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Objectives. Early warning prediction of massive hemorrhages can greatly reduce mortality in trauma patients. This study aimed to
develop and validate dynamic prediction models for massive hemorrhage in trauma patients. Methods. Based on vital signs (e.g.,
heart rate, respiratory rate, pulse pressure, and peripheral oxygen saturation) time-series data and the gated recurrent unit
algorithm, we characterized a group of models to flexibly and dynamically predict the occurrence of massive hemorrhages in the
subsequent T hours (where T'=1, 2, and 3). Models were evaluated in terms of accuracy, sensitivity, specificity, positive predictive value,
negative predictive value, F1 score, and the area under the curve (AUC). Results. Results show that of the 2205 trauma patients selected
for model development, a total of 265 (12.02%) had a massive hemorrhage. The AUCs of the model in the 1-h-group, 2-h-group, and 3-
h-group were 0.763 (95% CI: 0.708-0.820), 0.775 (95% CI: 0.728-0.823), and 0.756 (95% CI: 0.715-0.797), respectively. Finally, the
models were used in a web calculator and information system for the hospital emergency department. Conclusions. This study developed
and validated a group of dynamic prediction models based on vital sign time-series data and a deep-learning algorithm to assist medical

staff in the early diagnosis and dynamic prediction of a future massive hemorrhage in trauma.

1. Introduction

Massive hemorrhage is one of the most serious and life-
threatening complications caused by trauma and are the
main cause of preventable death in trauma patients comprising
40% of trauma-related fatalities [1-4]. Compared with grossly
visible massive hemorrhages, the detection of invisible massive
hemorrhages is often delayed by occult bleeding. However, if the
medical staff is able to identify a traumatic massive hemorrhage
at an early stage and even in advance, timely and effective
interventions can be performed, reducing patient disability and
mortality rates and improving outcomes after severe trauma [5].

At present, most prediction methods related to traumatic
hemorrhages use scoring systems based on traditional statistical
methods [6-8], such as the trauma-associated severe hemor-
rhage (TASH) [9] and Prince of Wales Hospital/Rainer (PWH)

[10] scores. Traditional scores require the manual calculation of
results, which is both time-consuming and complicated.
Moreover, the diversity of predictive variables makes it difficult
for these scores to achieve dynamic prediction. Finally, the
accuracy of these scores decreases in varying degrees as time
passes and when applied to people from different regions [11].

In recent years, the development of medical noninvasive
monitoring technology and equipment has achieved non-
invasive, real-time, continuous, and dynamic monitoring of
multidimensional vital sign information. Long-term con-
tinuous vital sign information describes the rich physio-
logical and pathological state of the human body, and it is
also an important part of clinical big data [12]. The heart rate
(HR), respiratory rate (RR), blood pressure, and peripheral
oxygen saturation (SpO,) are the basic vital signs that
measure the most critical functions of the human body. A


https://orcid.org/0000-0001-8577-909X
https://orcid.org/0000-0003-2684-7173
https://orcid.org/0000-0003-0294-1608
https://orcid.org/0000-0003-1517-4356
https://orcid.org/0000-0002-6293-6045
https://orcid.org/0000-0002-4521-0875
https://orcid.org/0000-0001-6528-9595
mailto:cli@tsinghua.edu.cn
mailto:lts301@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9438159

comprehensive analysis of vital signs data using time-series
and machine-learning may provide substantial support in
decision-making for disease prevention, diagnosis, and
treatment [13-15].

This study aimed to explore the application of vital signs
time-series data and deep learning, to construct a group of
dynamic prediction models, and simultaneously, to predict
the risk of a traumatic massive hemorrhage in the sub-
sequent T hours (where T=1, 2, and 3) throughout the
duration of hospital care. By predicting future risk, trauma
rescue teams can identify high-risk patients early, implement
personalized preventive measures, initiate massive trans-
fusion protocols, and prepare for surgical intervention in
a timely manner.

2. Materials and Methods

2.1. Data Sources. The Chinese People’s Liberation Army
(PLA) General Hospital Emergency Trauma Database
(hereafter referred to as the “trauma database”) was used in
this study. The trauma database includes data on consecutive
trauma patients admitted to the emergency resuscitation
room from January 2015 to March 2022. The use of relevant
de-identified data from the trauma database was reviewed by
the Medical Ethics Committee of Chinese PLA General
Hospital (ethical batch number S$2021-466-01). The re-
quirement of written informed consent was waived owing to
the retrospective design of the study.

Trauma patients from the trauma database were in-
cluded in this study. The exclusion criteria were as follows:
(1) patients aged <16 years; (2) patients with second or
further repeat admissions after trauma (to rule out massive
hemorrhage caused by nontraumatic factors); (3) patients
with a data loss rate of more than 20% (to reduce the de-
viation in the process of data filling); and (4) patients whose
time-series length of vital signs data in the data extraction
interval were less than three records (to ensure that there
were enough time-series data for model training).

2.2. Outcomes. In this study, a massive hemorrhage repre-
sented the outcome variable; however, there is no author-
itative standard for the screening criteria for a massive
hemorrhage. By consulting previous literature [16, 17] and
combining our findings with clinical practice, we de-
termined the screening criteria as: (1) a massive transfusion
of three or more units of red blood cells within one hour at
any time during the first 24 hours after admission, (2)
embolization or hemostatic surgery within 24 hours after
admission. Patients were classified in the “massive hemor-
rhage group” if they met either of the aforementioned
conditions; otherwise, they were classified in the “non-
massive hemorrhage group”.

2.3. Predictive Variables. This study used the HR, RR, pulse
pressure (PP), and SpO, as predictive variables. Models were
developed based on the time-series data of the four vital
signs. Generally, data on vital signs from the trauma da-
tabase was based on electrocardiogram monitor and pulse
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oximeter measurements, which were recorded every hour
throughout in-patient care. For patients in the massive
hemorrhage group, “study section time” was defined as the
time point at which the screening criteria was first met. For
patients in the nonmassive hemorrhage group, the recording
time of the last vital sign data before the time point of 24 h
after admission was considered the study section time. Three
time intervals (1-13h, 2-14h, and 3-15h) before the study
section time were regarded as the three “data extraction
intervals”. After the vital signs time-series data in these three
intervals were extracted, three models were developed to
predict the risk of a massive hemorrhage in the future, at
one, two, and three hours later, respectively (hereinafter,
referred to as “1h group”, “2h group”, and “3h group”)
(Supplementary Figure 1); for instance, if a trauma patient
was transfused 4 units of red blood cells within the 15th hour
past admission, the 15th hour after admission was consid-
ered as the study section time, and the 2-14h, 1-13 h, and
0-12h time periods after admission constituted the three
data extraction intervals.

2.4. Model Development and Validation. We used a gated
recurrent unit (GRU) deep-learning algorithm to develop
and validate the prediction models [18]. The use of the GRU
is a variant of recurrent neural networks which was proposed
by Cho et al. in 2014. It has a simple network structure and
solves the problem of gradient disappearance that occurs
with traditional recurrent neural networks. GRU has an
excellent performance in sequential data processing, clas-
sification, and prediction. In model training, the early-stop
mechanism was used to avoid overfitting. In case the current
minimum verification error was not updated in 10 con-
secutive epochs, the training was stopped, and the maximum
epoch was 200. The deep-learning model used the cross-
entropy loss function. The parameters of the model are
indicated in Supplementary Table 1. A ten-fold cross-
validation was used for model validation. The accuracy,
sensitivity, speciﬁcity, positive predictive values, negative
predictive values, F1 scores, and areas under the curve
(AUC) were used to evaluate the models’ performance.

2.5. Statistical Analyses. Python 3.8.5 (Python Software
Foundation) was used to develop and validate the models.
The GPU model used was the GeForce RTX 2080 Ti
(American NVIDIA Corporation), with an 11 GB video
memory capacity. Stata 17 was used for the statistical
analysis. The quantitative data were expressed by means
(SDs), and a t-test or one-way ANOVA was performed for
differential analysis. The categorical data were expressed
using n values (%) and compared using the chi-square tests.
The level of statistical significance was set at P <0.05.

3. Results

3.1. Comparison of Baseline Characteristics. A total of 4032
patients with trauma were included in the trauma database.
After screening according to the exclusion criteria, 2205
patients were included in the study, with an average age of



Emergency Medicine International

(n=4032)

Trauma database

Exclusion criteria:

(1) Patients aged <16 years (n = 191)

(2) Patients with second or further repeat admissions
after trauma (n = 78)

(3) Patients with data loss rate > 20% (n = 1410)

(4) Patients with time-series length of vital signs data
in the data extraction interval less than three records
(n =148)

(n =2205)

Study population

Massive hemorrhage group (n = 265)
Massive transfusion (n = 251)
Embolization or hemostatic surgery (n = 14)

A

Non-massive hemorrhage group (n = 1940)

FiGURrE 1: Patient selection flow chart.

47.42 years (SD, 17.40), with males accounting for 77.60% of
the patients included. Among all patients included, 265
(12.02%) met the outcome variable of a massive hemorrhage
(Figure 1).

Data shows the patients in the massive hemorrhage
group were more likely to have an increased HR and a de-
creased PP and SpO,; there were no significant differences in
sex and age between the massive hemorrhage group and the
nonmassive hemorrhage group (Table 1).

3.2. Development and Validation of Dynamic Prediction
Models for Massive Hemorrhages in Trauma Settings.
Table 2 shows the seven evaluation indexes of the models,
with AUCs of 0.763 (95% CI: 0.708-0.820), 0.775 (95% CI:
0.728-0.823), and 0.756 (95% CI: 0.715-0.797) in the 1 h, 2 h,
and 3h groups, respectively. The receiver operating char-
acteristic (ROC) curves and AUC differences of the models
in the 1h, 2h, and 3h groups were compared [Figure 2].
There were no significant differences in the AUCs among the
three groups (P = 0.572).

To facilitate use by public and medical personnel and
further validate our model, we developed a web calculator
(http://82.156.217.249:5008/) including a data entry page
[Figure 3(a)] and the forecast results page [Figure 3(b)], which
supported the early assisted diagnosis and dynamic prediction
of a future massive hemorrhage in patients with trauma. To
promote the practical application of the model, we further
used the models in the emergency department information
system, which supported the automatic extraction of the vital
signs time-series data, as well as the efficient and intelligent
prediction of a traumatic hemorrhage.

4, Discussion

Based on the vital signs time-series data in the trauma
database, we developed a group of deep-learning models to
enable the dynamic prediction of the risk of a massive

hemorrhage at the next three time points. Moreover, we
designed an open and accessible data interface to validate
our model and for use by medical staft and the public. Fi-
nally, we used the models within the hospital information
system to help clinicians in early identification, dynamic
prediction, and decision-making for patients with a massive
hemorrhage.

In this study, the time-series data of the vital signs were
used to develop models. The models had several advantages.
First, as the vital sign data can be obtained easily and quickly
in both prehospital and in-hospital environments, medical
staff can record this data regularly and with ease and input
the data into the model for risk prediction without waiting
for laboratory test results such as routine blood tests, co-
agulation function tests, or results from imaging studies such
as ultrasound and computed tomography, which are all
helpful factors in improving the timeliness of the model [19].
Second, the vital sign indices can be monitored non-
invasively and repeatedly, ensuring that the model can be
recalculated continuously, during prehospital first-aid in-
terventions or emergency triage, providing valuable in-
formation on patients’ responses to treatment, and thus
allowing medical professionals to modify treatment plans
more efficiently [13]. Finally, the three models predicted the
risk of traumatic massive hemorrhage simultaneously in the
next one, two, and three hours, achieving a dynamic pre-
diction and providing extensive information regarding in-
jury changes [14].

Presently, the prediction models related to traumatic
massive hemorrhages that have been reported in the lit-
erature have mainly used massive transfusions as the
outcome variable [6-8]. However, a massive transfusion
cannot explain all the clinically important results related
to a massive hemorrhage. For example, before the stan-
dard for a massive transfusion is reached, patients with
a massive hemorrhage may have received a hemostatic
intervention. Therefore, a competing risk bias may occur
when a massive transfusion is used alone as an outcome
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TaBLE 1: Comparison of baseline characteristics.
o Massive hemorrhage

Characteristics Totals P values
Yes No

No. 2205 265 1940

Male, n (%) 1711 (77.60%) 196 (74.0%) 1515 (78.1%) 0.130

Age, mean (SD), y 47.42 (17.40) 47.60 (16.10) 47.39 (17.57) 0.850

Vital signs, mean (SD)

Heart rate, beats/min 93.10 (21.64) 104.35 (23.80) 91.96 (21.08) <0.001 =

Respiratory rate, breaths/min 19.58 (2.20) 19.58 (2.40) 19.58 (2.17) 0.890

Pulse pressure, mmHg 49.08 (14.02) 46.34 (13.54) 49.36 (14.04) <0.001 =

Peripheral oxygen saturation, % 97.50 (2.85) 97.00 (3.95) 97.56 (2.70) <0.001 =

The P values pertain to the result of differential analysis between the massive hemorrhage and nonmassive hemorrhage groups. Quantitative data were
expressed by means (SD) and the differences were analyzed using the t-tests. Classified data were expressed using # values (%) and the differences were
analyzed using a chi-square test. *indicates that the difference is statistically significant. SD: standard deviation.

TaBLE 2: Comparison of the models’ effects in 1h, 2h, and 3h groups.

ACC SEN SPE PPV NPV F1 AUC
1h group 0.683 £0.029 0.729£0.128 0.677 £0.036 0.235+0.030 0.949 £0.024 0.355+0.049 0.763 £0.074
2h group 0.687 £0.034 0.750 £ 0.161 0.678 £0.050 0.240 £ 0.037 0.954 £0.026 0.362 £ 0.059 0.775+0.063
3h group 0.685£0.032 0.714+0.135 0.681 +£0.033 0.234 £0.044 0.946 £0.025 0.352 £0.065 0.756 £0.055

ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; F1: F1 score; AUC: area under the curve.
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FiGure 2: Comparison of the ROC curves of the GRU models in
1h, 2h, and 3h groups. ROC: receiver operating characteristic
curve; AUC: area under the curve; GRU: gated recurrent unit.

variable in a prediction model [16]. In addition, the
traditional definition of a massive transfusion of >10 units
of red blood cells within 24 hours should be considered
obsolete. The critical administration threshold that defines
the receipt of three or more units of red blood cells during
a single hour anytime during the first 24 hours of arrival
can identify patients with a massive hemorrhage more
accurately and minimize survivor bias [20]. Therefore, our
study used the definition of a massive transfusion or
“embolization or hemostatic surgery” within 24 hours of

admission as the screening condition for a massive
hemorrhage in trauma, emphasizing the severity of the
hemorrhage rather than the amount of blood transfused,
and using the modern definition of a critical adminis-
tration threshold instead of the traditional definition of
a massive transfusion.

To help the public and medical staff use the models
more conveniently, we developed a web calculator that
provides a user-friendly interface. After inputting the
predictive variables, the risk of a massive hemorrhage in
patients with trauma at the next three time points can be
predicted dynamically. These results will help clinical
decision-makers understand the patient’s condition and
prepare appropriate treatment strategies. Although the
web calculator can meet the access needs of the public in
different countries and regions, for emergency de-
partment clinical staff that have a heavy workload and
operate at a fast pace, inputting the time-series data of the
four vital signs manually remains time-consuming and
complex; more so when the time-series is long. It is
therefore easy for human errors to occur. This limits the
practical application of the models to a great extent. To
reduce the time and labor cost of using the models, we
used them within the hospital emergency department
information system. As part of the computerized clinical
decision-support system, it enabled the automatic, con-
tinuous, eflicient, and dynamic prediction of a traumatic
hemorrhage, which can assist clinicians in early diagnosis
and dynamic monitoring, may improve diagnosis and
treatment practices of residents and attending physicians,
and thus, improve medical services.

This study had several limitations. First, the study used
two screening strategies, including massive transfusion and
embolization or hemostatic surgery to cover as many trauma
patients with massive hemorrhage as possible. A small
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Calculation Tool For Dynamic Predicting Massive Hemorrhage In Trauma

1.Please download the template: Click To download

2.Please upload vital signs time series data (xIsx format file)

SELECT FILE

CALCULATE

(a)

Calculation Tool For Dynamic Predicting Massive Hemorrhage In Trauma

Time series Heart rate(beats/min)

1 97.00 20.00
2 98.00 19.00
3 90.00 20.00
4 92.00 20.00
5 104.00 20.00
6 102.00 20.00
4 104.00 20.00
8 101.00 20.00

The risk of massive hemorrhage after 1his : 71%

Respiratory rate(breaths/min)

The risk of massive hemorrhage after 2h is : 66%

Pulse pressure(mmHg) Peripheral oxygen saturation(%)

32.00 97.00
30.00 98.00
39.00 98.00
41.00 98.00
47.00 97.00
42.00 97.00
43.00 98.00
41.00 97.00

The risk of massive hemorrhage after 3h is : 72%

F1GURE 3: The web calculator for the dynamic prediction models for a future massive hemorrhage in trauma. (a) Data entry page; (b) forecast
results page. Click the ‘Click to download’ link in Figure 3(a) to download the excel template, import the vital signs time-series data according to
the template format, click the ‘SELECT FILE’ button to select the file to be uploaded, and finally, click the “CALCULATE” button for risk
prediction. The imported vital signs time-series data are shown at the top of Figure 3(b), and the prediction probability of massive hemorrhage
in trauma in the future 1, 2, and 3 hours is shown below, in the range of [0, 1]. The higher the value, the greater the risk of massive hemorrhage.

number of patients were not included in the study pop-
ulation because they either refused to undergo the exami-
nation and treatment or died before receiving treatment. We
will include trauma patients with massive hemorrhage-
related deaths in future studies to further reduce survivor
bias. Second, the prediction models for a massive hemor-
rhage in trauma can only guide the doctor’s clinical decision-
making process and cannot replace the doctor’s clinical
judgment and the results of other diagnostic tests. Finally, as
this was a retrospective observational study, prospective
validation is still needed. In future studies, it will be necessary to

determine whether the use of dynamic prediction models for
a traumatic hemorrhage can reduce waiting times before the
implementation of massive transfusion protocols or surgical
intervention. Furthermore, it will also be important to de-
termine its impact on the prognosis of patients with trauma.

5. Conclusions

In this study, a group of dynamic prediction models were
developed and validated based on the vital signs time-series
data and the GRU deep-learning algorithm to assist in the



early diagnosis and dynamic prediction of a future massive
hemorrhage in trauma. The models were used in the web
calculator and the hospital information system, which
promoted their clinical application.

Data Availability

The data are available from the Chinese PLA General
Hospital Emergency Trauma Database, although restrictions
apply to the availability of these data, which were used under
license for the current study, and so are not publicly
available. Data are however available from the corre-
sponding authors upon reasonable request and with per-
mission of the Chinese PLA General Hospital.
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