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Multimodal multiobjective optimization problem (MMOP) is a special kind of multiobjective optimization problem (MOP) with
multimodal characteristics, where multiple di�erent Pareto optimal sets (PSs) map to the same Pareto optimal front (PF). To
handle MMOPs, a decomposition-based harmony search algorithm (called MOEA/D-HSA) is devised. In MOEA/D-HSA,
multiple individuals who are assigned to the same weight vector form a subpopulation for �nding multiple di�erent PSs. �en, an
environmental selection method based on greedy selection is designed to dynamically adjust the subpopulation scale for keeping
the population diversity. Finally, the modi�ed harmony search algorithm and elite learning strategy are utilized to balance the
diversity and convergence of the population. Experimental results on the CEC 2019 test suite reveal that MOEA/D-HSA has
superior performance than a few state-of-the-art algorithms.

1. Introduction

MOPs with multiple objectives that require to be optimized
simultaneously are frequently occurring in real-world ap-
plications [1, 2]. In general, an MOP is de�ned as follows [3]:

min
X∈Ω

F(X) � f1(X), . . . , fm(X)( )T,

xi ∈ xli, x
u
i( ), i � 1, 2, . . . , n,

(1)

whereΩ refers to the search space andX � (x1, . . . , xn)
T ∈ Ω

denotes an n-dimensional decision variable; fj(X) indicates
the j-th (j � 1, 2, ...m) objective, andm refers to the amount of
objectives; xui and xli are the upper and lower bounds of xi,
respectively. In an MOP, a solution X is said to dominate
another solution Y, if and only if ∀j ∈ 1, 2, . . . , m{ },
fj(X)≤fj(Y), and ∃k ∈ 1, 2, . . . , m{ }, fk(X)<fk(Y). If
there exists no solution that dominates X, then X is called a
Pareto optimal solution [4, 5]. �e set of all Pareto optimal
solutions is called PS [6], which is denoted asX∗. �e image of
X∗ in the objective space is termed as PF [7].

A large number of MOPs with multimodal properties
exist in practical applications [8], such as scheduling

problem [9], epsilon-e¢cient solutions problem [10], rocket
engine problem [11], and 0/1 knapsack problem [12]. �is
category of problems is termedMMOPs in [13]. In MMOPs,
multiple di�erent PSs map to the same PF. As depicted in
Figure 1, an MMOP with two di�erent Pareto regions (i.e.,
Region1 and Region2) in the decision space is presented. In
Figure 1, all Pareto regions map to the same Pareto front
(i.e., PF) in the objective space. For example, A1 ∈ Region1
and A2 ∈ Region2 correspond to the same point A and A1 ≠
A2. All PSs should be discovered in handling MMOPs.

In the past few years, numerous multimodal multi-
objective evolutionary algorithms (MMOEAs) have been
developed to tackle MMOPs, which can be grouped into the
following types:

(i) Pareto-based MMOEAs: DN-NSGA-II [13], Nich-
ing-CMA [14], and Omni-optimizer [15] are the
three typical algorithms in this class. DN-NSGA-II
proposed a niching method to deal with MMOPs, in
which the crowding distance is adopted to �nd
multiple PSs. Unlike DN-NSGA-II, an omni-
optimizer calculated the crowding distance in
both the decision and objective spaces to locate the
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equivalent PSs. In Niching-CMA, a niche function
is constructed to replace the crowding distance in
the omni-optimizer by summing the distances of
the individuals in the two spaces. Experimental
results indicated that Niching-CMA can improve
the diversity of decision space. Subsequently, a
method similar to the omni-optimizer is proposed
to deal with MMOPs (named MO_Ring_-
PSO_SCD) [16], where the ring topology and di-
versity measure are utilized to keeping the
population diversity. In addition, Liu et al. [17]
proposed a penalty density strategy (called CPDEA)
for solving MMOPs. In CPDEA, the individual
density is calculated by the transformed Euclidean
distance and used as the selection criteria to search
for the equivalent PSs. )en, they proposed an
MMOEA based on archives and recombination
strategy to find multiple PSs (called TriMOEA-
TA&R) [18]. Fan et al. [19] devised a zoning search
approach (ZS) to tackle MMOPs, where the whole
space is classified into multiple subspaces and
existing MMOEAs are executed in each subspace.
)e results revealed that ZS helps to increase the
property of MMOEAs in solving MMOPs. Inspired
by this, Fan et al. proposed a zoning search ap-
proach with adaptive resource allocating [20] for
balanced and imbalanced MMOPs. Lin et al. [21]
presented a clustering-basedMMOEA that is able to
efficiently locate local PSs. Zhang et al. [22] devised
a knee-based approach to deal with MMOPs, where
a multicriteria decision strategy is introduced to
search for equivalent PS regions. Afterwards, the
repulsive force between isotropic magnetic indi-
viduals is introduced into MMOPs to locate dif-
ferent PSs by Zhang et al. [23, 24]. In addition,
inspired by online learning [25, 26]. Li et al. [27]
devised a differential evolution based on

reinforcement learning to handle MMOPs. How-
ever, these algorithms generally adopt Pareto-based
method to search for equivalent PSs, so they cannot
deal with large-scale MMOPs.

(ii) Decomposition-based MMOEAs: like MOEA/D
[28], an MMOP is decomposed into a few simple
subproblems through a group of evenly distributed
vectors in decomposition-based MMOEAs. In [29],
the diversity maintenance strategy combining
penalty boundary intersection technique [28] and
two distance metrics is introduced into the decision
space for locating equivalent PSs. Later, a similar
concept is suggested to handle the large-scale op-
timization problems in [30]. Tanabe et al. [31]
designed a modified MOEA/D for MMOPs, which
employs the addition and deletion operators to
search for equivalent PSs. In [32], this concept was
expanded as a framework to increase the diversity of
MMOEAs in the decision space. In [33], an evo-
lutionary algorithm based on the graph Laplacian is
presented to tackle MMOPs, which employs the
decomposition technique in two spaces to obtain
equivalent Pareto solutions. Although the above
algorithms can obtain multiple different PSs, they
are unable to balance the population diversity in the
decision and objective spaces well.

(iii) Indicator-based MMOEAs: the indicator-based
approaches utilize the chosen indicators to guide
population converge to PF. Li et al. [34] proposed a
weighted indicator-based MMOEA (termed
MMEA-WI), which devised an indicator to keep the
diversity in the decision space and introduced a
convergence archive for approximating the true PF.
In [35], a Niching indicator is designed to solve
MMOPs, where individuals’ fitness values are cal-
culated to keep the diversity of PSs. In summary, the
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Figure 1: Example of MMF3 with two PSs to illustrate MMOP.
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indicator-based MMOEAs usually adopt fitness
indicator to keep the diversity in the decision space,
but the calculation of indicator wastes a large
amount of computing resources, especially for
large-scale MMOPs:

To sum up, although the decomposition-based MMOEAs
can find multiple equivalent PSs in dealing with MMOPs,
they are unable to well balance the diversity in the decision
and objective spaces. In other words, they increase the di-
versity in the decision space at the cost of the performance in
the objective space. To deal with this issue, a decomposition-
based harmony search algorithm (named MOEA/D-HSA) is
presented. In MOEA/D-HSA, multiple individuals who are
assigned to the same weight vector form a subpopulation
after an MMOP is decomposed. )en, an environmental
selection method is used for guiding the individuals in the

subpopulation to find the equivalent PSs. Finally, the
modified harmony search algorithm is utilized to generate
the offspring, which helps to balance the relationship of
diversity and convergence. At the same time, an elite
learning strategy is employed to prevent premature con-
vergence. )e test results on CEC 2019 validate the property
of MOEA/D-HSA.

2. Materials and Methods

2.1. Motivation. )e diversity of decision and objective
spaces is crucial in solvingMMOPs. In the following, we take
SYM-PART rotated with nine distinct PSs as an example to
explain the importance of the diversity in these two spaces.
As depicted in Figures 2(a) and 2(b), all PSs are located in the
decision space, but only three points are found on PF. )e
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Figure 2: Example of SYM-PART rotated with nine PSs to explain the importance of diversity.
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reason is that the algorithm pays more attention to the
diversity in the decision space. For Figures 2(c) and 2(d),
although the obtained PF has well-diversity and well-
convergence, only one PS is located. When an algorithm is
only concerned about the diversity in the objective space, the
situation in Figures 2(c) and 2(d) may appear. )erefore, the
following issues need to be considered for preventing sit-
uations in Figure 2.

(1) How to preserve the diversity in the objective space?
)is problem has been widely studied in multi-
objective evolutionary algorithms (MOEAs). )e
classic methods include the weighted Tchebycheff
approach [28], nondominated sorting method [36],
and the fitness indicator technology [37, 38]. )e
weighted Tchebycheff approach is selected to deal
with this problem. )e reason is that the whole
objective space is classified into multiple subspaces
by a group of evenly distributed weight vectors in the
weighted Tchebycheff approach. )us, it can keep
the diversity in this space. Besides, for balancing the
exploration and exploitation of the algorithm, a
modified harmony search algorithm is adopted to
generate the offspring, where the algorithm pa-
rameters such as harmony memory size (HMS),
harmony memory consideration rate (HMCR), and
pitch adjusting rate (PAR) are dynamically adjusted.

(2) How to preserve the diversity in the decision space?
For handling this problem, the framework of sub-
population is adopted to search for different PSs, i.e.,
each weight vector corresponds to multiple indi-
viduals instead of one. As shown in Figure 3, an
MMOP is decomposed into a few simple subprob-
lems by a group of evenly distributed weight vectors
Wj (j � 1, 2, . . . , i), and each weight vector is given
to three distinct individuals to shape a subpopulation
(i.e., the red, yellow, and blue dots indicate distinct
individuals who are assigned to the same weight
vector). In this way, the individuals corresponding to
the same weight vector search toward the equivalent
PSs. Furthermore, preserving the diversity of the
subpopulation is vital in MMOEAs. )erefore, an
environmental selection method is designed to
separate individuals belonging to the same PS in the
subpopulation.

2.2. !e Proposed Algorithm. A decomposition-based har-
mony search algorithm for MMOPs, termed MOEA/
D-HSA, is presented. In MOEA/D-HSA, first, initialize
population P, weight vector W, and subpopulation
Ti(i � 1, 2, . . . , NP) (lines 1–6). )en, multiple individuals
that are assigned to the same weight vector form a sub-
population (lines 7–9). Next, an offspring μ is generated by a
modified harmony search algorithm and elite learning
strategy (line 13). Lastly, the subpopulation is dynamically
adjusted by an environmental selection method, which helps
to preserve the diversity of the decision space (line 14).
Algorithm 1 depicts the framework of MOEA/D-HSA.

2.3. Reproduction. For balancing the diversity and conver-
gence of the population, a modified harmony search algo-
rithm [39] shown in Algorithm 2 is used to generate the
offspring. In Algorithm 2, first, initialize the algorithm
parameters (i.e., HMS, HMCR, PAR, and BW). )en, pa-
rameters HMS, HMCR, and PAR are updated as follows [40,
41]:

HMS � HMSmax − ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

FES

MaxFES
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

× HMSmax − HMSmin( 􏼁,

(2)

HMCR � HMCRmax −
HMCRmax − HMCRmin( 􏼁

MaxFES
· FES,

(3)

PAR � PARmin +
PARmax − PARmin( 􏼁

MaxFES
· FES, (4)

where MaxFES is the maximum number of evaluation
functions, FES is the current number of evaluation functions,
HMS ∈ [HMSmin,HMSmax], HMCR ∈ [HMCRmin,HMCRmax]

and PAR ∈ [PARmin, PARmax]. With the help of adaptive
parameters, the proposed algorithm has more extensive
exploration ability in the early phase of evolution and nice
exploitation ability in the late phase of evolution. It means
that MOEA/D-HSA can well balance the relationship of
diversity and convergence. Next, the harmony memory
(HM) containing HMS individuals is constructed. Finally,
the offspring μ is generated.

2.4. !e Elite Learning Strategy. For avoiding premature
convergence, the elite learning strategy is employed to
generate the offspring μ, which can increase the global search
ability and help the algorithm to jump out of local optimal
location.

xnew,j � xbest,j + Gauss 0, pr
2

􏼐 􏼑 × x
u
j − x

l
j􏼐 􏼑 · if · rand<pr,

(5)

where Gauss(0, pr2) is a Gaussian distribution with mean 0
and standard deviation pr, xbest,j is the j-th dimension
variable of the best individual in HM, and xu

j and xl
j are the
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Figure 3: Illustration of the subpopulation framework.
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upper and lower bounds of xj, rand ∈ (0, 1). In the early
phase of the algorithm, the larger pr value makes the off-
spring have a greater mutation range that is helpful for global
search. In the late phase of the algorithm, small mutation
range is helpful for local search. )erefore, pr is updated as
follows:

pr � prmax −
prmax − prmin( 􏼁

MaxFES
FES, (6)

where MaxFES is the maximum number of evaluation
functions, FES is the current number of evaluation func-
tions, prmax and prmin are the upper and lower bounds of pr,
and pr decreases as the iteration increases.

2.5. Environmental Selection. For MOEA/D-HSA, it is vital
to keep the diversity of subpopulations in the decision
space. To reach this goal, the environmental selection
method presented in Algorithm 3 is employed to separate
individuals belonging to the same PS in the subpopula-
tion. In Algorithm 3, when the subpopulation scale ex-
ceeds t, the individual in the subpopulation that is nearest
to the offspring μ is compared with μ by the weighted
Tchebycheff approach and the better individuals are
saved. Otherwise, μ into the next generation. In the fol-
lowing, we take the subpopulation Tj as an example to
explain the working mechanism of environmental selec-
tion. As depicted in Figure 4, an MMOP has three

Input: population size NP, decision variable dimension n, algorithm parameters: HMS, HMCR, PAR, bandwidth (BW), pr, t, the
maximum number of evaluation functions MaxFES,
Output: the set TP.

(1) Initialize population P and weight vector W;
(2) Calculate the fitness Fit and ideal point Z∗;
(3) Set FES � NP;
(4) for i� 1:NP do
(5) Set Ti � [];
(6) end for
(7) for i� 1:NP do
(8) Tj � Tj ∪Xi, where j � min gtch(Xi|W1, Z∗), . . . , gtch(Xi|WNP, Z∗)􏼈 􏼉;
(9) end for
(10) while FES<MaxFES do
(11) Set T � T1 ∪ · · · ∪TNP;
(12) for i� 1:|T| do
(13) Generate offspring μ by Algorithm 2 and elite learning strategy;
(14) Update ideal point Z∗ and subpopulation Tj by Algorithm 3, where j � min gtch(μ|W1, Z∗), . . . , gtch(μ|WNP, Z∗)􏼈 􏼉;
(15) FES � FES + 1;
(16) end for
(17) end while
(18) TP ← all Pareto optimal solutions in T1 ∪ · · · ∪TNP;

ALGORITHM 1: MOEA/D-HSA.

Input: archive EXA, individual Xi, algorithm parameters: HMS, HMCR, PAR, BW, the maximum number of evaluation
functions MaxFES, the current number of evaluation functions FES, decision variable dimension n.
Output: an offspring μ.

(1) Update the parameters HMS, HMCR, and PAR using equations (2)–(4)
(2) Select the nearest HMS individuals to Xi in EXA and put them into HM
(3) for j� 1:n do
(4) if rand≤HMCR, then
(5) xnew,j ∈ x1,j, x2,j, . . . , xHMS,j􏽮 􏽯

(6) if rand≤PAR, then
(5) xnew,j � xnew,j + rand · BW
(7) end if
(8) else
(9) xnew,j � xl

j + rand · (xu
j − xl

j);
(10) end if
(11) end for
(12) μ � (xnew,1, . . . , xnew,n)T;

ALGORITHM 2: Reproduction.
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equivalent PSs, and all individuals within the triangle are
Pareto optimal solutions. In Figure 4, the subpopulation
Tj consists of four different individuals (i.e., A, B, C, and
offspring μ). When the subpopulation scale is larger than
t, the individual in the subpopulation Tj that is nearest to
the offspring μ is compared with μ (here, B is the closest
individual to μ), and the preferable one is preserved.
Otherwise, μ into the subpopulation Tj. By this way,
MOEA/D-HSA can find multiple different PSs.

2.6. Complexity Analysis. MOEA/D-HSA consists of the
following components: initialization subpopulation, repro-
duction operation, and the environmental selection. )e
complexity of initialization subpopulation and environ-
mental selection is O(NP2). )e complexity of the repro-
duction operation is O(n × NP), where n is the decision
variable dimension. In summary, considering n<NP, the
complexity of MOEA/D-HSA is O(NP2).

3. Results and Discussion

3.1. Performance Metric and Benchmark Test Functions.
In our experiment, 22 MMOPs from CEC 2019 competition
[42] is utilized to examine the property of MMOEAs. In
addition, inverted generational distance in the objective
space (IGDF) [43, 44] and the Pareto set proximity (PSP)
[16] are utilized to assess the property of algorithms. )e

lager the PSP is, the better the property of algorithm is. IGDF
is just the opposite. )ey are defined as follows:

(1) IGDF

IGDF � 􏽘
Y∈PF

minX∈pfED(X, Y)

|PF|
, (7)

where ED(X, Y) denotes the Euclidean distance
between X and Y, PF and pf refer to the true PF and
the obtained PF, respectively. IGDF can assess the
diversity and convergence of the obtained solutions
in the objective space.

(2) PSP

PSP �
CR

IGDX
,

IGDX � 􏽘
Y∈PS

minX∈psED(X, Y)

|PS|
,

(8)

where IGDX is inverted generational distance in the decision
space, PS and ps represent the true PS and the obtained PS,
respectively, CR denotes the cover ratio between ps and PS
and the details refer to [16], ED(X, Y) is the Euclidean
distance between X and Y. PSP can reflect the convergence
and diversity of the population in the decision space.

3.2. CompetitiveAlgorithms andParameter Setup. To test the
efficiency of the algorithm,MOEA/D-HAS is compared with
five up-to-date MMOEAs: DN-NSGA-II [13], TriMOEA-
TA&R [18], LORD [33], MOEA/D [28], and MO_Ring_-
PSO_SCD [16]. For a fair comparison, the population size is
set to 800, all algorithms are independently implemented 25
times, and the maximum function evaluations are set to
80000 [16]. In addition, the parameter setting of all com-
petitors is consistent with their original references. For
MOEA/D-HSA, according to [40, 41, 45], the algorithm
parameters are HMCRmax � 0.9, HMCRmin � 0.2, PARmax � 1,
PARmin � 0.6, HMSmax � 5, HMSmin � 2, BW � 0.1,
prmax � 0.2, prmin � 0.05, and t � 5.

In further, the Wilcoxon’s rank-sum test [46] and
Friedman’s test [47] are utilized to draw statistically reliable
conclusions with significance level α � 0.05. )e symbols
“+,” “−,” and “� ” denote that MOEA/D-HSA is distinctly

Input: offspring μ, Subpopulation Tj, algorithm parameter t.
Output: subpopulation Tj .

(1) if |Tj| + 1 > t, then
(2) Select the nearest individual X to μ in Tj

(3) if gtch μ|Wj, Z∗􏽮 􏽯<gtch X|Wj, Z∗􏽮 􏽯, then
(4) Tj � Tj\X and Tj � Tj ∪ μ
(5) end if
(6) else
(7) Tj � Tj ∪ μ
(8) end if

ALGORITHM 3: Environmental Selection
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Figure 4: Example of subpopulation Tj to illustrate the working
mechanism of environmental selection.
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better, worse, and not much different from the other
competitor, respectively.

3.3. Comparison with Other Algorithms. )e experimental
results about PSP are shown in Table 1. As indicated in
Table 1, MOAE/D-HSA achieves the best PSP on 13 test

functions and defeats DN-NSGA-II andMOEA/D on all test
functions. MO_Ring_PSO_SCD gets the maximum PSP on
six test functions out of 22. LORD acquires the best per-
formance on two test functions. TriMOEA-TA&R gets the
maximum PSP on one test function. Although MOAE/D-
HSA is not the best on some test functions, the difference is
appreciably small and acceptable. )erefore, the

Table 1: Experimental results of six algorithms for PSP.

MMOEA/D-HSA MO_Ring_PSO_SCD TriMOEA-TA&R DN-NSGA-II LORD MOEA/D
MMF1 86.39 65.76(+) 29.72(+) 47.67(+) 70.04(+) 8.62(+)
MMF1_e 6.21 5.43(+) 1.31(+) 0.81(+) 2.39(+) 0.75(+)
MMF1_z 118.21 90.04(+) 29.92(+) 48.32(+) 57.44(+) 8.36(+)
MMF2 155.33 105.86(+) 73.04(+) 68.85(+) 145.32(+) 4.31(+)
MMF3 182.72 138.59(+) 31.29(+) 84.24(+) 169.81(+) 5.74(+)
MMF4 176.86 112.72(+) 85.43(+) 38.46(+) 136.69(+) 2.19(+)
MMF5 48.96 33.71(+) 17.71(+) 14.83(+) 30.91(+) 3.86(+)
MMF6 54.89 35.39(+) 21.45(+) 18.46(+) 33.20(+) 4.76(+)
MMF7 150.19 108.12(+) 60.71(+) 96.55(+) 129.81(+) 8.27(+)
MMF8 60.11 46.20(+) 9.95(+) 17.01(+) 13.94(+) 0.11(+)
MMF9 567.62 331.47(+) 344.58(+) 36.57(+) 648.92(−) 0.96(+)
MMF10 0.71 6.16(−) 0.21(+) 0.13(+) 0.11(+) 0.07(+)
MMF11 0.59 3.07(−) 0.63(�) 0.46(+) 0.76(−) 0.11(+)
MMF12 0.52 4.10(−) 0.16(+) 0.32(+) 0.54(�) 0.14(+)
MMF13 1.92 2.31(−) 1.65(+) 1.77(+) 1.72(+) 0.97(+)
MMF14 28.32 26.95(+) 27.41(+) 14.99(+) 20.59(+) 7.75(+)
MMF14_a 23.31 23.01(�) 21.27(+) 11.70(+) 15.43(+) 9.39(+)
MMF15 4.65 6.07(−) 3.14(+) 3.37(+) 0.94(+) 0.68(+)
MMF15_a 4.81 6.09(−) 3.64(+) 4.10(+) 3.64(+) 3.63(+)
SYM_PART simple 21.61 20.67(+) 76.69(−) 0.69(+) 43.32(−) 0.01(+)
SYM_PART rotated 19.19 18.23(+) 13.66(+) 2.95(+) 17.97(+) 0.01(+)
Omni-test 11.47 7.16(+) 14.48(−) 1.09(+) 26.17(−) 0.03(+)
Sum up +/� /− 15/1/6 19/1/2 22/0/0 17/1/4 22/0/0

Table 2: Experimental results of six algorithms for IGDF.

MMOEA/D-HSA MO_Ring_PSO_SCD TriMOEA-TA&R DN-NSGA-II LORD MOEA/D
MMF1 7.442 e− 04 9.938 e− 04(+) 2.368 e− 03(+) 8.638 e− 04(+) 6.226 e− 04(−) 6.562 e− 04(−)
MMF1_e 1.882 e− 03 2.948 e− 03(+) 2.467 e− 03(+) 9.669 e− 04(−) 6.817 e− 04(−) 2.068 e− 03(+)
MMF1_z 6.461 e− 04 9.501 e− 04(+) 2.362 e− 03(+) 7.424 e− 04(+) 6.494 e− 04(+) 5.188 e− 04(−)
MMF2 3.449 e− 03 5.188 e− 03(+) 4.366 e− 03(+) 1.165 e− 03(−) 1.758 e− 03(−) 6.826 e− 04(−)
MMF3 2.917 e− 03 3.805 e− 03(+) 4.037 e− 03 (+) 7.288 e− 04(−) 1.576 e− 03(−) 6.729 e− 04(−)
MMF4 4.578 e− 04 8.801 e− 04 (+) 3.107 e− 02(+) 7.881 e− 04(+) 5.319 e− 04(+) 4.781 e− 04(+)
MMF5 6.162 e− 04 9.423 e− 04(+) 4.021 e− 03 (+) 8.161 e− 04(+) 6.203 e− 04(+) 6.289 e− 04(+)
MMF6 5.757 e− 04 9.071 e− 04(+) 2.252 e− 03 (+) 8.218 e− 04(+) 5.811 e− 04(+) 6.296 e− 04(+)
MMF7 5.738 e− 04 9.158 e− 04 (+) 3.131 e− 03(+) 1.017e-03(+) 5.778e-04(+) 5.380 e− 04(+)
MMF8 8.018 e− 04 1.311 e− 03 (+) 2.467 e− 03(+) 8.668 e− 04(+) 7.408 e− 04(−) 5.290 e− 04(−)
MMF9 8.235 e− 03 3.658 e− 03 (−) 6.178 e− 02(+) 3.444 e− 03(−) 2.489 e− 03(−) 9.047 e− 03(+)
MMF10 1.901 e− 01 1.909 e− 01(+) 2.263 e− 01(+) 1.917 e− 01(+) 1.914 e− 01(+) 1.943 e− 01(+)
MMF11 9.668 e− 02 7.584 e− 02(−) 1.574e-01(+) 9.036 e− 02(−) 8.717 e− 02(−) 9.768 e− 02(+)
MMF12 8.332 e− 02 6.189 e− 02(−) 8.460 e− 02(+) 8.398 e− 02(+) 8.352 e− 02(+) 8.379 e− 02(+)
MMF13 1.503 e− 01 8.269 e− 02(−) 2.420 e− 01(+) 1.458 e− 01(�) 1.593 e− 01(+) 1.520 e− 01(+)
MMF14 5.517 e− 02 5.867 e− 02 (+) 8.526 e− 02(+) 6.745 e− 02(+) 5.598 e− 02(+) 6.870 e− 2(+)
MMF14_a 5.594 e− 02 5.385 e− 02 (�) 7.541 e− 02(+) 7.882 e− 02(+) 5.410 e− 02(�) 6.936 e− 02(+)
MMF15 1.779 e− 01 1.530 e− 01(−) 2.058 e− 01(+) 1.801 e− 01(+) 1.844 e− 01(+) 1.941 e− 01(+)
MMF15_a 1.791 e− 01 1.553 e− 01(−) 1.954 e− 01(+) 1.907 e− 01(+) 1.840 e− 01(+) 1.928 e− 01(+)
SYM_PART simple 1.048 e− 02 9.703 e− 03 (−) 4.051 e− 02(+) 3.074 e− 03(−) 5.698 e− 03(−) 8.199 e− 03(−)
SYM_PART rotated 1.032 e− 02 1.179 e− 02 (+) 1.407 e− 02(+) 3.837 e− 03(−) 6.151 e− 03(−) 8.199 e− 03(−)
Omni-test 1.264 e− 02 1.796 e− 02 (+) 8.205 e− 03(−) 2.881 e− 03(−) 4.022 e− 03(−) 4.208 e− 03(−)
Sum up +/� /− 14/1/7 21/0/1 13/1/8 11/2/10 14/0/8
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experimental results suggest that MOAE/D-HSA can find
multiple PSs with well-distribution and well-convergence.

)e experimental results in IGDF are listed in Table 2. In
Table 2, MOEA/D-HSA gets the smallest IGDF on six test
functions and defeats TriMOEA-TA&R on most test func-
tions. Moreover, MO_Ring_PSO_SCD is the best on six test
functions out of 22. DN-NSGA-II acquires the best IGDF on
four test functions. MOEA/D and LORD get the minimum
IGDF on three test functions. In conclusion, it can be
concluded that MOEA/D-HSA is not only outperforms the
competitors onmost test functions in IGDF but also can well
approximate the true PF.

3.4. Visual Comparison. )e final population distributions
of all algorithms are shown in Figure 5 for MMF4 and
Figure 6 for SYM_PART rotated. As illustrated in Figure 5,
each algorithm except MOEA/D is able to locate all PS
regions, but TriMOEA-TA&R has poor convergence in the
decision space, and DN-NSGA-II achieves the least number
of Pareto optimal solutions on each PS region. In addition,
compared with other algorithms, not only MOEA/D-HSA
can locate more Pareto optimal solutions on each PS but also
the obtained PSs have well-diversity and well-convergence.

Besides, for SYM_PART rotated with nine equivalent
PSs, as depicted in Figure 6 that all algorithms have good
convergence in the decision space, but MOEA/D and DN-
NSGA-II cannot locate all PSs. Furthermore,

MO_Ring_PSO_SCD and MOEA/D-HSA have similar
properties on SYM_PART rotated. And, compared with the
remaining competitors, MOEA/D-HSA not only can search
more Pareto optimal solutions on each PS but also show
good convergence. In summary, based on visual compari-
son, MOEA/D-SS can find multiple PSs with good distri-
bution and convergence.

To further verify the effectiveness of each component,
two MOEA/D-HSA variants are test. SS-variant-1 indicates
MOEA/D-HSA without the elite learning strategy. SS-var-
iant-2 represents MOEA/D-HSA deletes an individual with
the largest Tchebycheff value in the subpopulation instead of
using the environmental selection operation. Table 3 records
the average rankings of PSP obtained by MOEA/D-HSA and
MOEA/D-HSA variants on all test functions. As depicted in
Table 3, MOEA/D-HSA owns the best ranking. )erefore, it
can be concluded that each component of the proposed
algorithm can collaborate with the other components to
enhance its overall performance.

3.5. Parameter Analysis. All parameters except t are adap-
tively adjusted, so only the subpopulation size t is discussed
in this section. MOEA/D-HSA with t � 2, 3, 4, 5, 6{ } is tested
on all problems, and Table 4 records their rankings of the
Friedman test. In Table 4, it can be seen that the property of
MOEA/D-HSA is the best when t is set to 5. )erefore, the
subpopulation size t is set to 5 in the proposed algorithm.
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Figure 5: )e population distributions of the true PSs and the final solutions obtained by different MMOEAs for MMF4 with four
equivalent PSs, (a) MOEA/D-HSA, (b) MO_Ring_PSO_SCD, (c) TriMOEA-TA&R, (d) DN-NSGA-II, (e) LORD, and (f) MOEA/D.
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Figure 6: )e population distributions of the true PSs and the final solutions obtained by different MMOEAs for SYM_PARTrotated with
nine equivalent PSs, (a) MOEA/D-HSA, (b) MO_Ring_PSO_SCD, (c) TriMOEA-TA&R, (d) DN-NSGA-II, (e) LORD, and (f ) MOEA/D.
Effectiveness analysis of MOEA/D-HSA.

Table 3: Average rankings of MOEA/D-HSA and MOEA/D-HSA variants by the Friedman test in PSP.

Algorithm Rank
MOEA/D-SS 1.5909
SS-variant-1 2.4545
SS-variant-2 1.9545

Table 4: Average rankings of MOEA/D-HSA with different parameter settings by the Friedman test in PSP.

Algorithm Rank
t� 2 3.5
t� 3 3.1818
t� 4 3.1818
t= 5 2.1364
t� 6 3

Table 5: Normalized wall-clock time of six algorithms.

MMOEA/D-HSA MO_Ring_PSO_SCD TriMOEA-TA&R DN-NSGA-II MOEA/D LORD
MMF1 0.0056 0.0169(+) 0.0045(−) 0.0220(+) 0.0049(−) 1.0000(+)
MMF1_e 0.0111 0.0317(+) 0.0046(−) 0.0213(+) 0.0057(−) 1.0000(+)
MMF1_z 0.0051 0.0133(+) 0.0036(−) 0.0107(+) 0.0037(−) 1.0000(+)
MMF2 0.0071 0.0339(+) 0.0039(−) 0.0437(+) 0.0059(−) 1.0000(+)
MMF3 0.0071 0.0327(+) 0.0039(−) 0.0383(+) 0.0061(−) 1.0000(+)
MMF4 0.0040 0.0124(+) 0.0027(−) 0.0072(+) 0.0037(−) 1.0000(+)
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3.6. Analysis of Running Time. With the aim of comparing
running time, all algorithms run 25 times on each test
function, and the normalized wall-clock time of all algo-
rithms is given in Table 5. As revealed in Table 5, TriMOEA-
TA&R and MOEA/D have the shortest running time on 16
and 6 test functions, respectively. And, LORD takes the
longest running time on all test functions. In addition,
compared with the remaining algorithms, MMOEA/D-HSA
achieves the shortest running time on most test functions. It
can be concluded that the running time of MOEA/D-SS is
not the shortest, but the difference is acceptable.

4. Conclusions

A simple but effective method MOEA/D-HSA is developed
to tackle MMOPs. In MOEA/D-HSA, first, multiple indi-
viduals are assigned to the same weight vector to form a
subpopulation to find equivalent PSs. )en, an environ-
mental selection based on greedy selection is used to dy-
namically adjust the subpopulation size. Finally, a modified
harmony search algorithm and elite learning strategy are
utilized for balancing the diversity and convergence of the
population. )e experimental results prove that MOEA/D-
HSA is superior to selected popular algorithms with respect
to the IGDF and PSP values.

Besides, in this article, the dimension of the test prob-
lems is low. It is a meaningful study to develop MOEA/D-
HSA on more complicated problems or the real applications
[48, 49], such as the neural architecture search problems.
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