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For the existed biological degenerate primer design problem, a solution method based on an ant colony optimization algorithm is
proposed, in which an optimization model considers primer coverage as well as degeneracy while allowing for a small number of
base mismatches. Using the construction graph model, the algorithm makes full use of the dynamic change information during
the iterative optimal path optimization process, strengthens the explored new path pheromone, and selects the primers that meet
the constraints. Te results of DNA template sequence matching experiments show that the degenerate primers designed by the
proposed algorithm outperform existing approaches.

1. Introduction

Degenerate primers are a mixture of diferent sequences
encoding all diferent base probabilities of a single amino
acid, and their degeneracy is defned as the number of
combinations of all sequences at one or more positions in a
PCR primer [1]. Tey are the primers with a length of k,
whose degeneracy is most at d, matching at leastm strings in
a set of n strings (m represents the coverage of the primer).

Under the condition of certain specifcity, degenerate
primers should have the lowest degeneracy and the highest
coverage. In PCR primer design, the length of primers is
mostly fxed; therefore, only coverage degree m and de-
generacy degree d need to be optimized [2–5]. However, as a
consequence of incoherence between sequences and inad-
equacies in the ftness evaluation function, this method
frequently results in high degeneracy of primers. Terefore,
while designing primer pairs, some rather than all of the
target DNA sequences are usually chosen to match. Con-
sequently, this paper focuses on a degenerate primer design
(DPD) problem that minimizes the degeneracy and maxi-
mizes coverage while allowing for a few mismatches. For a
primer S, if its uncovered degree and degeneracy are

computed by functions Γ(S) andΨ(S), then its quality can be
computed by the following formula.

F(S) � muΓ(S) + phiψ(S). (1)

Te mu and phi are weight parameters used to adjust
the importance of coverage and degeneracy. Te degen-
eracy degree is the total number of sequence combinations
contained within the primer at one or more positions of a
degenerate PCR. Te computational procedure of the
degeneracy degree is described in detail in [6]. Moreover,
the constraints [11] related with primer length, primer
pair diferential length, primer melting temperature,
primer pair diferential melting temperature, GC content,
3′end constraint, hairpin structure constraint, and double
chain structure constraint are also considered in this
work.

Te existing related methods for this problem mostly are
classical heuristic ways. For example, dynamic pattern
matching [7], two-phase MIPS algorithms [8], iterative beam
search [9], and HYDEN are based on the approximate algo-
rithm [15]. Tese methods have been included in some well-
known primer design tools [12–14], and some of them have
been parallelized [16]. In recent years, swarm intelligence
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optimization algorithms [17–21] have proven to be an efective
way to tackle difcult optimization problems. Te genetic al-
gorithm is also used for the primer design problem, such as the
single PCR design [10] and multiple PCR design [11], and get
competitive performance. But few swarm intelligence algo-
rithms have been applied to solve the constraint DPD problem.

Tis research presents an original way to DPD using an
ant colony optimization algorithm with an enhanced
pheromone update mechanism. With the help of the con-
struction graph model, the constraints of DPD are dy-
namically satisfed during the construction process. Te
primer pairs are fnally screened by analyzing and com-
paring the two indexes of degeneracy and coverage with
existing methods.

2. Ant Colony Optimization Model for
Degenerate Primer Design Problem

In this paper, an enhanced pheromone updating mechanism
is proposed for ant colony optimization—ACOH. To opti-
mize the pheromone update and improve convergence speed
without compromising quality, the algorithm fully utilizes
the dynamic information used in the iterative optimal path
optimization process.

To the original pheromone matrix, an incremental
matrix is added. All ants in a colony share the same
pheromone incremental matrix. IOSolution represents the
optimal (best) solution set so far; BIOSolution represents the
better (better) solution set, and VInformation represents the
diferences between them. Using the pheromone dynamic
update mechanism can improve the efciency of the solution
based on the existing pheromone update mechanism.

Te algorithm generates an iterative optimal solution,
known as the IOSolution, through several iterations and
then compares it with the iterative better solution BIO-
Solution generated by the algorithm determining the dy-
namic change information VInformation, which indicates
which path side arcs are newly explored. Ten, when the
original pheromone is updated, we apply additional dynamic
pheromone enhancement to this modifed information. Te
increment is stored in the pheromone increment matrix and
set to the reciprocal of the iterative better path ftness
evaluation function value. In this way, the probability of ants
visiting the side arc in the future may be improved, and the
diversity of understanding can be expanded to some level;
consequently, the run time of the algorithm is reduced,
improving its convergence rate and solution efciency.

Te method, with the assistance of the construction
graph model (CGM), used ACOH to complete the design of
degenerate primers. Te algorithm focuses on DPD with
maximum coverage and minimum degeneracy.

Te number of layers of the CGM depends on the length
of primers and generally ranges from 18 to 26 layers. After
the 18th layer, an empty node is set in each layer, which
facilitates completing the primer design and exiting the
program. Each layer is a combination of 15 base pairs in-
cluding [ATGC], [GTA], [GCA], [GCT], [CTA], [GT],
[GA], [CG], [CA], [CT], [AT], [A], [T], [G], and [C]. Te
fnal combination must meet a number of limitations and

basic pairing requirements and iterate repeatedly to obtain
the best primer pair, or it stops here at the maximum it-
eration after a series of iterations. With the restrictions of
coverage and degeneracy, as well as the principles of base
pairing, each layer selects the appropriate base combination
branch. It iterates circularly until the suitable primer pair is
searched, and the results are output, or the maximum it-
eration time is reached.Ten, the output results are screened
and fltered by the constraints of multiple primer designs.
Te primer pairs that fnally meet the requirements of
constraints and various parameters are output, such as
position, length, annealing temperature of up primers and
down primers, the content of GC in primer pairs, the
judgment of complementarity and specifcity between
primers, and so on.

Te algorithm consists of fve stages: initialization,
constructing solutions, updating pheromones, evaluating
solutions, and judging the outcome of the algorithm. Te
whole process of solving is shown in Figure 1.

In order to make the ACOH algorithm applicable to
DPD, the initialization, constructing solutions, and judging
the outcome of the algorithm were redesigned accordingly,
and the other parts were completed using the methods in the
ACO algorithm [22]. Te details of the redesign are as
follows:

In the construction of the initial graph model, each ant
randomly selects an initial node and has ffteen choices for
the following node. According to the input template DNA
sequence and base pairing principle, ants roughly screen
out the required base combinations. Following that, a
roulette wheel is used to select the next node that will be
visited using the probability state transition formula. Here,
the ant constructs the solution matrix using a three-di-
mensional matrix, because in the frst 18 nodes, each node
initially has 15 choices. To distinguish one node from the
same base combination in another node, a sentinel iden-
tifcation bit is specially established. For example, the third
node has a base combination of [GC], and the fourth node
also has a base combination of [GC]. Some ants are just on
the second node, facing the same base combination [GC],
which makes it hard to distinguish. At this point, the sentry
of the identifcation position plays a key role in the primer
design process, and the third node is selected to ensure
order. In this way, these nodes are selected in turn until the
18th node is reached. Te length of primers is generally
18–26 bp; therefore, an empty node is set on the 18th
through 26th base combinations in addition to the above 15
combinations, which facilitates the exit of the path con-
struction at any time after one iteration. After that, each ant
completes the path construction once, which represents the
completion of the design of the initial primer pair. Ten,
each path is evaluated to screen out an iterative optimal
path. Te specifc process will be introduced in detail in the
later evaluation stage. After the pheromone is updated in
this path, the next iteration is continued. Repeat until the
maximum amount of iterations has been reached, or ftness
requirements have been met.

In the process of degenerate primer design, the intro-
duction to the second part reveals that constraints are crucial
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for the fnal primer pair design. Hard constraint conditions
and soft constraint conditions are the two types of constraint
conditions, with the hard constraint condition referring to
the need that the primer pair must meet. Otherwise, the
primer pair cannot be formed at all. For instance, the length
of the primer is generally between 18 and 26 bases. Te
diference between the lengths of the up primer and down
primer should be strictly less than 3, and so on. Soft con-
straints are a type of degenerate primer design rule that
includes phrases such as “at most” and “at least.” In the
design of degenerate primers with maximum coverage, for
example, the degeneracy is required to be d at most.

Te ants use the roulette wheel instead of the node with
the highest probability to choose the next node in their path
and avoid falling into a local optimum. Te simplifed view
of the construction graph model is shown in Figure 2.

At the construction stage, heuristic factors and pheromone
factors associated with the constraints guide the ants toward
selecting the next base or the next base combination in the
primer sequence. Te heuristic factors play a vital role, espe-
cially in guiding the choice of the next node. Te probability
state transition formula is shown in the following formula:

P
k
ij �

τij􏽨 􏽩
α ∗ ηij􏽨 􏽩

β

􏽐k∈allowedk
τik􏼂 􏼃

α ∗ ηik􏼂 􏼃
β, if j ∈ allowedk,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where i and j, respectively, represent the starting node; τij is a
pheromone factor, which mainly includes two operations:
pheromone volatilization and pheromone enhancement.
Te pheromone update strategy used in this paper is as
follows: after the kth ant completes a path search, the
pheromone is updated for all paths on the route, and the
pheromone increment is related to the overall route of this
search, which is a global information update. Te detailed
update process of τij is described in [22]; ηij is a heuristic
factor; the weights of the two factors ηij and τij are denoted
by β and α, respectively; allowed k is a collection of nodes
that ants have not accessed. After heuristic analysis, the
following values can be set:

ηij �
Convergeij

Degeneracyij

, (3)

where Degeneracyij denotes the degeneracy of edge arc ij and
Convergeij denotes the coverage of edge arc ij. As the study
in this paper uses a maximum coverage degeneracy primer
design, the degeneracy of primers is constant, and the greater
coverage represents the better experimental results. Tere-
fore, the heuristic factor η is larger, and the probability of the
side arc being selected again is relatively large under the
same conditions.

In order to meet diferent constraints, a local search
process called LocalSearch is designed in this paper, in-
cluding three ideas pretreatment before optimization,
processing in the path construction process, and constraint
processing after the end of path construction. Next, the
situation will be introduced. First, some constraints need to
be preprocessed before optimization. GC Clamp, for in-
stance, can detect whether the two bases at the end of the
3′end of primer S areG or C. However, considering another
constraint condition, the bases should be distributed
randomly; it means that polypurine or polypyrimidine
should not appear, and no more than three consecutive G
or C should occur at the 3′end of primer S.Tus, three bases
can be set at the end of the 3′end of primers, and their
combination range must be restricted. Second, some
constraints need to be dealt with in the optimization
process. For instance, the length of primers is generally
between 18 and 26 bases, and this information was covered
in detail in the process above on constructing solution
paths, so it would not be repeated here. Tird, some
constraints need to be addressed near or after optimization.
For example, the diference between the up primer’s length
and the down primer’s length should be strictly less than 3.
After designing the up primer, its length is assumed to be
21, and in the process of fnding the down primers, the
length range of the down primer is narrowed down to
18–24. Tis method signifcantly reduces the search space
and enhances the efciency of the process when dealing
with thousands of DNA template sequences. Furthermore,
after the fnal design of primer pairs has been determined, it
is also essential to judge the hairpin structure and com-
plementary sequence between primer pairs. If there is a
hairpin structure or complementary sequence, the primer
pairs must be adjusted further.

Start

Initializations

Construction of
assignment

Updating
pheromone trails

Evaluation
of the solution

Iteration += 1

Satisfy the
Termination
condition?

Print the set
of

degenerate
primer pairs

End

NO Yes

Figure 1: ACOH for solving DPD.
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A degenerate primer evaluation is also a fundamental
stage of ACOH. After a certain number of iterations, many
ants generate solution paths, respectively, which involve
comparing and analyzing multiple paths (actually primers).
In order to express more clearly, this paper simplifes
multiple paths into two paths for comparison. Te eval-
uation of the solution path is analyzed and discussed in
three cases: the two solution paths meet constraint con-
ditions; one meets the constraint, the other does not;
neither one meets the constraint. Next, the above three
cases will be introduced, respectively. First, when both
paths meet many constraints, they can be divided into two
cases according to whether the coverage is the same. Te
soft constraint condition degeneracy can be used to assess
when the coverage is the same. Eventually, the solution
path with less degeneracy is taken. When the coverage is
diferent, on the other hand, the result uses the solution
path with greater coverage since experiments seek the
design of degenerate primers with maximum coverage.
Second, one of the two fts the constraint requirements,
while the other does not by obviously choosing the solution
path that meets the constraint conditions or meets more
constraint conditions. Tird, when both solutions fail to
meet the constraint conditions, the fnal result discusses
two cases based on whether the number of constraints
violated by the two solution paths is the same. When two
solution paths have the same amount of unsatisfed con-
straints, the solution chooses the one with greater coverage
and then adjusts the primer pair to meet the constraints as
much as possible. In contrast, when the number of con-
straints violated by two solution paths difers, one with
fewer constraints violated by the two solution paths should
obviously be selected. Te specifc execution process of the
ACOH algorithm to solve the DPD problem is shown in

Algorithm ACOH for Degenerate Primer Design pseudo-
code, which is as follows:

Algorithm ACOH for Degenerate Primer Design

Output

Input
f: the ftness evaluation function generated by Eq1
Ω : constraint condition of degenerate primer design

Sbs : the optimal primer pairs
Begin
set parameters and initialize pheromone trails and heuristic information
repeat

for each ant k do
Construct a complete primer pairs S generated by EQ2 and EQ3

S ← LocalSearch (S)

τij ← update pheromone

if f (S) ← f (Sbs) then
Sbs ←S

return Sbs

end if
end for

end for

for each component i in graph do

until maximum ftness evolution number reached

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

ACOH algorithm complexity is as follows:
When constructing a complete primer pair, calculating

the state transition probability formula requires O(n∗m)
operations. In order to improve the quality of the con-
structed graph,O(m) operations are necessary. It takesO(n2)
operations to complete pheromone updates after each global
path optimization. Terefore, the total time complexity is

T(n) � O Nc ∗ n
2 ∗m􏼐 􏼑. (4)

Nc, n, and m correspond to the number of iterations of
the algorithm, the number of vertices in the graph, and the
total number of ants, respectively. Tus, time complexity
increases, with the size of the problem. Te total complexity
of space is

Up primer

Down primer

First Second Te eighteenth Te nineteenth Te twenty-sixth

Te ant has ffeen paths to choose......
Each level has 15 paths......

From the 18th level,
set an empty node for exit at each level......

End End End

End End End

FirstSecondTe eighteenthTe nineteenthTe twenty-sixth

Figure 2: Simplifed model of construction graph.
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S(n) � O n
2

􏼐 􏼑 + O(n∗m). (5)

3. Comparison and Experimental Analysis

100 sets of DNA template sequences for molecular biology
are the experimental subjects of this paper. Tis algorithm
experiment was carried out on a PC (3.40GHz CPU and
16GB RAM) using the eclipse. Java was selected as the
programming language. Te algorithms were run 30 times
under all test cases independently, and the experimental
results data were processed and analyzed for algorithms’
comparison.

3.1. Parameter Adjustment. For designing degenerate
primers, an ant colony optimization algorithm considers a
number of parameters, including α, β, ρ, mu, and phi. Te
parameters are shown in Table 1 as follows:

A signifcant number of tests are required to determine
the exact value of coverage mu, as well as the value of de-
generacy phi, within a certain range. Te fnal experimental
results are depicted by a box-line plot, which shows that how
many restrictions in the vertical axis cannot be satisfed for a
given horizontal axis value, as can be seen in Figures 3 and 4.

By analyzing and comparing four typical data sets in
Figure 3, it appears that at a parameter mu of 10, the boxplot
distribution is more uniform, and the minimum value is the
most optimal. In Case2, for instance, when mu� 10, the
minimum, maximum, lower quartile, median, and upper
quartile values are clearly better than the other values. In Case3,
however, it has a superior upper quartile, median, and lower
quartile than those in the two parametric cases, even though
the minimum value at mu� 10 is the same as at mu� 5 or 10.

According to the analysis and comparison of the box-
plots in Figure 4, there is an even distribution of the boxplot
when the value of parameter phi is 3, and the minimum
value at this time is the most optimal.

Table 1: α, β, ρ, mu, and phi fve parameter details.

α Β ρ mu phi
General setup 2 8 0.02 (5, 10, 15, 20, 25) (1, 2, 3, 4, 5)
Lower than
general setup Fall into local optimum Solution set is simple Reduced convergence rate

Larger than
general setup

Random search
is reduced

Magnify the constraints and
fall into local optimum

Te preferred path
is excluded

Case 1

Parameter of Mu
5 10 15 20 25

.2

.4

.6

.8

1.0

1.2
Case 2

Parameter of Mu
5 10 15 20 25

0.0

.2

.4

.6

.8

1.0

Case 3

Parameter of Mu
5 10 15 20 25

0.0

.1

.2

.3

.4

.5
Case 4

Parameter of Mu
5 10 15 20 25

0.0

.2

.4

.6

.8

co
st 

()
/1

0
co

st 
()

/1
0

co
st 

()
/1

0
co

st 
()

/1
0

Figure 3: Setting parameter mu.
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3.2. Experimental Comparative Analysis. To make the ex-
periment more convincing, the experiment results of de-
generate primer design through the ant colony optimization
algorithm are compared with those determined through

Primer 3 and Oligo 7 [23]. Te fnal test results need to be
compared by two comparative analysis methods, i.e., de-
scriptive statistical analysis and convergence analysis, to
fnally draw reliable conclusions.

Case 5

Parameter of Phi
1 2 3 4 5
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Parameter of Phi
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Parameter of Phi
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Figure 4: Setting parameter phi.
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Figure 5: Convergence graphs for DPD. (a) 500 bps DNA template. (b) 600 bps DNA template.
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3.2.1. Comparative Study Based on Convergence Analysis.
Te convergence analysis focuses on comparing the values
of the ftness evaluation function of the standardized
treatment for a certain number of ftness evaluations.
ACOH, software Primer 3, and Oligo 7 solved the con-
vergence curve of degenerate primer design on the DNA
template of 500 bps and 600 bps, respectively, as shown in
Figure 5.

As shown in Figure 5, on a 500 bps DNA template,
Primer3 converged approximately 300 times with a minimum
ftness evaluation function of 3.245. Oligo7 converged ap-
proximately 600 times with a minimum ftness evaluation
function of 3.218. ACOH also converged approximately 600
times with a minimum ftness evaluation function of 3.204.
Although Primer3 converges the earliest, it has the highest
ftness evaluation function value. For the same number of

Table 2: DNA sequence analysis at 500 bps and 600 bps under three conditions.

ACOH Primer 3 Oligo 7

500 bps up primer (3′- 5′)

CT[TA][TC][CG][TA] [AC][AT]C[GC][ATC] A[AG]CG[AT][GAT]
G[GT]C[CT][CG] [GA][AT]G[TC]C AG[TC][CG]TG

[TA]A[CTA] [TG]G[AT][AG]C [AT]A[AC][GCT]
[CG]CTA [CG][AT][AT]TC [AT]G[TC]C

500 bps down primer (3′- 5′) GAA[CA][CT][GT] CT[TA][TA][GC] C[CT]G[TA][TCG]
600 bps up primer (3′- 5′) [CT][CT]G[TG] C[GA][TA]G[GT]C[CT] [CA]A[TA]GT

600 bps down primer (3′- 5′)

G[TG]ACGA[CGA] G[TA][AG][CTA] [GC][CT]GA[TAG]
[TA]T[CA] [CG]C[TA][CA] [TA]GC[GA]A

GGA[TC]A[GA] G[TAG]A[TC]A[GA] [TG][AG]A[TC][TA]
GT[CA][CAT][CA] G[TGA][CA][CAT] [GA]G[TA][CA]
[TG][TA]C[CA] [CA][TG][TA]C [CT][CGA]T[TA]C

GAC[AG] [CA][GA][AC][AG] C[GA]ACA
GC[AG]CGG[TG] GC[AG]C[AG]G GC[CAG][CT]G
[TC]C[CAT]A [TG][TC]C[CAT] [GA][TG]TC[CT]

[TA]G[TA][TC]G A[TA]G[TA][TC] [GA][GTA]GAC
[GA]T[CA] [GA][GA][TA][CAG] [GA]G[TA][CA]
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Figure 6: Comparison of four data at 500 bps and 600 bps.
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ftness evaluations, the normalized ftness evaluation function
value of ACOH is the smallest among these three methods.
ACOH hasmore advantages in this kind of problem since this
section is to solve the minimum meeting constraint opti-
mization problem. Similarly, ACOH has also shown an ad-
vantage on the DNA template of 600 bps.

3.2.2. Analysis and Comparison Based on Descriptive Sta-
tistical Methods. Te up primer pair, the down primer pair,
and many constraint parameters were compared at multiple
angles. Table 2 and Figure 6 summarize the experimental
results.

As can be seen from Table 2 and Figure 6, no matter
500 bps or 600 bps, the ACOH model performs best at
degeneracy and convergence. In addition, at 500 bps, the
data of up primer GC-clamp and down primer GC-clamp of

the three models are [C] [C] [G] and [GG] [GG] [C]. At
600 bps, the up primer GC-clamp and down primer GC-
clamp of the three conditions were [GG][G][CC] and [CG]
[CG][GG]. Self-annealing and pair-annealing are no in all
conditions. DPD solved by the ant colony optimization
algorithm with the construction graph model is obviously
lower than that solved by Primer 3 and Oligo 7. Moreover,
the primer pair is specifcally compared with Primer 3, which
is inseparable from the preprocessing of the search space
before constructing the solution path. Finally, only the
condition optimized by ACOH has specifcity.

Following that, four DNA template sequences, such as
100 bps, 200 bps, 300 bps, and 400 bps, will be used as test
cases, with the corresponding primer pairs and constraint
parameters acquired. As shown in Table 3 and Figure 7,
DNA templates of 100 bps and 200 bps provide the same
level of coverage as those of 300 bps and 400 bps, but their

Table 3: An analysis of DNA sequences containing 100 bps, 200 bps, 300 bps, and 400 bps.

100 bps 200 bps 300 bps 400 bps

Up primer (3′- 5′)

CG[TG]T[TA] G[CT]A[GT] G[GA]G[AG]AG GG[GA]A[CA]C
[GA]G[GA]T[CA]C [TC]GG[CA]A[GT] [CT][GC]A[GA]A [AC]A[TC]ACG[TG]

[GC]T[TG]C [TG]CATT[CA] [GT]C[CT]GT[TA] [CT][GA][GA]C
[GA]GT[GC]A AG[TA] [GTA]A[CA] [CGT]A[CT]

Down primer (3′- 5′)
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100 BPS

200 BPS

300 BPS

400 BPS

56

58

56

58

58

56

58

58

Melting temperature-Up
Melting temperature-Down

256

256

1536

1152

0
10
20
30
40
50
60

1 2 0 1

51 52 51 52

Converge (Up/Down)
Temperature difference (°C)
GC-content (Up/Down) (%)

Melting temperature

100 BPS

200 BPS

300 BPS

400 BPS

10
0 

bp
s

20
0 

bp
s

30
0 

bp
s

40
0 

bp
s

512

256

1536

1536

Degeneracy-Up
Degeneracy-Down

Degeneracy companion

100 BPS

200 BPS

300 BPS

400 BPS

20

19

20

20

20

19

19

19

Primer length-Up
Primer length-Down

Primer length companion

30303030

Comparison of three
parameters

Figure 7: Comparison of four kinds of data at 100 bps, 200 bps, 300 bps, and 400 bps.

8 Discrete Dynamics in Nature and Society



degeneracy is relatively smaller. Tere is a correlation
between the number of base pairs in the DNA sequence
and the excellent search performance of the ant colony
algorithm. In addition, the data of up primer GC-clamp
and down primer GC-clamp of the four conditions are
[GC] [G] [GG] [G]and [GG] [G] [G] [G]. Both self-
annealing and pair-annealing were no in all models, but
all models had specifcity.

4. Conclusion

DPD is a hot topic in current research. Multiple limitations
must be met by the candidate primers identifed in this
study. In addition, these primers should have a large amount
of coverage and a small amount of degeneracy while
allowing a minority of base mismatches. As a result, the
research develops a DPD optimizationmodel and proposes a
solution to the problem based on the notion of ant colony
optimization. Results of the experiments suggest that
primers designed by this method have obvious efects on
coverage, degeneracy, specifcity, and stability and fnally
improve the solving efciency. Besides, candidate primers
are scored in this paper. Scoring is the process of weighing
degeneracy and coverage into a single index, which neces-
sitates the weight value before calculation. In practice, more
pre-experiments are needed to determine the best weight
values. As a result, in our next research, we will investigate
how to create a multiobjective optimization model for the
DPD and fnd an efective solution method. Te solution
method can give multiple candidate degenerate primer
design schemes at the same time, which do not dominate
each other.
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