter,
suggesting that the novel robust grey model integrating the
new information priority criterion has a higher predictive
accuracy than the latter when there is no outlier in the
sample.

3.3. Te Forecasts of Chinese Electricity Demand during the
Period 2023 to 2025. Previously, we have illustrated the
robustness and the accuracy of prediction for our proposed
novel robust grey model integrating the new information
priority criterion. Here, we apply the novel robust grey
model integrating the new information priority criterion to
forecasting the future values in Chinese electricity demand
from 2022 to 2025, that, is the values in the next four years.
Table 3 reports the results. From Table 3, we see that Chinese
electricity demand would continue to rise at a quicker speed
in the next four years.

4. Conclusion

In this paper, we propose a novel robust greymodel based on
the least trim squares estimation. Te novel grey model also
integrates the new information priority criterion.We refer to
it as the novel robust grey model integrating the new in-
formation priority criterion, which could be abbreviated as
NIPC-GM (1, 1). We demonstrate the implementation steps
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for the novel robust grey model integrating the new in-
formation priority criterion. Also, we provide the evidence
that the novel robust grey model integrating the new in-
formation priority criterion has a more excellent perfor-
mance on the prediction of Chinese electricity demand than
the classical grey model.

Our work contributes to grey models by focusing the
issues related to outliers, which often take place in practice
due to an incorrect record by chance or an accidental failure

in equipment. Te issues are little explored by the literature
related to greymodels, although recent literature has pointed
out that due to outliers occurring in the sample, the grey
model sufers from poor robustness and a low predictive
accuracy. In this paper, we try to solve this problem. We
introduce least trim squares estimation to estimate the
structural parameters in the classical grey model. Our study
also proposed a novel approach to test and illustrate the
robustness of grey models, which adopted the bootstrapping
technique to form a novel sample including artifcial out-
liers.Tis approach also could be generalized to compare the
robustness across a set of grey models and between grey
models and other predictive models such as autoregressive
integrated moving average models and machine learning
models. In addition, we apply our novel robust grey models
to predict Chinese electricity demand, which is a time series
with large uncertainty. We fnd that the robustness to
outliers is better when the series is modeled by the novel
robust grey model than when the series is modeled by the
classical grey model. Finally, we see that the accuracy of
prediction is better when the series is modeled by the novel
robust grey model than when the series is modeled by the
classical grey model.

Of course, our work has limitations. For example, in this
paper, we set the trimming constant to be half of the number
of observation and exclude the probability of other value that
the trimming constant is set to be, where the novel robust
grey model integrating the new information priority crite-
rion could have a higher accuracy of prediction. Future
research is needed to investigate whether the value of the
trimming constant would afect the predictive accuracy of
the novel robust grey model integrating the new information
priority criterion. Besides, future inquiry into comparison
between the novel robust grey model integrating the new
information priority criterion and the other robust grey
models is needed.
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Table 1: | Predictions from existing and new models with an outlier.

Year Actual values

GM (1, 1) NIPC-RGM (1, 1)

Predictions APE (%) Predictions APE
(%)

(1) (2) (7) (8)
 01 4.976 5.579 12.12 5.219 4.88
 013 5.420 5.850 7.93 5.481 1.13
 014 5.782 6.135 6.11 5.757 0.43
 015 9.180 6.434 29.91 6.046 34.14
 016 6.120 6.748 10.26 6.349 3.74
 017 6.591 7.076 7.36 6.668 1.17
 018 7.150 7.421 3.79 7.003 2.06
 019 7.486 7.783 3.97 7.354 1.76
 0 0 7.879 8.162 3.59 7.723 1.98
 0 1 8.336 8.599 2.68 8.111 2.70
Mean absolute percentage error in
test set 3.41 2.15

Correlation coefcient in test set 0.99 0.99

Table 2: | Predictions from existing and new models without an
outlier.

GM (1, 1) NIPC-RGM (1, 1)

Year Actual
values

Productions APE (%) Productions APE
(%)

(1) (2) (7) (8)
 01 4.976 5.028 1.05 5.028 1.05
 013 5.420 5.315 1.94 5.315 1.93
 014 5.782 5.618 2.84 5.618 2.83
 015 5.801 5.938 2.36 5.939 2.38
 016 6.120 6.277 2.57 6.278 2.57
 017 6.591 6.635 0.67 6.636 0.68
 018 7.150 7.013 1.92 7.014 1.90
 019 7.486 7.413 0.98 7.414 0.96
 0 0 7.879 7.835 0.56 7.837 0.53
 0 1 8.336 8.282 0.65 8.284 0.63
Mean absolute percentage error in
test set 0.73 0.70

Correlation coefcient in test set 0.99 0.99

Table 3: | Predictions during the period 2022 to 2025 from NIPC-
GM (1, 1).

Year Predictions
 0  8.821
 0 3 9.332
 0 4 9.874
 0 5 10.447
Note. Te unit of electricity demand is 105 million kW·h.
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