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Credit risk transmission between cross-platforms is an important issue in the construction of a credit service system. The effect of
credit risk transmission between credit entities (nodes) is analyzed in this paper. A heuristic algorithm based on hybrid strategies
(HAHS) is proposed to find risk transmission paths and calculate the influence of nodes. Besides, a novel community model is
applied to predict the credit risk areas in advance. In detail, the mathematical association structure between credit entities is firstly
given in the algorithm, and the breadth first search algorithm is used to find the hierarchical nodes on the credit risk transmission
paths. Then, the characteristics of credit risk transmission are analyzed, and the calculation methods of single-path and multipath
influence are proposed. Finally, the credit entities are divided into communities based on a greedy strategy considering the
characteristics of the credit entity association structure. The threshold control strategy is adopted to find global key nodes among
all of the entities and local key nodes in communities, respectively, so as to realize the early warning of credit risk.

1. Introduction

In recent years, with the development of cloud computing
and big data technology, online service has become the
mainstream operation mode in all walks of life. With the
convenient service of the Internet, all kinds of cross-plat-
form users can obtain various production and operation
services through a simple application process anytime and
anywhere. However, credit risk is everywhere due to the
virtuality of the network, the complexity of the production
and operation process, and the dynamic change of user
credit evaluation in the time interval. In fact, credit risk does
not exist in isolation. The credit entity (node) changes under
the influence of macroeconomics, market investment, fi-
nancing environment, and other macro factors, which may
lead to credit risk. On the other hand, the economic con-
nection between enterprises caused by production cooper-
ation and equity relationship may lead to risk transmission.
The correlation between credit entities reflects the

transmission mode and path of credit risk [1]. The de-
scription of the correlation between credit entities should
reflect the complex connections between credit entities in
social production and life. The transmission of credit risk is
mainly related to the association structure and the corre-
lation strength between credit entities. Many researchers
have discussed this work from the perspective of theoretical
and empirical analysis.

Daily banking practice shows that there may be con-
tagion effects between portfolios, which has been clearly
recognized through current supervision. Literature [2] de-
scribes a model that distinguishes default behavior in each
portfolio and allows credit risk contagion between portfo-
lios, including macroeconomic and financial factors. In
addition, it also stimulates the multivariable scenario of
portfolio credit risk. Literature [3] constructs the uncon-
ditional correlation network between listed financial insti-
tutions and comprehensively deconstructs the overall
correlation of financial networks and the correlation
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characteristics within and between departments through
network analysis. Literature [4] analyzes the complex net-
work theory and epidemiological thought to study the in-
fection of the financial crisis on the global stock market.
Through the causality method, the asymmetric impact be-
tween different markets can be reflected. Literature [5]
applied the Diebold Yilmaz connectivity method to sover-
eign credit default swaps (SCDSs) to estimate the global
network structure of sovereign credit risk. Literature [6] uses
a factor model and elastic net shrinkage to model a high-
dimensional network of European credit default swap (CDS)
spreads. It also provides dynamic estimates of risk trans-
mission, which is a useful tool for systemic risk monitoring.
Literature [7] proposed a multilayer network model for
credit risk assessment. The model takes into account the
multiple connections between borrowers (such as geo-
graphical location and economic activities), allows explicit
modeling of the interaction between related borrowers, and
develops a multilayer personalized PageRank algorithm.
Literature [8] constructs a network model of credit risk
contagion in the interbank lending market based on time
series. By the theoretical deduction and simulation method,
how the contagion effects of credit risk accumulate and
spread in the interbank market network is studied. In ad-
dition, it studies the evolution characteristics of credit risk
contagion caused by the initial default of debt banks in the
interbank market. In literature [9], many data samples are
used to build an early warning model of Internet credit risk.
The constructed model is trained and tested by BP neural
network algorithm, and the genetic algorithm (GA) is used
to optimize the neural network to improve the accuracy of
early warning.

For the business activities of enterprises, literature [10]
constructs a credit default estimation model for micro and
small enterprises (MSEs) under the condition of changing
information asymmetry. By relaxing the assumption that the
bank can fully observe the customer’s initial information, it
constructs a theoretical model with practical application
value. The model can accurately estimate the default
probability of MSEs by quantitatively modeling the mech-
anism of default risk management and control. Literature
[11] proposed an e-commerce credit risk evaluation method
based on the language consensus model and established
individual consensus measurement and group consensus
measurement planning models to improve the consensus
level of decision-making groups. Literature [12] studies the
in-depth application of financial technology, which will
reconstruct the internal relationship of enterprises in the
supply chain, truly integrate small and medium-density
enterprises into the network system of the supply chain, and
turn the business behavior data of small and medium-
density enterprises in the whole industrial chain ecology into
“evaluable credit.” Literature [13] studies credit risk con-
tagion among affiliated enterprises by constructing the
Markov chain and believes that credit risk contagion is the
main cause of cluster default. Literature [14] considers that
credit risk contagion between banks and firms is one of the
important triggers of the financial crisis, and the credit
linkage network is the way of systemic risk contagion
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triggered by external shocks. Literature [15] constructs a
two-layer network model of credit risk contagion between
the bank and corporate counterparties from the perspective
that banks do not withdraw loans from enterprises by
considering the influence of corporate credit defaults on
their counterparties under the credit linkage. Literature [16]
analyzes the contagion path of credit risk in Internet P2P
lending. Based on complex network theory and the theory of
infectious disease dynamics, the characteristics of Internet
P2P lending development are combined to construct a SEIR
model of credit risk transmission among Internet P2P
lending platforms with a time lag, and the robustness of the
model is analyzed and proven. Literature [17] proposes a
two-stage hybrid model, credit data high-dimensional
transformation model and graph-based neural network
model, to enhance the prediction performance of credit risk.
Literature [18] first analyzes the main factors affecting the
performance of BSO and then proposes an orthogonal
learning framework to improve its learning mechanism. In
addition, a set of auxiliary transmission vectors with dif-
ferent characteristics are balanced through OD decision
mechanism. Finally, the algorithm is verified on a set of
benchmark tests and is used to solve the problem of
quantitative association rule mining considering support,
confidence, understandability, and netconf. For large-scale
multiobjective optimization problems, an adaptive local
decision variable analysis method based on decomposition is
proposed in [19]. In this method, the guidance of the ref-
erence vector is incorporated into the analysis of control
variables, and the adaptive strategy is used to optimize the
decision variables.

In the current credit service mode of cross-platform,
cross-domain, and cross-ecological, the sources of credit
information are uneven, and credit risks are everywhere.
There is no effective scheme for the transmission mode and
influence calculating of credit risk between credit entities to
meet the requirements of high real-time. To solve this
problem, this paper analyzes the characteristics of credit risk
transmission between cross-platform credit entities. Based
on hybrid strategies, a heuristic algorithm is proposed. It
finds the credit transmission path, constructs influence
calculation models for both single-path and multipath
transmission, and uses a greedy strategy to divide the credit
entities into communities. In addition, threshold control
strategies are applied to find global and local key nodes
which can have a great impact on the associated credit
entities and give the credit risk area in advance.

2. Problem Description

The cross-platform credit risk transmission problem con-
sidered in this paper is to find the credit risk transmission
paths, compute the influence of credit risk on entities, and
search for the key node sets from a set of n interrelated credit
entities. The problem is analyzed for the purpose of im-
proving the efficiency of credit risk prevention and reducing
the possible risks caused by credit risk transmission.

This section firstly studies the association structure of
credit entities and the credit risk transmission model, then
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gives the influence calculation method when credit risk is
transmitted through the associated entities, and finally puts
forward the rules of community division.

2.1. Credit Entity Association Structure and Risk Transmission
Model. As shown in Figure 1, in the complex credit entity
association structure model, the importance of each credit
entity (i.e., node) is related to the structure of the model and
the correlation strength of the adjacency relationship be-
tween nodes. It is difficult to accurately measure the im-
portance of nodes by a single factor.

In order to study the credit risk transmission path and
influence on credit entities, n nodes in the association
structure are transformed into a directed graph G=(V,E),
where V represents the set of nodes and E represents the set
of edges. Each node in set V represents a credit entity, and
each edge in set E represents the relationship between credit
entities (such as parent-child relationship, equity relation-
ship, supply relationship). The mathematical model of a
given credit entity association structure is an n-order square
matrix M which is composed of elements shown in the
following formula:

w,-,j<i,j>eE,
d. = (1)
0<i,j> ¢ E.

The weight w; ; (0 <w; ; <1) of each edge represents the
correlation strength, and the value is given by experience
according to the type of relationship between credit entities.
Hence, the matrix M is shown in the following formula:

dy, dy ... dy

dy dy ... d
M= TOE T @

dyi dyy oo dyn

Existing empirical studies in credit-related fields have
shown that the transmission of credit risk is mainly related
to the association structure of credit entities and the cor-
relation strength between credit entities. Based on the credit
entity association structure model and some research con-
clusions from the existing literature on the social relation-
ship network, this section models the credit risk
transmission problem according to the following principle
and method:

(1) Three-degree influence principle:

Fowler et al. [20] put forward the principle of three
degrees of influence: nodes can not only affect
neighbor nodes (one degree) but also affect neighbor
nodes (two degrees) of neighbor nodes and even
affect neighbor nodes (three degrees) of neighbor
nodes. As long as they belong to a strong connection
within three degrees, they are likely to cause risk
transmission. If it is more than three degrees, the
influence between nodes will be weakened to neg-
ligible or even disappear.

(2) Measurement method based on degree-centrality of
topological network:

The problem of node centralization aims to study the
centrality of nodes in the graph [21]. That is, the
more frequently and closely connected with other
nodes, the higher the centralization index, and nodes
close to others with higher indexes generally have
higher centralization indexes. The degree-centrality
of the node reflects the influence of the current node
in the whole credit entity association structure. This
paper adopts the outdegree of node i to measure its
degree centrality. The reason is that the higher the
output degree of a node, the more nodes it affects and
the greater its influence. This measurement strategy
is also used to reduce the complexity of the
algorithm.

2.2. Influence Calculation Method. When credit risk occurs
to a credit entity, the transmission modes are mainly de-
scribed as follows.

2.2.1. Single Path Transmission. This transmission mode
reflects the multilevel transmission of credit risk among
credit entities. Assuming that credit risk occurs to node i
(called source node), its influence onitself is p;; = 1, and the
transfer path from node i to node j is, i — s; — s,
— -+ — 5, — j, then the single-path influence cal-
culation expression of node i on node j is shown as the
following equation:
Pij = Pij X Wi X+ X Wy o X Wy, . (3)
Obviously, formula (2) ensures that the influence of
credit risk on the transmission path is continuously reduced
and reflects the buffer ability of each credit entity to credit
risk. On the other hand, it also meets that the impact on the
end node and the initial node of the path is positive cor-
relation. As shown in Figure 2, the influence of nodes 1 on 2
is p;,=1x03=0.3, the influence on node 3 is
P13 =1x0.3x0.4=0.12, and the influence on node 4 is
pra=1x03x0.4x03=0.036.

2.2.2. Multipath Transmission. When credit risk occurs to
the source node, it will be passed to the successor nodes
through multiple paths, and some of these successor nodes
may be affected by multiple predecessors at the same time.
As shown in Figure 3, node 6 is affected by both nodes 3 and
5. It is assumed that the influence of node 3 on 6 is p, ¢, and
the influence of node 5 on 6 is p5 4. For node 6, in order to
ensure that the influence of multipath transfer superposition
is not lower than any influence of single-path, and the in-
fluence is less than or equal to 1, the calculation formula of
multipath composite influence is shown as follows:
Peg=1-(1=py6) X (1 —pse). Especially, 1-p,¢ repre-
sents the degree of uncorrelation of node 3 on 6, and the
similar to 1 - ps4. The composite uncorrelation degree is
obtained by multiplying, and the composite influence of
multipath credit risk transmission is calculated.
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FIGURE 1: Credit entity association structure model.
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FicuUre 3: Influence superposition.

It can be seen from Figure 3, the value of p, ; is 0.4, and
the value of p; 5 is 0.24; thus, the influence of the source node
i on node 6 through node 3is p; s = 0.4 x 0.2 = 0.08, and the
influence on node 6 through node 5 is p;4 =0.24x
0.8 = 0.192. Therefore, the composite influence is obtained
as follows: :p, s=1-1-p3sx1—psc=1-(1-0.08)x
(1-0.192) = 0.25664.

Based on the above description, the composite influence
calculation model under multipath transmission is pro-
posed. It can be described as follows, with the given credit
entity association structure, if credit risk occurs to node i, it
will pass through multiple-path to node j. The multipath
composite influence calculation expression on node j is
shown as follows:

[1

V<pre,j>€E

pij=1- 1= i pre X Wpre,j»

(4)

where pre is any direct predecessor node of j, p; .. is the
influence of the source node i on node pre, and wy, ; is the
correlation strength from node pre to node j.

2.2.3. Circular Transmission. In the complex credit entity
correlation structure, there may be a ring structure between
many closely related entities. The transmission of credit risk
is circular transmission in the ring structure, resulting in the
circular calculation of influence. Therefore, this structure
should be avoided. When calculating the influence of
multipath credit risk transmission, this paper adopts the
following preprocessing strategies to avoid the emergence of
the ring: along with the direction of influence transmission,
expand the successor adj of the current node i layer by layer
according to the hierarchical structure. In the expansion
process, if the node adj has appeared in the upper layer, it
indicates that the node has already been affected at a higher
level. According to the three-degree influence principle, the
lower the level, the weaker the influence of the node.
Therefore, the influence of the current node i on its successor
adj can be ignored. Repeat the above layer-by-layer ex-
pansion operation until all nodes are traversed. Applying
this strategy can avoid the ring on the delivery path in
advance.

As the example shown in Figure 4, assuming that the
source node with credit risk is node 1, it can be seen that
nodes 3, 4, and 5 will form a ring structure. However, using
the above strategy, when the influence is transmitted layer by
layer, node 1 first affects nodes 2 and 4, node 2 then affects
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FiGURE 4: Circular transmission (before treatment).

node 3. Since node 4 has been affected by node 1, when node
3 is affected by node 2, the influence will no longer be
transmitted to node 4. By applying this strategy to solve the
credit risk transmission path of this example, the result is
shown in Figure 5, which avoids the emergence of the ring
structure mentioned above.

2.3. Division of Community. In the credit entity association
structure, the correlation strength between nodes is deter-
mined by the relationship category between credit entities,
and the subset of nodes with a strong association rela-
tionship may constitute a community. The internal con-
nection of the community is close and influential, while the
connection with external nodes is low-density. There may be
multiple communities composed of different credit entities
from the node set V. One node may form a special com-
munity, called an isolated community, which has a weak
association with other communities.

One of the objectives of this paper is to find out the node
sets from all of the credit entities. By forming different
communities, the efficiency of credit risk supervision can be
improved, and the possible harm of credit risk can be re-
duced. The method of community division in this paper is
described as follows:

(1) Initial set P with all the nodes in V, t =0

(2) If node set P+, select node i with the maximal
degree-centrality from P to establish a new com-
munity C,,, = {i}, and remove node i from P

(3) For each successor adj of node i, if the degree-
centrality of node adj is greater than or equal to the
mean degree-centrality of node i and all its succes-
sors, thus C,,; = C,,; U {adj}, and remove adj from P

(4) Repeat (2)-(3) until P = &

3. Heuristic Algorithm Based on
Hybrid Strategies

In this section, a heuristic algorithm based on a hybrid
strategy (HAHS) is proposed for the considered problem. It
aims to search the credit transmission paths, calculate the
influence of nodes on the credit risk paths, divide credit

Pogie

FiGUre 5: Circular transmission (after treatment).

entities into different communities, and find key nodes for
each community. The proposed heuristic algorithm is
depicted in Algorithm 1.

It mainly contains 6 steps with 4 subalgorithms. First,
the credit entity association data is inputted and the
mathematical model of the association structure is con-
structed. Next, a breadth first search algorithm (BEFS) is
used to search the credit risk transmission paths when the
risk occurs to a credit entity. The influence calculation
algorithm (Cal) is suggested to calculate the credit risk
transmission impact through not only single-path but also
multipaths. Global search algorithm (GS) is proposed to
find global key nodes of the whole association structure.
Last, the Community division and local key nodes
searching algorithm (CDLS) is used to divide all of the
credit entities into communities and find the local key
nodes of each community.

The time complexity of the HAHS algorithm is O(n’),
and the detailed analysis is given in Sections 3.1 to 3.4.

3.1. Breadth First Search Algorithm for Transmission Paths.
In the credit entity association structure, when credit risk
occurs to a node, it will be transmitted to the node’s as-
sociated nodes, but the influence cannot be transmitted
back. Otherwise, a ring will be generated. Meanwhile, the
successors that the node can influence are its subordinate
nodes. Thus, the credit risk transmission mode has the
following characteristics:

(1) The impact of credit risk is a one-way transmission.
That is, only the nodes at the upper level can affect
the nodes at the lower level.

(2) The node at the lower level may be affected by one or
more nodes at the upper level.

(3) There are no isolated nodes that neither affect nor be
affected by other nodes.

As credit risk is transmitted layer by layer, the breadth
first search algorithm is proposed for the transmission paths
shown in Algorithm 2. It should be noted that the maximum
value of the affected layer is 3 based on the three-degree
influence principle, so the variable lev in algorithm 2 is less
than 3.
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Input: Credit entity association data
Output: 0
(1)  Input the credit entity association data

(3)  Cal BFS () to find the credit risk transmission path
(4) Cal Cal () to calculate influence for each node

(7) Return 0

(2)  Construct the mathematical model of association structure: n-order square matrix M

(5) Cal GS () to find global key nodes in all of the credit entities
(6) Cal CDLS () to divide all of the credit entities into communities and find the local key nodes in each community

ALGORITHM 1: Heuristic Algorithm based on Hybrid Strategy (HAHS).

Output:Affected node set ®

(2)  While lev< 3
For i = start to end

Forj=aton

®=0Uj
Endif
Endfor
Endfor

Endwhile
(3) Return ®

Input: n-order square matrix M, Credit risk source node i, ® = {i}

(1) start=0, end =|0O[,lev=0

Set current node a as the i th element in set ®

Ifd,;#0 and j ¢ ©

lev = lev + 1, start = end, end = |O|

ALGORITHM 2: Breadth first search algorithm (BES).

The time cost of BES algorithm is mainly in Step 2, and
its time complexity is O (1), so the time complexity of the
BES algorithm is O ().

3.2. Influence Calculation Method. When the transmission
paths are obtained by algorithm 2, the influence of each
node in the path is then to be calculated. As shown in
section 2.2, the ring of credit risk transmission no longer
exists. There are only two situations to be considered:
single-path transmission and multipath transmission.
For the single-path transmission, the influence of each
node is calculated by the single-path influence calcula-
tion expression described in formula (2). For the mul-
tipath transmission, the influence of each node is
calculated by the multipath composite influence calcu-
lation expression described in formula (3). The imple-
mentation of the influence calculation is shown in
Algorithm 3. If the influence of a credit entity exceeds the
credit change threshold “T” which is set by the service
supervision platform, the platform needs to change the
entity’s credit.

The time cost of the Cal algorithm is mainly in Step 2,
and its time complexity is O (°); thus, the time complexity
of the Cal algorithm is O (n?).

3.3. Searching for Global Key Nodes. If a node has a great
impact on other nodes in the whole domain, it is called a
global key node. In order to give early warning to other
nodes in advance to reduce the impact of credit risk, it is
necessary to search for the global key nodes. A greedy
strategy is given to select global key nodes among all of the
credit entities. The basic idea of this method is to calculate
the total influence of each node on other nodes and the
number of nodes affected by the node and take those nodes
that meet the defined threshold 6 as global key nodes. The
specific implementation is depicted in algorithm 4.

The time cost of GS algorithm is mainly in Step 2 and
Step 3, and its time complexity is O (n), so the time com-
plexity of the GS algorithm is O (n).

3.4. Community Division and Local Key Nodes Searching.
The idea of finding the local key nodes in communities is
similar to that of finding global key nodes among all of the
credit entities. The difference is that all of the credit entities
should first be divided into communities as described in
Section 2.3, and then the key nodes in each community, i.e.,
local key nodes, are to be found. The specific implementation
is shown in Algorithm 5. It produces a set S composed of
several communities and a set Z containing sets of local key
nodes for the communities.
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3)

Input: n — ordermatrixM, creditrisksourcenodei, affectednodeset®
Output: Q = {{node, influence)}
Q=¢
For each node a € ®
If P ia :F 0
continue;
Endif
v=¢
Forj=1toa-1
Ifd a?0
¥ =VYUj
Endif
Endfor
For each node p € ¥
Recursively call this algorithm to calculate the influence of node p
Endfor
If |9 =1
pi,a = Pi,pre X wpre,a
Else
Pi,a =1- HV<pre,a>EE1 - ;Di,pre X wpre,a
Endif
Q=0Uu{<ap0}
Endfor
Return Q

AvrcoriTHM 3: Influence calculation method (Cal).

Input: n — ordermatrixM, thesetofQ
Output: T = {global key nodes}
© T=¢
(2)  For each node i in node set V'
Find the sum of influence Sum; obtained by Algorithm 2
Endfor
For each node i in node set V'

3)

T=Tul{i}
Endif
Endfor

(4) Return T

If Sum; <6 and deg; <6

ArGoriTHM 4: Global Search (GS).

The time cost of the CDLS algorithm is mainly in Step 4,
and its time complexity is O (n®), so the time complexity of
the CDLS algorithm is O (n%).

4. Experiment

The proposed HAHS algorithm is written in Java language
and runs on Intel (R) core (TM) i5-5200U CPU@ 2.2 GHz,
2.19 GHz, 8 GB RAM personal computer and MS Windows
10 operating system. The simulation experiment of credit
risk transmission is first carried out, then a large number of
instances with different sizes are tested and compared.

4.1. Simulation Experiment. This section takes the associa-
tion structure with 20 credit entities as an example to

conduct the simulation of credit risk
transmission.

After inputting the credit entity association data, the
20-order square matrix M is generated in the second step,
and the result is shown in Table 1.

Assuming that credit risk occurs to node 1, i.e., node 1 is
the source node. After the BFS algorithm is applied in the
third step, the results of the credit risk transmission paths are
obtained, shown in Figure 6. In this figure, it shows that the
transmission paths of credit risk are expanded layer by layer.
The first layer contains nodes 2, 3, 4, 5, 6, 8, and 10, the
second layer contains nodes 7, 9, 11, 12, 13, 14, 15, 16, 17,
and 18, the third layer is composed of nodes 19 and 20.

In Step 4, the Cal algorithm is used to compute the
influence of each node on the above paths. The resulting key

value pairs (i, p, ;) of the influence are as follows:

experiment
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Input: G = (V, E), n— ordermatrix M,{<node, influence>}
Output: Community set S, Z = {0, 0,, ...} where O; ={key nodes set for community i}
1) S=9,Z2=¢
(2)  For each node i in node set V'
Calculate the centrality of node idepictedasdeg;
endfor
(3)  Repeat
Select the node i with the largest degree of centrality
Ci=¢, C=Cufi}
For each node j and d;; #0
If deg; > deg; and deg; > Y\ 4, sodegi
G =Cu{jt
Endif
Endfor
S=S+C
Until nodes in node set V are all divided
(4) For each community C;
For each node j in community set C;
Find the sum of influence (sum;) generated by node j obtained by algorithm 2
Endfor
For each node j in community set C;
If sum; <6 and deg; <0
0; = 0;u{j}
Endif
Endfor
Z=7+0;
Endfor
(5) Return S, Z;

ALGORITHM 5: Community division and local key nodes searching (CDLS).

TaBLE 1: An instance with 20 nodes.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 062 062 056 059 045 0 054 0 057 O 0 0 0 0 0 0 0 0 0
2 0 0 056 052 054 043 O 0 04 04 061 0 0 0 0 0 0 0 0 0
3 0 0 0 035 0 063 046 054 045 0 043 043 O 0 0 0 0 0 0 0
4 0 0 0 0 051 052 062 0 042 052 0 0 062 064 0 0 0 0 0 0
5 0 0 0 0 0 0 036 0 0 057 039 059 053 064 0 0.6 0 0 0 0
6 0 0 0 0 0 0 051 042 0 059 061 O 063 O 0 06 033 0 0 0
7 0 0 0 0 0 0 0 036 041 047 O 0 033 0 058 0 0.5 0 039 0
8 0 0 0 0 0 0 0 0 051 042 0 045 051 052 042 0 0 061 O 0
9 0 0 0 0 0 0 0 0 0 065 048 059 041 039 0 04 0 036 O 0
10 0 0 0 0 0 0 0 0 0 0 034 036 0 048 041 058 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 065 059 043 033 046 052 065 O 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 052 038 038 059 042 059 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 035 061 062 044 045 0 0.62
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 05 057
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 061 05 06 042 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 039 052 0 0.65
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 058 043
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.55
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 033
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Discrete Dynamics in Nature and Society

FIGURE 6: The transmission path of credit risk.

(1) The first layer: {<2,0.62>, <3,0.62>, <4, 0.56>, <5,
0.59>, <6, 0.45>, <8, 0.54>, <10, 0.57>}

(2) The second layer: {<7,0.717>, <9,0.700>, <11,0.795>,
<12,0.712>, <13,0.767>, <14,0.791>, <15,0.407>,
<16,0.684>, <17, 0.148>, <18,0.329>}

(3) The third layer: {<19, 0.809>, <20, 0.910>}

According to the GS algorithm in Step 5, the global key
nodes are found, and these nodes include nodes 1, 2, 3, and 4.
Once credit risk occurs to any of these nodes, it will have a
significant impact on other nodes in the credit entity as-
sociation structure.

Figure 7 shows the community division result based on
the CDLS algorithm. It can be seen that the 20 credit
entities are divided into five communities: A, B, C, D, and
E. There are 12 nodes in community A, and nodes 1, 2, and
3 are the local key nodes of community A. There are 4 nodes
in community B, and node 10 is the local key node of
community B. There are 2 nodes in Community C, and
node 17 is the local key node of community C. For the local
key nodes of each community, once credit risk occurs to
any one of these nodes, it will have an important impact on
other nodes in its community. As nodes 18 and 20 have a
weak influence on other nodes, each of them forms a
community independently; 1ie., they are isolated
communities.

Through the above simulation experiment, the following
conclusions can be obtained:

(1) Credit risk transmission is transmitted from near to
far by layer diffusion

(2) Under the multipath composite influence, the in-
fluence of credit risk on a node does not conse-
quentially weaken with the increase of hierarchy, and
some outer nodes may be greatly influenced, leading
to credit changes

FIGURE 7: Division of community.

(3) Through the comparison between the global key
nodes and the local key nodes, it can be found that a
global key node is not necessarily a local key node
and vice versa

4.2. Comparable Experiment. This section gives more
comparative tests for node sets with different sizes and
correlation densities.

4.2.1. Parameter Setting. In the credit entity association
structure, if the nodes are closely related, that is, the number
of associated nodes is much larger than the number of
nonassociated nodes. The matrix M of the association
structure is a high-density matrix; otherwise is a low-density
matrix. In order to verify whether the algorithm has a sig-
nificant impact on the node-set with different densities or not,
this paper sets the association density property as 0.25, 0.45,
and 0.65, which correspond to the low-density matrix, me-
dium-density matrix, and high-density matrix, respectively.

In the following experiments, there are two factors, i.e.,
the sum influence of a node on its successors and the number
of successors affected by the node, to determine whether a
node can become a key node or not. Theoretically, if the sum
influence of a node on its successors and the number of
successors affected by the node are both greater than other
nodes’, the node can be taken as a key node. In the actual
environment, the more key nodes, the greater the load of the
service platform. Otherwise, if there are few key nodes, it is
difficult to find the entities with credit risk in time. Ex-
periments show that if the nodes with influence greater than
the mean are taken as key nodes, the number of them ac-
counts for about 30% of the total number of nodes.
According to the Pareto principle, this paper finally selects
the intersection of 20% of the nodes that meet the above two
factors, respectively, as key nodes. Therefore, the threshold
"6" in this study is set to 0.2.
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TaBLE 2: Experimental results (low-density matrix).

p . . Number of global key Total number of local key Number of N.umber of
roblem size * number of instances - isolated
nodes nodes communities .
communities
60 x 10 10.6 13.5 11.2 6.1
90 % 10 16.6 20.6 11.1 52
120 % 10 21.7 26 11.7 6.1
150 % 10 27 31.7 13.1 7.6
180 % 10 32.1 38.5 12.7 6.3
210 %10 37.8 44.5 12.9 6.4
240 % 10 435 51.4 12.3 5.3
TaBLE 3: Experimental results (medium-density matrix).
Problem sizexnumber of Number of global key Total number of local key Number of Niusr(ﬁzteer dOf
instances nodes nodes communities .
communities
60 # 10 10.8 14.1 7.9 31
90 %10 17.2 20.3 8.4 3.2
120 % 10 23.2 26.6 9.2 3.7
150 % 10 29.2 32.5 9.9 4.2
180 % 10 349 38.7 9.4 34
210 % 10 41 45 10.3 3.9
240 % 10 46 51.6 10.7 3.5
TaBLE 4: Experimental results (high-density matrix).
Problem size * number of Number of global key Total number of local key Number of Niusl(?lzg dOf
instances nodes nodes communities .
communities
60 x 10 11.8 14 7.5 29
90 %10 17.5 20.7 7.9 2.5
120 % 10 23.3 26.8 8.8 2.8
150 % 10 29.5 32.8 9.3 3.2
180 % 10 35.5 39 8.6 2.4
210 % 10 41.4 45.6 9.3 2.4
240 % 10 47 .4 51.8 9.5 2.2

4.2.2. Experimental Results and Conclusions. This section
randomly generates instances using the method of literature
[22]. For each kind of density, the test data is divided into 7
groups, the problem size in each group are 60, 90, 120, 150,
180, 210, and 240, respectively, and each group generates 10
instances.

The experimental results of association structure with
the low-density matrix are shown in Table 2.

The experimental results of association structure with
the medium-density matrix are shown in Table 3.

The experimental results of association structure with
the high-density matrix are shown in Table 4.

From the above experimental results, some character-
istics of the considered problem can be concluded.

(1) For any instance, the total number of local key nodes is
greater than the number of global key nodes. This is
because the significance of local key nodes is that when
credit risk occurs to a credit entity, its impact will
spread violently within the community. In the global
scope, the influence of a key node in one community is
relatively weak or even has no influence on nodes in

other communities. Therefore, the total number of
local key nodes is greater than that of global key nodes.

(2) For instances with the same density, although the
node size is increasing, the number of communities
and isolated communities is growing slowly. This is
because although the number of nodes has increased,
the number of nodes in each community has also
increased due to the improvement of the degree of
association between nodes rather than forming more
communities. Similarly, the number of isolated
nodes increases slowly due to the improvement of
the degree of association between nodes.

(3) For instances with different densities, it can be seen
from the comparison of the above three tables: with
the increase of matrix density, i.e., node correlation,
the number of communities and the average number
of isolated communities gradually decrease. This is
because the closer the degree of association, the
closer the relationship between nodes, and with a
higher degree of mutual influence, the number of
communities  decreases  gradually, and the
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FIGURE 8: Comparison of the number of communities in the 95%
Tukey HSD confidence interval.
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Ficure 9: Comparison of the number of isolated communities in
the 95% Tukey HSD confidence interval.

probability of forming isolated nodes also decreases
gradually.

4.2.3. Further Analysis and Discussion. In order to better
analyze the effectiveness of the algorithm, this section uses
StatGraphics to statistically analyze the experimental results
generated in the previous section. As mentioned in the above
section, the experimental results come from 210 instances,
which, respectively, describe the association structure matrix
obtained under different problem sizes and different den-
sities. The statistical analysis of the experimental results
contains the number of communities, the number of isolated
communities, the number of global key nodes, and the total
number of community key nodes, as shown in Figure 8 to
Figure 11.

11
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35 ... . . . . . P . . .

15 ... . : . . . . . . . .

Number of global key nodes
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Problem size

F1GURE 10: Comparison of the number of global key nodes in 95%
Tukey HSD confidence interval.
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FiGgure 11: Comparison of the total number of local key nodes in
95% Tukey HSD confidence interval.

As shown in Figure 8, with the increase in the size of the
problem, the total number of communities found shows a
slow upward trend in the 95% Tukey HSD confidence in-
terval, which is consistent with the second conclusion in the
previous section. In addition, the higher the association
density, the fewer communities are found, and vice versa.
The reason is that the higher the association density is, the
closer the credit entities are connected, and these closely
connected credit entities are put into the same community,
so fewer communities are obtained.

As shown in Figure 9, with the increase in the problem
size, the total number of isolated communities found fluc-
tuated up and down within the 95% Tukey HSD confidence
interval, and there was no obvious upward trend. This
statistical result is similar to the third conclusion in the
previous section. Besides, the lower the association density,
the more isolated communities are found, and vice versa.
This is because the lower the association density, the more
sparse the connections between credit entities, and these
credit entities are more likely to form isolated communities.

In order to better realize the early warning of credit risk,
this paper sets 20% as a threshold to select the qualified
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credit entities as the key nodes, so the number of these key
nodes increases linearly with the problem size. It can also be
seen from Figures 10 and 11 that, with the increase of the
problem size, the number of global key nodes found by the
GS algorithm shows an obvious upward trend, so as to the
number of local key nodes in the community found by CDLS
algorithm.

5. Conclusion

This paper studies credit risk transmission of cross-platform
credit services. Aiming at the considered problem, a heu-
ristic algorithm based on hybrid strategies named HAHS is
proposed. After modeling the association structure of credit
entities, the characteristics of credit risk transmission are
analyzed, and influence calculation methods of credit risk
are proposed for single-path and multipath transmission.
Finally, a greedy strategy is used for community division,
and a threshold control strategy is applied to find global and
local key nodes. The results of the simulation experiment
show the effectiveness of the algorithm. Through compar-
ative experiments, the characteristics of credit risk trans-
mission are concluded, which further shows the algorithm
can be used to solve the problem of cross-platform credit risk
transmission.
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HAHS: Heuristic algorithm based on hybrid strategy
BES:  Breadth first search algorithm

Cal: Influence calculation algorithm

GS: Global search

CDLS: Community division and local key nodes searching.
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