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Edge Intelligence, which blends Artifcial Intelligence (AI) with Radio Access Network (RAN) and edge computing, is rec-
ommended as a crucial enabling technology for 6G to accommodate intelligent and efcient applications. In this study, we
proposed Edge Intelligent Radio Access Network Architecture (EIRA) by introducing new intelligence modules, which include
broadband edge platforms that allow policies to interact with virtualized RAN for various applications. We also developed a
Markov chain-based RAN Intelligence Control (RIC) scheduling policy for allocating intelligence elements. Experimental results
justifed that the virtualized RAN delivers on its performance promises in terms of throughput, latency, and resource utilization.

1. Introduction

Te Internet of Tings (IoT) contains a bunch of In-
formation sensors, radio frequency identifers, global
positioning devices, infrared sensors, and lasers. To
realize the pervasive connection between objects and
people, a device must frst gather the necessary data,
which can include sound, light, heat, electricity, me-
chanics, chemistry, biology, location, and so on, and then
complete the process of intelligently perceiving, iden-
tifying, and communicating.

Te IoT is an information carrier based on the Internet,
traditional telecommunication networks, etc. It enables all
common physical objects that can be independently
addressed to form an interconnected network. Te future
IoT will have a deep economical, commercial, and social
impact on our lives. Te IoT integrates billions of smart
devices that can communicate with one another with
minimal human intervention. However, the crosscutting
nature of IoTsystems and the multidisciplinary components
involved in the deployment of such systems have introduced
new security challenges. Implementing security measures,
such as encryption, authentication, access control, and
network and application security, for IoT devices and their
inherent vulnerabilities is inefective.

From another point of view, IoT also refers to a network
of interconnected computing devices and other endpoints
that can exchange data with one another and with other
devices and systems over the Internet. Using it, any set of
individually addressable everyday physical things can be
turned into a distributed system. Economically, commer-
cially, and socially, the future IoT will have profound efects
on our lives. Te IoT connects billions of devices that may
exchange data with one another autonomously, requiring
just minimal human oversight. Approximately 50 billion
devices have been connected to the Internet by the end of
2020, making IoT one of the fastest-growing sectors in the
history of computing.

Cellular network-enabled IoT will make a revolution in
our future life. It will pave the way for advanced wireless
systems and innovative new services [1]. Te widespread
implementation of the Internet of Tings relies on several
enabling technologies, such as 5G and 6G. Recently, the
ffth-generation (5G) networks have been globally deployed
in practice, while it is still predicted that the 5G may not be
able to satisfy the demand of an increasing number of
future communications [2, 3]. Researchers from both in-
dustry and academia are focusing on the sixth-generation
(6G) networks. Compared with 5G, 6G networks not only
with the features of high synchronization accuracy, near
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100% coverage, and higher bandwidth [4] but also with
cloud computing and Artifcial Intelligence (AI), especially
with the interaction of RAN and computing. Edge Intel-
ligence (EI) is being considered an enabling technology for
6G [5], especially in Radio Access Network (RAN) area,
because EI pushes the AI algorithms on the devices or
network edge [6]. It is a beneft for the application to be
processed with low latency and RAN resources scheduled
on the edge.

Regarding the advantages of ultra-low latency and high
bandwidth ofered by edge computing in the 5G era, edge
computing had attracted lots of attention; specifcally, edge
computing handles the applications by migrating the cloud
computing ability into the edge. While at the current 5G,
edge computing and network functions are still not merged
deeply, this is because edge computing is hard to obtain real-
time information from RAN [7]. In addition, the network
functions are not benefcial from edge computing to im-
prove the intelligence of RAN in network operation and
maintenance. Terefore, edge intelligence has received at-
tention from 6G, and AI has been applied as solutions in the
network including radio resource management, mobility
management, and orchestration [8]. For example, rein-
forcement learning is applied in the network to decide on
network planning, and federated learning is used to protect
the privacy of data. AI not only optimizes the communi-
cation resource but also confgures the network adaptively
and responds quickly [9].

For the vision that EI merges AI into edge computing at
the network edge, specifcally, EI can be considered as one of
the evolution routes for AI natives. On the one hand, EI
schedules the computing resource for applications; on the
other hand, the resources of RAN can also be orchestrated by
EI. For 6G, networks need to support the new service with
more stringent and diverse Quality of Service (QoS) re-
quirements and mass connectivity. Hence, it is necessary to
construct EI in future 6G networks.

In this paper, we intend to present the Edge Intelli-
gence-based RAN Architecture (EIRA) towards 6G and
build a testbed that takes advantage of both intelligence and
virtualization. Specifcally, we apply micro-services tech-
nologies for orchestrating computing and storage re-
sources. Moreover, virtualization technologies are applied
to implement the virtualized RAN. In the experiment, we
build the testbed and evaluate the performance of func-
tionalities in the testbed, for virtualized RAN, and intel-
ligence use cases. Tis paper makes the following
contributions:

(i) We present an Edge Intelligent RAN Architecture
(EIRA) towards 6G

(ii) We propose extensive and custom edge platforms
that embedded AI algorithms to process the ap-
plications with various latency and computing re-
source requirements

(iii) We design a RAN Intelligence Control (RIC) re-
source scheduling policy between extensive edge
platform and custom edge platform to improve the
request accepted ratio

(iv) We conduct a testbed in practice and evaluate the
performance of network functionalities and intel-
ligence use cases

Te remainder of this paper is organized as follows.
Section 2 reviews the existing work in the related research
feld, then Section 3 discusses the architecture of our pro-
posed EIRA. In Section 4, we propose a RIC scheduling
policy in the EIRA, followed by experimental results illus-
trated in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Edge Intelligence is still in its developing stage; in this
section, we frst survey edge intelligence and attempt to give
the initial vision of edge intelligence. Ten, we outline the
artifcial intelligence algorithms applied in the RAN to
enhance performance, i.e., reinforcement learning and
federated learning. Last, we investigate the architecture for
edge intelligence.

As the most promising solution for 6G, edge intelligence
has attracted signifcant attention, and an increasing number
of studies about edge intelligence have been proposed in
recent years [10–12]. In June 2020, the University of Oulu
released the 6G white paper on edge intelligence [10].
Peltonen et al. discuss the infrastructure and platforms for
edge computing and present the seven levels of edge in-
telligence. Tey also comprehensively analyze the key en-
ablers for edge intelligence for 6G. Additionally, they outline
the future directions of 6G edge intelligence. Liu et al. [11]
provide an overview of Multiaccess Edge Computing (MEC)
in 5G and IoT and discuss edge intelligence in 5G and IoT.
Tey propose a use case named proximity detection with
edge intelligence in an IoT environment. In order to reduce
the communication cost, they apply fve kinds of neural
networks and observe that the Long Short-Term Memory
neural network and Gated Recurrent Unit have the best
prediction accuracy. Nguyen et al. [12] review the funda-
mental 6G technologies for IoTand discuss the roles of 6G in
IoT applications.

In order to get the potential performance improvement
in 5G or the upcoming 6G, some works focus on applying AI
techniques in 6G. Te study in [13] proposes an intelligent
refective surface-based 6G wireless network infrastructure
for energy-efcient and sustainable 6G development. Li et al.
[14] propose a deep reinforcement learning approach to
optimize the coverage ratio in 6G-based IoTnetworks. Tey
frst present a genetic algorithm to maximize the data
coverage ratio and then apply deep reinforcement learning
to optimal route policy. Te experiments show that the
proposed method can reduce the length of the collection
path and cost. She et al. [15] develop an architecture enabling
device intelligence, edge intelligence, and cloud intelligence
to achieve Ultra-Reliable and Low Latency Communication
in 6G networks. Te authors apply Deep Neural Networks
for training and federated learning for improving learning
efciency. Compared with the two algorithms and optimal
performance, the experiments show that the proposed deep
learning approach shows better performance than the
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compared algorithms and is close to optimal. Prathiba et al.
[16] propose federated learning for computation ofoading
and resourcemanagement within heterogeneous systems. To
save the resource cost and improve available resource uti-
lization, they present the federated Q-Learning.

We forward our focus on the studies about AI-enabled
architecture for 6G. Han et al. [17] propose an AI-enabled
RAN architecture, and then they design a series of functions
to maximize the potential gain. In addition, they implement
the transceiver with AI and verify that the constellations
designed by AI provide a better error rate than the con-
ventional Quadrature AmplitudeModulation constellations.
Yang et al. [18] present a four-tier AI-enabled architecture
for 6G to fulfll smart resource management, automatic
network adjustment, etc. Tey also discuss edge intelligence
in edge computing and cloud AI in the central cloud. Xu
et al. [19] demonstrate the machine-learning-based cyber
twin architecture for the 6G-enabled Industrial Internet of
Tings. Tey, then present a deep reinforcement learning
approach to evaluate systematic trial and error in the cyber
twin world. Te experiment results show that the proposed
system has better performance in terms of computing delay
and communication delay.

From the review above, it can be seen that the existing
research works on edge intelligence are in infancy; more-
over, the AI algorithms are applied as a solution in resource
allocation, computation ofoading for RAN, and so on.
However, the previous studies do not consider establishing
an overall architecture for edge intelligence-based RAN and
building a testbed to promote 6G-related research. To this
end, in the paper, we propose a testbed architecture for 6G
IoT and deploy it in practice.

3. System Architecture

In this section, the proposed Edge Intelligent RAN Archi-
tecture (EIRA) towards 6G is illustrated, as shown in Fig-
ure 1. In EIRA, virtualization and service-based architecture
are applied to orchestrate the network elements statelessly.
We then introduce the potential deployment plan for EIRA.

EIRA is a four-layer architecture including the Ubiq-
uitous Connection layer, Cloud-Network Resource Pool
layer, Edge Intelligence Cloud Platform (PICP) layer, and
Applications layer. In particular, the Edge Intelligence Cloud
Platform layer is used to achieve intelligence native to inner
circulation within the architecture. Especially, the PICP
obtains the information from RAN, and then, the PICP
analyzes the information and makes the decision to RAN in
an intelligent way.

3.1. Ubiquitous Connection Layer. Tis layer supports
multiple access styles including Terrestrial and Non-
terrestrial networks. Te User Equipment (UE) accesses this
layer via a terrestrial style, such as 6G, optical, Wireless Local
Access Network (WLAN), or nonterrestrial style like the
satellite.

In order to strengthen transmission efciency and
network performance, Cell-Free massive Multiple-Input

Multiple-Output (CF mMIMO) is considered in this layer.
CF mMIMO removes the concept of cellular or cell and
introduces the user-centric design. It is also benefcial for
high network connectivity and coverage, huge spectrum,
and energy efciency.

3.2. Cloud-Network Resource Pool Layer. Te layer contains
heterogeneous resource pools and resource virtualization. A
heterogeneous resource pool consists of general and dedi-
cated resources with centralized management. General re-
sources contain common and standardized hardware (i.e.,
industrial servers based on X86 or ARM CPU) and diver-
sifed hardware chips with scalability, including acceleration
and clock resource chips. For RAN, high-speed processing
and a large number of dedicated resources are required, such
as Field Programmable Gate Array (FPGA) for coding and
encoding. Te clock resources are applied to fulfll syn-
chronization accuracy among network elements and UEs.
Dedicated resources (e.g., ASIC chips) provide specialized
services for a small number of facilities with large capacities
and ultra-high performance requirements.

Te resource virtualization part abstracts these resources
into virtual resources, i.e., virtualized Computing (vCom-
puting), virtualized Storage (vStorage), virtualized Net-
working (vNetworking), and virtualized Accelerating
(vAccelerating). Tis part eliminates the diference between
general resources and dedicated resources; furthermore, it
has a unifed view of the heterogeneous resources.

3.3. Edge Intelligent Cloud Platform. On the Edge Intelligent
Cloud Platform, the AI models are trained and deployed.
Regarding the requirements (i.e., latency and computing
abilities) of 6G scenarios, we divide the Edge Intelligent
Cloud Platform into a Custom Edge Platform and an Ex-
tensive Edge Platform. Specifcally, Near Real-Time RAN
Intelligence Control (Near-RT RIC) is applied in custom
Edge-Platform, and Non Real-Time RAN Intelligence
Control (Non-RT RIC) is in Extensive Edge-Platform.

Custom Edge-Platform consists of Service-Based Ar-
chitecture RAN (SBA RAN), Lightweight Core Nets, Trained
AI Model, and Near-RT RIC. Particularly, those compo-
nents are deployed in this platform as Network Functions.
SBA RAN is considered in this platform to realize fexible
and rapid deployment of RAN. Lightweight Core Net holds a
key role in realizing the full potential of 6G services. To
process the application in the intelligent method, the trained
AI models are embedded in the Edge Intelligent Cloud
Platform. Once the requirements are fromUEs, the Near-RT
RIC deployed in the Edge Intelligent Cloud Platform
chooses the trained AI model to process the application. In
particular, Near-RT RIC processes the application within
low latency.

Te Extensive Edge Platform contains Security Capa-
bility, Unifed Application Programming Interface (API),
Date collector, AI model, and Non-Real Time RAN Intel-
ligent Controller (Non-RT RIC). Security Capability pro-
tects the processed, transmitted, and stored information in
the EIRA. Functions and the Extensive Edge Platform
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communicate with each other through a Unifed API. Non-
RT RIC has features with data collector and model training.
Te Non-RT RIC collects the network and application data
via Unifed API, and models are trained in AI models.
Moreover, the Non-RT RIC communicates with Near-RT
RIC via the Unifed API. On one hand, Non-RT RIC sends
the trained AImodel to the Near-RT RIC; on the other hand,
the Near-RT RIC returns feedback to the Non-RT RIC about
the updated AI model. Consequently, Near-RT RIC and
Non-RT RIC control the RAN with an intelligent method,
furthermore making RAN programmable.

3.4. Applications Layer. Te future 6G scenarios are
deployed in the application layer, and we provide the Unifed
API for 3rd party to fulfll their application. In Figure 1, we
list some applications, such as 6G APP and AI APP.

3.5. Practical Deployment. In order to apply our proposed
EIRA into practice, we illustrate the potential deployment
plan for EIRA, as shown in Figure 2. As usual, the Extensive
Edge Platform could be deployed in the rich computing
resource, because it needs to train the AI models. Te
Custom Edge Platform closes the user to process the ap-
plication within the requirements of latency. Figure 2 shows
the distributed deployment for EIRA, the Extensive Edge
Platform in the regional cloud, and Custom Edge Platform
in the edge cloud. Especially, an Extensive Edge Platform
connects multiple Custom Edge Platforms via wired access

style (e.g., optical network). Extensive Edge Platform is able
to send the trained AI models to a Custom Edge Platform or
multiple Custom Edge Platforms. In addition, Extensive
Edge Platform and Custom Edge Platform can also be
deployed together at the edge cloud, and it depends on the
demand of users.

4. RIC Resource Scheduling Policy

In order to save the storage resource in Custom Edge
Platform and improve the acceptance ratio of application
requests, in this section, we introduce a scheduling policy-
based Markov chain between Non-RT RIC and Near-RT
RIC.

4.1. System Model. As shown in Figure 2, we consider the
Custom Edge Platform is deployed in the edge cloud and
close to the user. Te users access the Custom Edge Platform
via RAN. Te Extensive Edge Platform in the regional cloud
connects with multiple Custom Edge Platforms via optical
framework. In particular, a Non-RT RIC connects with m
Near-RT RICs by a set {m� 1, 2, 3, . . ., M}. A Near-RT RIC
covers n users denoted as set {n� 1, 2, 3, . . ., N}. Let the
service requests to a Near-RT RIC be represented by a set
R� {r1, r2, . . .rj}. Let ri � {αi, βi, ci, θi, c} denote a service i
request, where αi is a kind of AI model in xApp that is
requested, βi is the requested process time, ci is the access
point of the RAN, θi is the size of the request, and cj is the
requested computational resource. We assume that only an
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Figure 1: 6G edge intelligent RAN architecture (EIRA).
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AImodel is in an xAPP. In order to maximize the acceptance
ratio of the request, we need to predict the AI models of
requests in the Near-RT RIC. Terefore, which kinds of
xAPP deployed in the Near-RT RIC should be predicted.Te
acceptance ratio a is calculated as follows:

a �
Ra

Rt

, (1)

where Ra is the accepted request and Rt is the total request.
For an accepted request, the processing time should be

less than the requested process time βi. Te processing time
consists of access time and calculating time.

βi ≤ ti, 1< i< j,

ti � taccess + tcalculatingtime.
(2)

Te access time is

taccess �
θi

b
,

b � Blog2(1 + λ),

(3)

where θi is the size of the request, B is the bandwidth of the
wireless link and λ is the signal-to-inference noise ratio
(SNR) of the wireless link.

Te calculating time is

tcalculatingtime �
cp

ci

,

cp � ctotal − coccupied,

(4)

where cp is the provided computational resource, ctotal is the
total computational resource that Custom Edge Platform
can provide, and coccupied is the occupied computational
resource.

Let us consider a Near-RT RIC, the xAPPs set is denoted
as C� {c1, . . ., cs}. We assume that all the xApps in the Near-
RT RIC have the same size. Suppose that a Near-RT RIC
contains S xApps and a Non-RT RIC contains L AI models.
TeM xApps are stored in the Near-RT RIC, because of the
limited storage resource,M< S< L. Let P� {p1, . . ., ps} be the
set of xAPP popularity for the users, 0≤pk≤ 1, k ∈ [1, s]. We
count the total acceptance number of requests within a
period and record the acceptance requests for xAPP ck;
thereby, the pk is shown as follows:

Pk �
Ra,k

Ra,S

, (5)

where the number of the acceptance requests for ck could be
defned by Ra,k and the total acceptance requests could be
defned by Ra,S.

Te xAPPs replacement strategy is the Least Recently
Used (LRU). According to the LRU, the number of xAPPs of
the Near-RT RIC is regarded as a stack of length s+ 1, where
position 1 is at the top of the stack and position s at the
bottom of the stack.Whenever a request is accepted, the least
requested xApp at the bottom position is replaced and the
object xAPP is placed at the top position.

We assume that t-th xApp is at position l of the stack.
When a request is accepted by the Near-RT RIC, the fol-
lowing three changes are then possible:

(i) l will be moved to the top, which means that the t-th
xApp is called to process the request

(ii) l will remain at the same position if the xAPP with
position b is called, and b< l, b ,l ∈ [1, s+ 1]
l will be moved down by one position if the xAPP
with position d is called, and l< d, d ,l ∈ [1, s+ 1]

4.2. LRUModel. Let us consider a Markov chain {Xs+1} with
s+ 1 states, as shown in Figure 3. Tis chain represents the
state transition for xApp, where state 1 means that the object
is the most frequently called and state s means that it is the
least called. Te state s+ 1 means that the called xApp is
absent. According to reference [20], the {Xs+1} is irreducible
and aperiodic and X1, . . . Xs are independent of each other.
Te probability of t-th xAPP at the position l is

P
l

� pk, (6)

where pk is the popularity of t-th xAPP.
Te probability of position l to 1 is

P
l⟶1

� pk,

lt ∈ [1, s + 1].
(7)

Te probability of state l to l+ 1 is equal to the sum of
xApp from l+ 1 to s

P
l⟶l+1

� 􏽘 pk,

lt ∈ [1 + 1, s].
(8)

Particularly, if l� s+ 1,

P
l⟶l+1

� 1 − P
l
. (9)
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Edge Cloud Central Cloud

Wireless accessWired access

Custom
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Extensive
Edge-Platform

Base Station Router

Figure 2: Practical EIRA framework in deployment.
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Te probability of state l to l− 1 is equal to the sum of
xApp from l to l.

P
l⟶l

� 􏽘 pk,

lk ∈ [1, l − 1],

l ∈ [2, s].

(10)

We construct the transition matrix P, where the row and
column of the matrix are s+ 1 and s+ 1, as follows:

P �

p11 p12 0 0 . . . 0

p21 p22 p23 0 . . . 0

p31 0 p33 p34 . . . 0

⋮

pl1 . . . pll pll+1 . . . 0

⋮

ps+1 1 0 0 . . . 0 ps+1s+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

According to Chapman–Kolmogorov, we have

πi � 􏽘
s+1

j

πjPj,i1≤ i≤ s + 1, (12)

􏽘

s+1

i�1
πi � 1. (13)

Ten, the stationary distribution π can solve (12) and
(13). For the Near-RT RIC, we calculate the stationary of
xApps and then sort the πi increasingly. At last, we deployM
xApps in the Near-RT RIC with high values of M πi. Te
pseudo is given in Algorithm 1.

5. Experimental Results

5.1. Experimental Environment. Tis section builds an ex-
perimental testbed of the proposed Edge Intelligence-based
RAN architecture. We evaluate the overhead of network
performance with real-time kernel latency and CPU re-
source usage. Figure 4 shows the testbed hardware devices.
Since it is the initial period to discuss the 6G RAN design, the
virtualized RAN is established based on 5G NR and 5GC,
which can be later updated to 6G RAN. Te performance of
network latency and throughput is verifed within EIRA. In
order to evaluate the proposed RIC resource scheduling
policy, we consider fve application scenarios and set the
value ofM� 2. After this, we analyze the performance of face
detection on the platform.

Te testbed consists of an all-in-one server, a switch, and
an RRU, and the virtualized BBU (vBBU)/lightweight vir-
tualized 5GC (v5GC) are deployed on the edge intelligence
platform in the all-in-one server as virtualized network
functions (VNFs). Two same commercial terminals Huawei
Mate30 are used. In the test, terminals access the testbed via
a 5G NR air interface, and the RRU connects with a switch
via optical hybrid cable; moreover, the switch connects with
an all-in-one server via optical fber. Te transmission
confguration of RAN, the physical confguration of an all-
in-one server, and the confguration of the commercial
terminal are displayed in Tables 1–3, respectively.

Te test is executed in uplink (UL) with the frequency
band 3.5GHz, the bandwidth 100MHz, and the transmis-
sion mode of Time Division Duplex (TDD). Particularly, the
frame structure adopted is DSUUU (1D3U) with a 2.5-
millisecond single period to achieve the aim of large-capacity
transmission for UL, and the number of UL layers is 2. In

1 2 l s s+1… …

P1->1 P2->2 Pl->l Ps->s Ps+1->s+1

P1->2 P2->3 Pl-1->
l

Pl->l+
1 Ps-1->s Ps->s+1

P2->1
Pl->1

Ps->1
Ps+1->1

Figure 3: Te state transition.

Input: requests, S xApps
Output: M xApps

(1) Calculate the acceptance requests by the subject (2)
(2) Calculate the popularity of S xApps by (5)
(3) Calculate the state transition probability by (8)–(11)
(4) Construct the transition matrix P
(5) Find the stationary distribution π by Chapman-Kolmogorov equations
(6) Rank the element πi increasingly
(7) Output the frst M πi

ALGORITHM 1: RIC resource scheduling policy.

6 Discrete Dynamics in Nature and Society



addition, the all-in-one server in this experimental envi-
ronment is a standard 2U server, which has 2 Xeon(R) Silver
4216 CPUs, and two cards of accelerators for channel
encoding/decoding and fronthaul processing separately are
applied. For the operation system, the CentOS real-time
kernel operating system is used to meet RAN real-time
requirements. Te applications deployed on the all-in-one
server with container include iPerf and face detection, with
the same deployment modes of vBBU and v5GC and the
testbed supports for scaling of the container.

5.2. Evaluation of Network Functionalities. In the experi-
ments, the Key Performance Indicator of real-time kernel
latency is used to evaluate the performance of vBBU, which
is because real-time kernel latency can refect the jitter for

threaded interrupts, and it can show the processing per-
formance for vBBU. To satisfy the real-time requirement of
vBBU, eight CPU threads for parallel computing are used,
and the statistics of real-time kernel latency are shown in
Figure 5. Te duration time for statistics is two minutes, and
the statistics results of each thread are basically below 13 us,
which satisfes the maximum latency of 20 us in the standard
of O-RAN [21].

Te all-in-one server consists of two 16-core CPUs (i.e.,
32 physical cores) to deploy an edge intelligence-based
platform, vBBU, v5GC, and other components. Hyper-
threading technology is applied to generate 64 logical cores.
Table 4 lists the usage of CPU when the vBBU is unloaded
(i.e., UE access the network and no service is performed) and
the vBBU is fully loaded (i.e., UE access the network and
uplink service is performed), respectively, and the results are
an average of 20 runs. Te CPU resource occupied by vBBU
at full load is higher than that in the case of no-load because
the physical layer is required for packet processing and
scheduling at full load. While the resource occupation of
v5GC for no-load and full-load is more or less the same,
since DPDK is applied for fast packet processing, that is,
DPDK continuously occupies the corresponding CPU re-
sources. Due to the fewer number of test users, the resources
occupied by v5GC are the same in the two cases. When the
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Figure 4: EIRA hardware testbed with a 5G NR protocol stack.

Table 1: Transmission confgurations of RAN.

Parameters Values
Carrier frequency 3.5GHz
System bandwidth 100MHz
Transmission mode TDD

Frame structure 2.5ms single period
DSUUU

Transmission/receiving antennas 2/2
Number of layers for UL 2

Table 2: Physical confgurations of the all-in-one server.

Parameters Confgurations
Hardware Standard 2U server

CPU 2 Xeon(R) silver 4216 CPUs @2.1GHz 64
RAM

Operating system CentOS real-time kernel system
Deployed
applications

5G vBBU, v5GC (AMF+ SMF+UPF),
iperf, face detection

Table 3: Confgurations for the commercial terminal.

Parameters Confgurations

CPU
8-0043ore 2×Cortex-A76 @
2.86GHz+ 2×Cortex-A76 @

2.09GHz+ 4×Cortex-A55 @1.86GHz
GPU 16-Core Mali-G76
NPU (neural network
processing unit) Dual-core NPU

Operating system EMUI10
Storage 8GB RAM+128GB ROM

Discrete Dynamics in Nature and Society 7



Table 4: Statistics of CPU resource usage.

Number of CPU cores occupied vBBU v5GC Platform and other components Total
No-load vBBU 3.90 4.53 2.92 11.35
Full-load vBBU 6.59 4.53 3.47 14.59
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Figure 5: Statistical performance of real-time kernel latency for eight CPU threads.
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vBBU is fully loaded, the CPU resource occupied by the
other components is higher than that when the vBBU is not
loaded, owing to the increased resource occupied by vBBU
containers and control plane components.

Figure 6 shows the sampling curve and probability dis-
tribution of the uplink rate of a single user. We can see the
values in rate are mainly among 620–660Mbps, and the
average rate is about 624.54Mbps. In addition, the theoretical
peak rate is 760Mbps based on our confgurations, and the
actual maximum peak rate during the testing is 684.95Mbps,
which can be 90% of the theoretical peak rate. Te theoretical
peak value formulation is calculated as follows [22]:

data rate � 10− 6 ∗ 􏽘

J

j�1

⎧⎨

⎩v
(j)

Layers ∗Q
(j)
m ∗Rmax

∗
N

BW(j),μ
PRB ∗ 12

T
μ
s

∗ 1 − OH
(j)

􏼐 􏼑
⎫⎬

⎭.

(14)

Te sampling and probability distribution of the uplink
rates with the two users are depicted in Figures 7 and 8,
respectively. Te peak rate of the frst user is 333.19Mbps,
and the average rate is 327.61Mbps. While the peak rate of
the second user is 323.73Mbps, and the average rate is
292.04Mbps. Te sum of peak rates for the two users is
656.92Mbps. It can be seen that the peak rate of two users is
lower than that of a single user, which is because the
overhead of two users is greater than that of a single user. We
note the rate of user 2 is lower than that of user 1 and the
throughput of user 2 has a fuctuation from time sampling
point 0 to 100 because there is more interference in the test
environment for user 2.

Table 5 shows the test results of Round Trip Time (RTT)
between the terminal and the vBBU. In Radio Resource
Control (RRC) connected state, we use the Internet Control

Message Protocol (ICMP) with the command PING to test
the RTT. Te packet size is 32 bytes and 1500 bytes, re-
spectively, and we run 100 times continuously. Te results
reveal that the average delay of 1500-byte packets is slightly
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Figure 6: UL rate sampling and probability distribution of single
users.
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Figure 7: UL rate sampling of two users.
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Figure 8: UL rate probability distribution of two users.

Table 5: Statistics of user plane RTT.

RTT (ms) Ping 32 bytes Ping 1500
bytes

Minimum value 6.677 6.355
Maximum value 10.428 13.276
Average value 7.988 7.993
Te success rate of the ping packet 100% 100%
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larger than that of 32-byte packets because the testbed
processes short packets faster than a long-size packet.

5.3. Evaluation of Intelligence Case. In order to evaluate the
performance of an intelligent case, a face detection appli-
cation is deployed in the testbed in the form of a Pod. It is
considered using OpenCV [23], and we use three images
with the size of 1024∗ 768 pixels as input data from ter-
minals for face detection. Te volumes of the three images
are 30 kB, 60 kB, and 120 kB. In Figure 9, the X-axis is the
number of images that the testbed received from terminals.
Te Y-axis is the processing time for the images. Te black
line is for the processing time of 30 kB, the blue line is for
60 kB, and the red line is for 120 kB. Figure 9 shows that the
processing time increases from 300ms when the number of
services is 10 to 1770ms when the number of services is 60 at
the volume of 120KB. We can see that the trend of pro-
cessing time is increasing, and the larger images require
more processing time.

6. Conclusions

Tis paper presents the edge intelligence-based RAN ar-
chitecture towards 6G with a lab environment testbed for
EIRA provided to make it reliable, efcient, and smart. In
EIRA, virtualized network functions are deployed and the
intelligence modules are implanted in extensive Edge
Platform and Custom Edge Platform respectively, inter-
acting with virtualized RAN for diferent applications to
build RAN open and programmable. Specifcally, we pro-
pose an approach for allocating resources between the ex-
tensive Edge-Platform and Custom Edge Platform. Our
proposed work is unique in the sense that it is one of the
initial eforts to build an edge intelligent RAN architecture
with a lab-scale testbed supporting all key features.
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