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Te high-speed development of mobile broadband networks and IoT applications has brought about massive data transmission
and data processing, and severe trafc congestion has adversely afected the fast-growing networks and industries. To better
allocate network resources and ensure the smooth operation of communications, predicting network trafc becomes an important
tool. We investigate in detail the impact of variable sampling rate on trafc prediction and propose a high-speed trafc prediction
method using machine learning and recurrent neural networks. We frst investigate a VSR-NLMS adaptive prediction method to
perform time series prediction dataset transformation. Ten, we propose a VSR-LSTM algorithm for real-time prediction of
network trafc. Finally, compared with the traditional trafc prediction algorithm based on fxed sampling rate (FSR-LSTM), we
simulate the prediction accuracy of the VSR-LSTM algorithm based on the variable sampling rate proposed. Te experiment
shows that VSR-LSTM has higher trafc prediction accuracy because its sampling rate varies with the trafc.

1. Introduction

As the global mobile industry moves toward 6G networks,
mobile edge computing (MEC)-based network infrastruc-
ture has received unprecedented attention to support In-
ternet of Tings (IoTs) applications with diverse business
needs [1]. To better serve users, the connectivity and in-
telligence provided by edge computing have tremendous
advantages in terms of real-time services, smart living, se-
curity, and reliability [2]. At present, edge computing has
been applied in smart campuses, video surveillance, in-
dustrial IoTs, augmented reality/virtual reality (AR/VR) and
other application scenarios, which also proves that MEC-
based network infrastructure is efective and fully capable.

Te capabilities of edge computing rely on edge servers,
which are usually deployed with base stations. It is expected
that more IoTs applications will be carried out based on
MEC in the future, and the massive data they generate will
have great demands on network resources such as band-
width, computing power, and storage [3, 4]. Terefore, in

future, multiple MEC servers will be needed to jointly
provide services for diferent applications. Since MEC
servers have diferent computing processing capabilities and
are deployed in a distributed manner, it is critical to ofoad
computing tasks to these heterogeneous MEC servers
according to diferent application requirements. Terefore,
reasonable and efective resource allocation mechanisms
according to the usage of wireless network resources and
MEC server resources will efectively ensure the service
requirements of users.

Resource allocation will directly afect the operating cost
of MEC-based network infrastructure and the experience of
IoTs users. Unreasonable resource allocation will not only
increase the operating costs of communication networks but
also may lead to serious energy waste. Accurate wireless
network trafc prediction can intuitively refect the changing
trend of service requirements, provide an important refer-
ence for communication network resource allocation, and is
an important guarantee to achieve reasonable and efcient
resource allocation and computing task ofoading [5, 6].
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It has always been a meaningful research topic to analyze
the distribution and demand of communication trafc by
predicting the wireless network trafc to guide the com-
munication resources’ allocation [7]. Te previous wireless
trafc prediction adopted manual prediction and statistical-
based prediction methods, and their limitations are obvious.
Manual prediction is inefcient and cannot adjust the
network resource allocation in real-time according to the
change of service demands. Te statistics-based trafc
prediction models intelligently utilize certain statistical
characteristics, but cannot efectively comprehensively uti-
lize various information that has an important impact on
wireless trafc [8]. As machine learning techniques are
intensively researched, there have been some works using
machine learning and deep learning algorithms for wireless
network trafc prediction [9–18].

In the future, artifcial intelligencewill be one of the native
features of the next-generation mobile communication net-
work, namely the sixth-generation (6G). Trough AI-based
endogenous intelligent design in air interface algorithms,
wireless network architecture, and wireless trafc prediction,
etc., 6G-based communication network can better achieve
network autonomy and intelligence, thus realizing intelligent
operation and maintenance management of 6G network in-
frastructure, including MEC servers and efcient automatic
deployment of services [19, 20]. Te trafc prediction model
based on AI algorithm can automatically mine various fea-
tures contained in wireless data and comprehensively use
these features to accurately predictwireless trafc in real-time.
Accurate trafc prediction can directly refect the spatial and
temporal distribution of communication service demands,
guide the network resources allocation in diferent network
nodes, and then ofoad thecomputing tasks in diferent MEC
servers, thereby improving user service experience and en-
hancing the autonomous and intelligent operation and
maintenance of communication networks.

Machine-to-machine (M2M) communications, auton-
omous driving, and virtual reality are just a few of the new
applications that 6G cellular networks are expected to make
possible in the next few years. Tese applications all call for
better network latency, capacity, and context awareness. It is
critical to make the network aware of trafc demands to
achieve these strict standards. Te development of an in-
telligent network necessitates trafc analysis and accurate
forecasting of user demand. Knowing user demand ahead of
time allows the network to allocate resources more ef-
ciently. Te network can manage resource distribution
between users who are competing for resources promptly.

Te remainder of this paper is organized as follows.
Related works closely to our research are listed in Section 2.
A trafc prediction model for 6G MEC IoT is described in
Section 3. Section 4 focuses on trafc prediction methods
with variable sampling rates(VSR) using machine learning
and RNN techniques. In this section, the VSR-NLMS
adaptive prediction method to perform time series predic-
tion dataset transformation and the VSR-LSTM algorithm
for real-time prediction of network trafc are proposed.
Simulation and performance analysis are presented in
Section 5. Section 6 concludes the full text.

2. Related Works

Network trafc analysis and prediction are fundamental to
trafc engineering, network planning, optimization, ad-
ministration and maintenance, resource allocation, load
balancing, etc.. Te previous wireless trafc prediction
adopted manual prediction and statistical-based prediction
methods, which have lots of faws such as Low efciency and
non-real-time. As machine learning techniques are inten-
sively researched, there have been some works using ma-
chine learning and deep learning algorithms for wireless
network trafc prediction.

All of [9–14] address network trafc prediction problems
in the telecom network. In these research works except [12],
LSTMor LSTMvariants has been adopted and achieved good
prediction performance compared with other algorithms
such as ARIMA, SVR, FFNN, RFR, KNNR, etc.In [9–11, 14],
the prediction focused on aggregated behavior, e.g., con-
sidering trafc volumes observed over a given time interval
(normally 5–15 minutes), which is coarse-prediction.

In [12, 13], the author investigates and specializes a set of
architectures selected among convolutional, recurrent, and
composite neural networks to predict mobile-app trafc at
the fnest (packet-level/mobile app) granularity. To provide
the AI-native services for the 6G vision, the author in [14]
proposed a novel edge-native framework to provide an
intelligent prognosis model using LSTM-based encoder-
decoder for data trafc prediction. Te prognosis model was
trained on real time-series multivariate data records col-
lected from the edge μ-boxes of a selected testbed network.

In [15–18], the trafc predictions of Internet or campus
network, such as ARQ message and ping command, are all
fne-grained prediction. Especially in [18], wavelet transform
is used to preprocess the data before prediction, trans-
forming the 1-dimensional time series data into 3-dimen-
sional data, which is more conducive to GRU (a LSTM
variant) feature extraction and then obtained a better per-
formance than RNN.

A detailed comparison of these related works has been
compared according to the aspects of research objects, trafc
data granularity, used data sets, and algorithms in this paper,
as shown in Table 1.

From the above discussion, it can be seen that compared
with other algorithms, LSTM has better performance in
predicting time series data such as network trafc. But al-
though not specifed in the literature, especially telecommu-
nications network trafc prediction, the trafc data generated
using a fxed sampling rate, without considering trafc speed
changes, will lead to large complexity of computation or
predict the problem of inaccuracy. Aiming at the above
problems, a new algorithm, VSR-LSTM, which combines
variable sampling rate and LSTM, is proposed in this paper.

In addition, for readers’ convenience, all the acronyms in
this paper have been collected and listed in Table 2.

3. System Model

As shown in Figure 1, the mobile edge computing system
model for machine learning-based trafc prediction is a
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three-tier hierarchy consisting of a cloud platform, multiple
MEC gateways, and a large number of end-users, including
multiple independent IoT networks. Each IoT network
serves many end-users (i.e., diferent end devices). Diferent
terminal types and usage scenarios have diferent comput-
ing, storage, and communication capabilities. For example,
smartphones have relatively high computational storage and
communication capabilities, and rechargeable batteries have
high energy supply capabilities. But some IoT nodes have
defcient capacity compared to smartphones, especially
many nodes that cannot replace batteries, and their com-
putational storage and communication capabilities are
greatly limited. At the same time, various services have
diferent QoS requirements for latency, energy consump-
tion, communication bandwidth, and other indicators,
which require diferent processing methods for diferent
terminal types and diferent business needs. Generally
speaking, services with low computation and power re-
quirements but high latency requirements can be executed
on local terminals with strong capabilities, such as smart-
phones. For IoTnodes with limited computation and power,
data can only be transmitted to gateway nodes or edge
servers for processing, and for that kind of computationally

Table 1: Related works performing prediction of diferent research objects and by means of diferent techniques.

[Ref] Research object Fine or coarse Dataset Simulator Techniques

[9] Telcom network Coarse
(15min) GEANTWIDE Not mentioned

ARIMA
SVR
LSTM

RCLSTM
SR-based

[10] Telcom user trafc and
location

Coarse
(15min) GENAT Not mentioned

ARIMA
SVR
LSTM

RCLSTM
FFNN

[11] Telcom. Network Coarse Operator data Python
ARIMA
FFNN
LSTM

[12] Mobile APP Fine MIRAGE-2019 Not mentioned HMM
RFR

[13] Mobile APP Fine MIRAGE-2019 Not mentioned

LR
K-NNR
RFR
MC
CNN
LSTM
GRU

[14] Mobile 6G network Coarse (5min) Locally obtained Edge μ-boxes, jupyter
notebook

LSTM-based encoder and
decoder

[15] University campus
datacenter Fine EDU1 dataset Python, keras CNN

RF

[16] SDN controller (ONOS) Fine Ping ARQmessage Not mentioned
DNN
SF
LDA

[17] Internet Fine DNS trafc Python, TensorFlow
SVR
BPNN
LSTM

[18] Internet Fine User data MATLAB GRU
RNN

Table 2: Acronyms list in this paper.

Acronyms Full name
ARIMA Auto regressive integrated moving average
ARQ Automatic repeat response
CNN Convolutional neural network
DNN Deep neural network
FFNN Feed forward neural network
FSR Fixed sampling rate
GRU Gated recurrent unit
HMM Hidden markov models
MEC Mobile edge computing
NRMSE Normalized root mean square error
KNNR K-nearest neighbor regressor
LSTM Long short-term memory
LDA Linear discriminant analysis
LR Liner regression
MC Markov chain
RCLSTM Random connectivity LSTM
RF Random forest
RFR Random forest regressor
RNN Recurrent neural network
SR-based Sparse representation-based
SVR Support vector regression
VSR Variable sampling rate
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intensive service, they also need to be ofoaded to remote
servers with unlimited energy computing power to process
them.

In Figure 1, whether IoT end-users ofoad tasks to edge
servers for execution or edge servers ofoad computationally
intensive tasks to remote ends for execution, both require
the system to allocate appropriate network bandwidth re-
sources. Although 6G has increased the network speed and
bandwidth a lot compared to 5G, the competition for
network resources, especially bandwidth resources, still
exists, and this resource competition may become more
intense in the future, requiring dynamic control of network
resources based on user demand. Trafc prediction is of
great signifcance to achieving dynamic resource allocation
and is a prerequisite and guarantee for the edge computing
server to achieve dynamic resource allocation.

In addition to being able to complete the execution of
tasks ofoaded to it by users and ofoad tasks with greater
computational demand to the cloud for execution, the edge
server in Figure 1 should also have dynamic trafc prediction
functions to accurately predict the bandwidth resources
required for various ofoading tasks and provide a basis for
network bandwidth resource allocation. Te cloud server
mainly completes the computation-intensive tasks ofoaded
to it by the edge servers.

4. Prediction Methods

4.1. Te Signifcance and Preliminary Solution of Developing
Variable Sampling Rate. To avoid confusion in the forecast,
if a constant sample rate is to be utilized, it must be double
the maximum frequency of the trafc load profle. Since
more trafc sample operations likewise generate more trafc
prediction operations, a constant sampling rate puts sig-
nifcant computing complexity into the system. As a result,
developing a low-sampling-rate solution seems appealing.

Te trafc load curve, which has areas with slow and
rapid changing movements, served as inspiration for the
notion of VSR (variable sampling rate) [21, 22]. We

discovered that the main source of trafc load volatility is the
timeliness features of mobile user behavior. A notable ex-
ample of this is the fact that students’ real-time trafc on
campus is scheduled and determined by the calendar. Ten,
the real-time network trafc load is also limited by the
number of visits and applications. When the number of
users fuctuates quickly, the fast-changing zone appears, but
when the number of users remains consistent, the slow-
changing zone appears. Based on these fndings, the best
VSR strategy is to sample at a low sampling rate in slowly
changing regions and at a high sampling rate in rapidly
changing regions. Te constant sampling rate approach is
often used when considering the entire trafc load distri-
bution, whereas the variable sampling rate strategy is used
when the trafc load distribution needs to be sampled and
reconstructed independently, a practical scenario where the
trafc load varies in speed from region to region. Te maxi-
mum frequencies in the slow-change and fast-change zones,
respectively, are representedbyfs

max andf
f
max. FromNyquist’s

theory, the sampling rate must be twice as fast as fs
max in the

slow-changing region and twice as fast as f
f
max in the fast-

changing region. Terefore, the average sampling rate R
avg
VSR:

R
avg
VSR �

2f
s
maxTs + 2f

f
maxTf􏼐 􏼑

Ts + Tf􏼐 􏼑
, (1)

of which Ts and Tf represent the total length of time covered
by the slow and fast-change zones, respectively. Considering

f
s
max <f

f
max � fmax, (2)

we have

R
avg
VSR < 2fmax (3)

indicating that the sampling rate of the VSR method is lower
than that of the constant sampling rate method.

4.2. VSR-NLMS Adaptive Forecasting Method. As the load
profle is unknown at the time of prediction, it is not possible

...

...

Edge Server & Gateway

Cloud Server 

Edge Server & GatewayEnodeB EnodeB

Figure 1: Trafc prediction for 6G MEC IoT.
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to classify the load profle into low- and high-speed types.
Te author in [21] created the VSR-NLMS adaptive fore-
casting method, which combines the FSR-NLMS (fxed step
size-NLSM) predictor with VSR.Te sampling rate of time tn
is defned as

Rs(n) �
1
Δtn−1,n

. (4)

in the VSR-NLMS scheme, and it is iteratively updated to
show a negative correlation with the target prediction error
bound Eb> 0. We further have the following constraint

R
min
s ≤Rs(n + 1)≤R

max
s , (5)

where, Rmax
s and Rmin

s denote the system’s highest and lowest
sampling rates, respectively.

As the fow load curve is changing rapidly resulting in large
errors, the VSR-NLMS scheme is used here to update the
sampling rate in time to ensure accuracy. Based on the sub-
sequent observation, the VSR-NLMS method adjusts the
sampling rate. To achieve forecast accuracy, the sampling rate
mustbe raisedbecause thegreater the forecast error, thegreater
the complexity of the trafc load situation. A small prediction
error, on the other hand, indicates that the trafc load profle
varies slowly, allowing the sampling rate to be adjusted to
reduce computing complexity. When deciding on Rmax

s , we
must choose between prediction accuracy and compilation
efciency. Large Rmax

s values, obviously, can result in reduced
prediction errors, but they also increase the computational
complexity of the sampling and prediction method. When we
choose Rmin

s , we infer that the linear predictor’s reaction time
cannot be too long to handle bursty trafc.

4.3. Dimensional Transformation in Time-Series Prediction.
Network trafc prediction is a temporal sequential fore-
casting technique, the core idea of which is to analyze the
nonlinear correlation between the previous data and its
historical data at a certain time point [23]. Te prediction of
values at a future point in time is accomplished based on the
outcomes of the modeling analysis. We must use trafc fow
time series modeling in this paper. Trafc fow data was
converted into multidimensional data, including input
feature vectors and model output sample labels in a format
to better model LSTM. Scholars now use the “sliding win-
dow” approach to convert one-dimensional (1D) data into
two-dimensional (2D) data. Te following are the primary
phases in this method for properly converting 1D time series
into 2D machine learning data type.

Step 1: Choosemoment Tand collectN historical values
before moment T and set them as feature vectors. N is
the length of the feature vector.
Step 2: Construct the output vector by taking moments
T+ 1 to T+M as the label values. M is the number of
output variables, which represents the step size of the
prediction.

Te basic fow chart of the “sliding window” based
method is shown in Figure 2.

4.4. RNN and LSTM. Te earliest known RNN is Hopfeld
Network (HN) proposed by Hopfeld in 1982 [24]. RNN, as a
neural network model that can process time series and
structural series data, has been widely used in handwriting
recognition, speech discrimination, text translation, and
other felds. Te data contained in these felds have a
common feature. Tat is to say, the input samples are all
continuous sequence data, which can be a piece of text or a
piece of speech. Tere is a great correlation between the
preceding and the following, and the length of the data is
diferent, which cannot be accurately divided into separate
training samples by traditional neural networks. Compared
with the traditional neural network, the RNN model can
connect the output at the current moment with the output at
the previous moment so that the neural network has the
function of “memory”. It can record the historical sequence
information, continuously reduce the gradient error be-
tween the predicted value and the real value in the process of
iteration, and fnally obtain the optimal model. Normally,
any sequence can be obtained by predicting through the
RNN model.

However, in the actual training process of the RNN
model, it is found that it is still a little insufcient to store the
amount of historical information. Since the RNN model
stores the corresponding historical information by the
number of network layers, the less the number of network
layers, the more incomplete the historical information
recorded. In addition, the more the number of network
layers, the more complex the training process will be, and it
is easy to have the phenomenon that the gradient descent
speed is fast or even disappears, both of which will lead to
poor prediction performance of the model [25].

To solve the above problems, the long short-termmemory
network (LSTM) model is proposed by Hochreiter et al. in
1997 [26]. Subsequently, the LSTMmodel quickly made great
achievements in speech recognition andmachine translation.
LSTM,asavariantofRNN,cansolve thecommonproblems in
the RNNmodel by changing the structure of the hidden layer.
Since the LSTM model is obtained by changing the RNN
model, the two models have the same output layer and input
layer structure, and the diferences are mainly refected in the
structure of the hidden layer.

Te structure of the hidden layer of the LSTM model is
shown in Figure 3. It can be seen that the hidden layer is
mainly composed of three gating units and a memory block
(cell) unit, and the three adaptive multiplication gating units
are the input gating unit, forgetting gating unit, and the
output gating unit, respectively.

Te input gating unit It can be used to control, where
information can be saved to the memory unit at the current
moment, and it consists of two network layers with acti-
vation functions of sigmoid function σ and tan h function,
respectively.

It � σ Aimt−1 + Bixt + bi( 􏼁,

Ct � tan h Acmt−1 + Bcxt + bc( 􏼁,
(6)

where xt denotes the input vector at moment t, mt− 1 is the
output of the previously hidden layer neuron node, and by

Discrete Dynamics in Nature and Society 5



using the sigmoid function to activate xt and mt−1. Ai de-
notes the weight value corresponding to the output result of
the previously hidden layer neuron at the input gate, while Bi

is the weight value of input vector xt and bi is the bias
parameter of the input gating unit at the time of calculation.

Ct the candidate cell state, Ac, Bc, and bc are weight
values and the bias parameter of Ct respectively.

Next, the result of multiplying the elements corre-
sponding to the two results is used for the update of the
memory block cell.

Te forgetting gating unit Ft is mainly used to link the
state of the memory block unit at the previous moment with
the state of the memory block unit at the current moment.

Te fnal result obtained through the forgetting gate

XT-3 XT-2 XT-1 XT XT+1 XT+2 XT+3... ...

XT-N-1 XT+1XT-1 XT XT+2 XT+M... ... ... ...

XT-N XT+2XT XT+1 XT+3 XT+M+1
... ... ...

Feature 
vector

Sample 
label

XT+4 XT+5

...

XT-N-1 XT+1XT-1 XT XT+2 XT+M... ...

XT-N XT+2XT XT+1 XT+3 XT+M+1
... ...

One dimensional time series (network trafc fow)

Sliding window (M+N)

Feature vector (M) Sample label (N)

Sliding window (M+N)

Feature vector (M) Sample label (N)

Two dimensional time series (network trafc fow)

Training model

Figure 2: Time series prediction data set transformation.

σ

Tash

σ

σ

It

X

Ft

Ct Tash X

X

Ot

Input Gate

Output Gate

Memory Unit

Forget Gate

[xt, mt-1] mtCt

Figure 3: LSTM model hidden layer structure.
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Ft � σ Afmt−1 + Bfxt + bf􏼐 􏼑, (7)

where Af denotes the weight value corresponding to the
output result of the previously hidden layer neuron at the
input forgetting gate.Te weight of the information entering
the forgotten gating unit through the input gating unit at the
current moment is denoted by Bf, and bf is the bias pa-
rameter of the forgotten gating unit at the time of
calculation.

Te output gating unit is composed of two parts, the
current moment input vector combined with the informa-
tion obtained from short-term memory output results Ot

and the output result of the information obtained by
combining the input vector with long-term memory at the
current moment mt. Te activation functions used are the
sigmoid function and the tan h function, respectively.

Ot � σ A∘mt−1 + B∘xt + b∘( 􏼁,

mt � Ot ∘ tan h Ct( 􏼁,
(8)

where, ∘ is the element-wise multiplication, which imple-
ments the product of the corresponding positional elements
of two matrices. As mentioned above, A∘, B∘, and b∘ are
weight values and the bias parameter of the Ot respectively.

Te state of thememory block unit is determined by both
the past moment state and the current moment state, where
the past moment state is obtained by multiplying the past
moment unit state with the output result of the forgetting
gating unit in accordance with the corresponding element,
and the current moment state is obtained by multiplying the
current moment unit state with the current moment input
gating unit in accordance with the corresponding element.

Ct � Ct−1 ∘Ft + It ∘Ct (9)

After the above discussion, we have clearly understood
the importance of controlling the sampling rate. Te core of
this article is to continuously adjust the sampling rate by
analyzing the error. Te processing method of this article is
to apply the LSTM algorithm. How does the LSTM algo-
rithm work in the past? Te error value is input, forgotten,
and output as a sample, which will be discussed below.

Te reason why the LSTM algorithm is diferent from the
traditional RNN algorithm is that it can delete some un-
necessary data through the forget gate. Among them, Ai, Bi,
and bi in the input gating unit; Af, Bf, and bf in the forgetting
gating unit; and Ao, Bo, and bo in the output gating unit need
to be obtained by the LSTM model through training. Te
training method is as follows: the error at time t is defned in
LSTM as ϑt and the sum of squares of all node errors in the
output layer is represented by L. At this time, we have the
following formula

L �
1
2

􏽘

τ

t�1
􏽢yt − yt( 􏼁,

ϑt �
zL

zmt

.

(10)

Among them, 􏽢yt is the prediction value, yt is the true
value, and mt represents the hidden state.

Ten, we need to go back in time and use the error of the
latter time state to calculate the error of the previous time
state.

At state tn, the error of the input gating unit is

ϑit
� ϑt ∘Ot ∘Ct ∘ it ∘ 1 − it( 􏼁 ∘ 1 − tan h ct( 􏼁

2
􏼐 􏼑. (11)

Te forgetting gating unit error is

ϑft
� ϑt ∘ ot ∘ ct−1 ∘ft ∘ 1 − ft( 􏼁 ∘ 1 − tan h ct( 􏼁

2
􏼐 􏼑. (12)

Te output gating unit error is

ϑot
� ϑt ∘ tan h ct( 􏼁 ∘ t ∘ 1 − ot( 􏼁. (13)

Te error of the memory block unit is

ϑct
� ϑt ∘ ot ∘ it ∘ ( 1 − c

2
t 􏼁 ∘ 1 − tan h ct( 􏼁

2
􏼐 􏼑. (14)

Using the above four values, the error value of the state
tn−1 can be calculated as

ϑt−1 � Aoϑot
+ Afϑft

+ Aiϑit
+ Acϑct

. (15)

Ten, the gradient of the bias term and the weight
gradient A, B, and b are derived by the chain rule, and then
the gradient is updated by the gradient descent method. To
be accurate enough for the calculatedA, B, and b values, after
training with a sufcient time-span, we use the sampling
error of the previous time state Eb as the object to use the
LSTM algorithm to predict. When Eb is too high, it means
that the sampling accuracy is not enough and we need to
increase the sampling rate; when the value Eb is too low, it
means that the sampling rate is too high and too many
computing resources are wasted. In this case, the sampling
rate needs to be reduced.

In addition, it should be pointed out that gated recurrent
unit (GRU) is also a variant of RNN, and its structure is
similar to LSTM, with one less gate than LSTM, which
reduces matrix multiplication and can save a lot of time
without sacrifcing performance in small dataset scenario.
But in the scenario of large datasets, LSTM has better
performance than GRU, such as prediction accuracy, recall,
AUC, etc. In our study, the dataset obtained from the MEC
servers is large, so LSTM with better performance is used for
prediction in this paper [27].

4.5.Te Proposed VSR-LSTMModel. In this paper, we make
full use of the excellent advantage of LSTM in time series
prediction, which combines the idea of variable sampling
rate, improves the VSR-NLMS algorithm, proposes a net-
work highway trafc prediction model based on LSTM
variable sampling rate, named as VSR-LSTM, which con-
tains the following three main parts.

(1) Transform the original data form and divide the
training set and test set.

(2) Train the LSTM neural network.
(3) Realize trafc fow prediction and verify the results.

Te model’s fundamental stages are listed below.

Discrete Dynamics in Nature and Society 7



Step 1: Based on the actual collected trafc fow
data, the training set and test set are divided in the ratio
of 7 : 3.
Step 2: Based on the basic principle of “sliding window”
method, the original one-dimensional trafc data is
converted into two-dimensional data.
Step 3: Preprocess the raw data by normalization and
other methods.
Step 4: Input the training data into the LSTM network,
train the model parameters, and build the prediction
model.
Step 5: Input the input vectors of the test set into the
trained LSTM neural network and compare the pre-
diction results with the real values to get the error of the
model.

Te summary of notations in Section 3 is listed in
Table 3.

5. Numerical Results

In this section, we implemented the proposed VSR-LSTM
and compared it with the traditional fxed sampling rate
algorithm FSR-NLSM. Tto facilitate performance compar-
ison, the original fxed sampling step size algorithm FSR-
NLMS is also implemented based on LSTM, namely FSR-
LSTM.

5.1. Evaluation Setup. We assess the performance of the
suggested architecture using a collection of mobile trafc
statistics from ten separate MEC servers that we gathered
over the course of 1 month. According to Section 4.5, we

determine the aggregate cell trafc for each server. We use
normalized root mean square error (NRMSE) as a measure
of the prediction algorithm’s efcacy, which is defned as

NRMSE �
1
x

������������

􏽐
N
t�1 􏽥xt − xt( 􏼁

2

N

􏽳

, (16)

where 􏽥xt and xt are the predicted value and its corresponding
observation at the time t, respectively, and xt is their mean.N
is the total number of points. Te accuracy of the suggested
architecture is compared using the same metric with that
found using other prediction algorithms.

Te simulation is implemented using Python, and the
backend uses TensorFlow and Keras. Table 4 reports the
selected hyperparameters. One of the hyperparameters that
must be chosen that might infuence the trade-of between
the amount of time and the prediction accuracy required to
train the network is the number of hidden layers, which is
fxed at 5. Te amount of information that must be main-
tained and utilized by the network is determined by the
connection between the quantity of earlier observed values
and the accuracy of the multistep prediction, which is the
focus of our attention. Te prediction accuracy could be
enhanced by adding more layers. We set the total number of
epochs to 100 for the same reason. Te architecture was
trained and validated using three weeks of data. Te fol-
lowing results relate to the previous week. We iteratively
change the network weights based on the training data using
the Adam optimization.

5.2. Results’ Analysis. Te results of multistep prediction,
which involves making predictions for future time instants
while delaying the output by a predefned number of
timeslots, are then shown. We demonstrate how accuracy
sufers when we attempt to forecast trafc statistics for
upcoming timesteps. We also look at how the length of the
timeslots T and the number of observations that the LSTM
network can observe afect the results. Tese design pa-
rameters must be computed since they have an impact on the
LSTM network’s memory capacity and the amount of trafc
data that must be kept for an accurate prediction.

Finally, we compare the proposed algorithm, i.e., VSR-
LSTM with a classical time-series network trafc prediction
method (FSR-LSTM). For a fair comparison, the same
number of hidden layers are used.Figure 4 illustrates the
trafc prediction for the same time-span using both
methodologies. Using the FSR-NLMS model has lower ac-
curacy because the predictions tend to be closer to the mean
of the fow, while VSR-LSTM has a higher fow prediction

Table 3: Summary of notations in Section 3.

Symbol Description

Tf

Te total length of time covered by the fast-change
zones

Ts

Te total length of time covered by the slow-change
zones

fs
max Maximum frequencies in the slow-change

f
f
max Maximum frequencies in the fast-change

R
avg
VSR Average sampling rate

Rs(n) Te sampling rate of time tn
E b Target prediction error bound
Rs
max Te system’s highest sampling rates

Rs
min Te system’s lowest sampling rates

Ot Te output of the model at instant t
It Input gating unit at instant t
Ft Forgetting gating unit at instant t
C Te internal state
mt Te hidden state
xt Input vector at moment
ϑt Te error at time t is defned in LSTM
A c, Af,Ao Te weight values of xt
B c, Bf, Bo Te weight values of mt− 1
b c, bf, bo Te bias parameters

L Te sum of squares of all node errors in the output
layer

Table 4: Training hyperparameters.

Hyperparameters name Value
Initial learning rate 0.001
Number of epochs 100
LSTM hidden states 64
LSTM hidden layers 5
Optimization algorithm Adam
Loss function MAE

8 Discrete Dynamics in Nature and Society



accuracy because its sampling speed increases with changes
in fow. Furthermore, for the two prediction methods on the
10 fow profles, we compare their mean errors. As expected,
the proposed algorithm obtains less prediction error of the
moving fow due to the VSR properties and relative to the
FSR-LSTM model, as shown in Figure 5.

Te diference in computational complexity between the
proposed VSM-LSTM and the baseline FSR-LSTM is mainly
due to the diference in sampling rate. Based on the previous
analysis in Section 4.1, the average sample rate R

avg
VSR in VSR-

LSTM is lower than the fxed sample rate in FSS-LSTM. For
example, if we suppose the f

f
max in the trafc load curve is

twice the f
f
max and also assume Ts � Tf, then, according (1),

R
avg
VSR in VSR-LSTM is 25% lower than the fxed sample rate

in FSS-LSTM.

6. Conclusions

In this paper, we propose a network trafc prediction
method with a variable sampling rate using machine

learning and LSTM techniques. In the variable sampling rate
case, the sampling rate that determines the accuracy of trafc
prediction can change in real time with the dynamic changes
of network trafc. Terefore, compared with the traditional
trafc prediction methods based on fxed sampling rate, the
trafc prediction method proposed in this paper can more
accurately refect the real-time changes of network trafc to
further guide the reasonable and efective allocation of
network resources.

In the next work, based on the trafc prediction method
with variable sampling rate proposed in this paper, we will
further investigate the intelligent distributed allocation and
management of multidimensional resources for the diferent
demands on resources such as computation, communica-
tion, and storage in 6G MEC IoTs networks for diferent
vertical applications in the future.

Furthermore, we should also try to combine our pro-
posed algorithm with Markov chains, hidden Markov
models, and other classic prediction theories to improve the
prediction accuracy, computational complexity, and other
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Figure 4: Trafc prediction carve obtained with diferent models. (a) FSR-LSTM. (b) VSR-LSTM.
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Figure 5: Trafc prediction errors obtained with diferent models.
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performances, especially on small granular fow perfor-
mance, such as a packet, a mobile app, etc. Meanwhile, we
also try to extend the application of the novel prediction
algorithm to new scenarios such as 6G, digital twin, and
metaverse in the future.
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