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In the construction of shaft, the blockage of the mucking shaft may cause the mud-water inrush disaster. Oversized rock
fragmentation is the main cause for the blockage of the mucking shaft in the raise boring machine (RBM) construction method.
The influence degree of blasting parameters on rock fragmentation after blasting is quantified by adopting analytic hierarchy
process (AHP). On this basis, the shaft blasting maximum rock fragmentation control model based on double hidden layer BP
neural network is proposed. Results show that the maximum rock fragmentation discharged from the mucking shaft after
blasting should not exceed 1/3 of the diameter of the slag chute. The influence weight of the minimum resistance line that
accounts to 15.6%, when AHP is applied for the quantification of the blasting parameters, can be regarded as the most
important blasting parameter. The average absolute errors between the predicted value and the actual value of the largest block
size control model of the shaft blasting are only 2.6%. The inversion analysis of the model can rapidly obtain the required
blasting parameters, which can be used to guide the construction of the tunnel ventilation shaft.

1. Introduction

Long, large, and deep tunnels have been a trend in tunnel
construction, and meeting the requirements of tunnel venti-
lation and fire smoke exhaust using the single ventilation
method has been difficult. The construction of a ventilation
shaft has become a reasonable and efficient choice to achieve
segmented ventilation [1, 2]. Raise boring machine (RBM) is
a popular method that has been adopted in mine shaft con-
struction in recent years [3–5]. In the development of raise
boring manufacturing technique and shaft construction tech-
nology, the RBM method has been used for large-diameter
ventilation shaft construction. The construction of a ventila-
tion shaft with RBM method can be divided into four stages:
(1) pilot hole drilling, (2) raise shaft expansion, (3) forward
blasting hole expansion, and (4) slipform secondary lining
construction [6]. The RBM method has the advantages of

the high degree of mechanization, convenient slag extraction,
high construction efficiency, and is easy to control quality.

The mucking shaft is the key part in the construction of
the RBM method. It is the key to the superiority of the
RBM method to other vertical shaft construction methods.
However, the mucking shaft is a slender structure and is easy
to be blocked during the slag discharge process [7]. Many
experts have analyzed the reasons for the blockage of the
mucking shaft and have presented methods for prevention
and dredging. Hadjigeorgiou et al. considered mucking shaft
clogging very common during the construction and opera-
tion of shafts in Quebec and Ontario mines in Canada; they
also proposed a scheme to use water jets and explosive vehi-
cles to clear the blocker in the mucking shaft [8]. Liu and Li
proposed that the small-diameter shaft constructed using
the RBM should be expanded in time to eliminate the serious
threat to safe production caused by the blockage of the
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mucking shaft [9]. Peter believed that the ore pass diameter
should be between 2.2m and 3m and should not be less than
1.8m; otherwise, blockage in the slagging operation is possi-
ble [10]. The aforementioned engineering cases and related
studies are based on specific engineering experiences and
have focused on passive prevention and dredging after block-
age with emphasis on the expansion of the mucking shaft
size. In addition, a small number of scholars have proposed
an active control method to control the blasting fragmenta-
tion by optimizing blasting parameters. Morin and Ficarazzo
extended Kuz–Rom model by using Monte Carlo method so
that blasting parameters, such as rock and explosive proper-
ties, can be used to guide blasting construction and save costs
[11]. Wu et al. established a blasting fragmentation predic-
tion model based on the composition analysis method, dis-
criminant classification method, and multiple regression
method and predicted the average rock fragmentation (X50);
their findings showed that the predicted effect of this model
is better than that of the Kuz–Ram model [12]. Ebrahimi
et al. used bee colony algorithm and BP neural network to
optimize the blasting parameters when the blasting excava-
tion in Anguran mine, Iran, controlled the block size of blast-
ing mining and reduced the back-break phenomenon caused
by blasting successfully [13]. Li took the construction of the
gas supply shaft at the tail end of the spillway tunnel on the
right bank of Xiluodu hydropower station, China, as an
example to adjust and control the blasting parameters of
the blasting fragmentation to reduce the probability of
mucking shaft blockage due to excessive gravel and to
ensure the efficiency of the RBM method [14]. The afore-
mentioned blasting fragmentation control methods provide
a better solution for the development of engineering pro-
jects. However, studies on the maximum rock fragmenta-
tion are scarce, and no specific method for controlling
the fragmentation of shaft blasting is proposed.

This work investigated the mucking shaft blockage mech-
anism, quantified the blasting parameters of the shaft based
on the analytic hierarchy process (AHP) method, combined
it with the construction of the Jinhua mountain tunnel venti-
lation shaft in China, used the double hidden layer BP neural
network algorithm to establish the control model of maxi-
mum fragmentation of blasting, and evaluated and analyzed
the prediction effect and application methods of the model.

2. Blockage of Mucking Shaft

During blasting, rock failure and other mechanical behaviors
under impact load or multistage loading, resulting in differ-
ent sizes of fragmentation [15, 16]. The mucking shaft is
responsible for removing the fissure water and the rock after
blasting in the ventilated shaft. Although the structure and
function of the mine ore pass vary, the rock movement in
the chute is the same. Through blasting, a funnel surface is
formed in the shaft face to facilitate slag discharge. The rock
is discharged into the mucking shaft manually or mechani-
cally along the funnel surface (Figure 1(a)).

A series of collisions and bounces of ore on the funnel
surface will form a stable ore flow (Figure 1(b)). When the
ore flow enters the ore pass from the chute, the ore flow has
an average velocity as a whole. The initial velocity and lump-
iness of the ore flow that enter the ore pass are different; the
rocks are easy to squeeze and collide with each other in the
shaft [17]. If too many bulk rocks exist, then forming a stable
occlusal arch, which will cause cross-sectional blockages, is
easy. The formation of the occlusal arch provides a buffer
platform for the smaller rocks that fall behind and form a vis-
cous arch under the action of water and lime (Figures 1(d)
and 1(e)). The viscous arch is stabilized to form a plugging
body because of the impact compaction of the blockage
(Figures 1(b) and 1(c)). Therefore, the formation of the plug-
ging body is based on the stable self-standing of the occlusal
arch. The formation of the occlusal arch is more complicated.
Different rock shapes have various force transmission paths
of occlusal arch; thus, analyzing them is difficult.

Szwedzicki [18] believed that the formation of the occlu-
sal arch was mainly related to the degree of rockiness and the
diameter of the mucking shaft, and the ratio of the mucking
shaft diameter (d) to the rock maximum fragments (Dmax)
was taken as the control, namely,

ρ ≥
d

Dmax
: ð1Þ

The design section for a mucking shaft drilled by RBM is
circular; Hadjigeorgiou and Lessard believed that for a circu-
lar vertical chute, the input rocks were sphere to ensure that
no stable occlusal arch formed in the well, and the minimum

Mucking

shaft

Funnel

surfa
ce

Occlusal arch

Viscous arch

Plugging
body

d

Ore flow

Figure 1

2 Geofluids



value of ρ is taken as 2.8; if the input rocks are cube, then the
minimum value of ρ is 4 [19]. The value of ρ for mucking
shaft can be taken as 3, because the shape of the rock mass
after blasting is between the two (Figure 1(a)). That is, the
rock block size is bigger than 1/3 of the diameter of the muck-
ing shaft. It is defined as a large block, and the secondary
crushing is required during the slag discharge.

After blasting, the large rock concentration area on the
funnel surface can be taken with a high-pixel camera, and
then the rock mass analysis software Split-desktop 4.0 can
be used to analyze the rock block fragmentation image; the
rock mass distribution result after blasting is shown in
Figure 2, and the rock fragmentation distribution data after
blasting are obtained. X100 is the rock size with a cumulative
screen residue of 100%, which represents the maximum rock
block fragmentation.

3. Quantification of Blasting Parameters

Blasting parameters are usually optimized to control blasting
fragmentation to meet the gradation requirements of mining.
However, blasting in the ventilation shaft is different from
those in mines. For example, no grading requirement, no cut-
ting hole, and no bench height are provided for the ventila-
tion shaft blasting. Therefore, quantifying the importance
of shaft blasting parameters to the formation of blasting frag-
mentation is necessary.

The AHP is a decision-making method that combines
qualitative and quantitative processes [20–22]. Its principle
is to decompose complex problems into different hierarchical
structures according to the problem-solving steps and com-
pare factors at the same level to form a comparison matrix
by calculating the eigenvalues of the comparison matrix of
each layer to obtain the weight value of the importance rank-
ing among the factors of each layer and then by calculating
the total ranking weight value of all elements. AHP is used
to determine the ventilation shaft blasting parameters, which
can be divided into five steps.

Step 1. Determine the evaluation factors. The structural
model was constructed to analyze the factors that affect
blasting fragmentation, and the factors of each layer were
coded. Considering the design factors of on-site blasting
and the actual situation on site, the blasting design param-
eters (A1), rock characteristic parameters (A2), and perfor-
mance parameters of explosives (A3) are selected as the
criterion layers of AHP; A1 include the quantity of blasthole
(N), hole spacing (S), hole depth (H), powder factor (P),
minimum resistance line (B), and maximum explosive per
hole (Q). Rock compressive strength (τ) and rock tensile
strength (σ) are the main parameters that can represent rock
properties [23, 24]. Meanwhile, detonation velocity (D),
explosive action capacity (W), and detonation pressure (C)
are selected as the factor layer of A3. The analysis model
shown in Figure 3 is established.

Step 2. Construct a judgment matrix. According to the actual
situation of shaft blasting and expert opinions, the reciprocal
scale method is used to establish the corresponding compar-
ison matrix S1, S2, S3, and criterion layer matrix S4 of the fac-
tor layer:

S1 =
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775:

ð2Þ

Step 3. Calculate the weight coefficient. Calculate the maxi-
mum eigenvalue λmax of the judgment matrix S and the nor-
malized eigenvector to obtain the important weight vectorΩ
that affects the blasting parameters:

Ω1 = 0:069, 0:152, 0:072, 0:157, 0:349, 0:202f g, λmax 1 = 6:3649,

Ω2 = 0:558, 0:122, 0:32,f g, λmax 2 = 3:0183,

Ω3 = 0:333, 0:667f g, λmax 4 = 2,

Ω4 = 0:222, 0:667, 0:111f g, λmax 3 = 3:
ð3Þ
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Step 4. Conduct consistency test. To ensure the accuracy of
the weight coefficients obtained, the consistency index CI
needs to be calculated, and the random consistency coeffi-
cient RI is obtained from Table 1, and the random consis-
tency ratio CR can be calculated:

CI =
λmax − n
n − 1

,

CR =
CI
RI

:

ð4Þ

When CR is less than 0.1, it can be considered to pass the
consistency test. After calculation, the random consistency
ratios of the judgment matrices S1, S2, S3, and S4 are obtained
as follows: 0.0579, 0.0176, 0, and 0, which meet the require-
ments of the consistency test, respectively.

Step 5. Calculate the comprehensive weight of each level ele-
ment to the target layer and obtain the ranking of the influence
of each blasting parameter on the blasting fragmentation
(Table 2).

Table 2 shows that the criterion layer parameters that
affect the rock size after shaft blasting are the blasting design
parameters (A1). The most important factor layers are the
minimum resistance line (B), maximum explosive per hole
(Q), powder factor (P), and the hole depth (H). The cumula-
tive weight value of these factors accounts for 38%, which has
a significant impact on the blasting fragmentation. The min-
imum resistance line comprehensive weight is 15.49%, which
should be considered first in the blasting construction.

4. Maximum Rock Fragmentation
Control Model

4.1. Double Hidden Layer BP Neural Network. The BP neural
network is a supervised machine learning algorithm that

extracts general information or feature information from
data through training. Double hidden layer BP neural net-
work is a multilayer artificial neural network that consists
of four layers, an input layer, two hidden layers, and an out-
put layer [25] (Figure 4). Each layer is composed of multiple
neurons. The double hidden layers increase the number of
nodes and the scale of the network and enhance the ability
of the neural network to fit nonlinear functions.

4.2. Establishment of Maximum Rock Fragmentation Control
Model. The model is based on the double hidden layer BP
neural network algorithm. The blasting parameters that
affect the fragmentation after blasting, such as the quantity
of blast holes, rock tensile strength, and detonation pressure,
are used as the input layer to form the input vector set P.
Take the corresponding X100 as the output set T :

P = P1, P2, P3, P4, P5 ⋯f g,
T = d1, d2, d3, d4, d5 ⋯f g:

ð5Þ

The calculation of the blasting maximum fragmentation
control model is divided into two processes: the forward

Influencing factors of 
blasting fragmentation (A)

Blasting design 
parameters (A1)

Rock 
characteristic 
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Performance 
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explosives (A3)
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Factor layer

Criterion layer

Target layer

Figure 3

Table 1: Random consistency coefficient.

Matrix dimension 3 4 5 6 7 8 9

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45

Table 2: Order of blasting parameter weight.

A
A1 A2 A3 Comprehensive weight Ranking
0.67 0.22 0.11

B 0.2323 - - 0.1549 1

Q 0.1347 - - 0.0898 2

P 0.1047 - - 0.0698 3

H 0.101 - - 0.0673 4

τ - 0.1481 - 0.0329 5

S 0.0479 - - 0.0319 6

N 0.046 - - 0.0307 7

σ - 0.0741 - 0.0165 8

D - - 0.062 0.0069 9

C - - 0.0355 0.0039 10

W - - 0.0136 0.0015 11
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transmission of blasting parameter information and the back
propagation of fragmentation error information. The calcu-
lation principle is as follows:

If the input and output of the jth neuron in the hidden
layer are sj and bj, then

sj = 〠
4

i=1
aiwij − θjj = 1, 2, 3,⋯,N , ð6Þ

bj = f1 sj
� �

j = 1, 2, 3,⋯,N , ð7Þ

f 1 xð Þ = 1
1 + e−x

: ð8Þ

In the formula, ai is the ith input vector in P; wij and θj
are the weights and bias value between the input layer and
the hidden layer, respectively; formula (8) is the sigmoid
function, which is used as the information transfer between
neurons.

The input and output of the tth output layer neuron are
Lt and Ct , respectively. Then,

Lt = 〠
1

i=1
vitbj − γt, ð9Þ

Ct = f2 Ltð Þ, ð10Þ

f 2 xð Þ = x, ð11Þ

where vit and γt are the weights and thresholds between the
hidden layer and the output layer, respectively. Formula
(11) is the activation function between the hidden layer and
the output layer.

After the aforementioned calculation, the predicted out-
put value yt can be obtained, and the error (MSE) between
the predicted value and the actual value can be evaluated
through the cost function Equation (12) to determine the fit
of the model:

MSE =
1
T
〠
T

t=1
yt − Ctð Þ2: ð12Þ

If the MSE value is less than the default value, then the
network training ends or the error will be reduced by back
propagation. The calculation is presented as follows:

First, the weights and thresholds of the output layer and
hidden layer are adjusted through Equations (13) and (14):

vjt m + 1ð Þ = vjt mð Þ + α yt − Ctð ÞCt 1 − Ctð Þbj, ð13Þ

γt m + 1ð Þ = γt mð Þ + α yt − Ctð ÞCt 1 − Ctð Þ, ð14Þ
where m is the number of adjustments of the BP neural net-
work during the training process, α is the adjustment param-
eter between the hidden layer and the output layer, and the
value of α is between 0 and 1. The weight (wij) and partial
quality (θj) between the hidden layer and the output layer
are readjusted according to Equations (15) and (16):

wjt m + 1ð Þ =wjt mð Þ + β 〠
1

t=1
yt − Ctð ÞCt 1 − Ctð Þvjt

" #
bj 1 − bj
� �

aj,

ð15Þ

θj m + 1ð Þ = θj mð Þ + β 〠
1

t=1
yt − Ctð ÞCt 1 − Ctð Þvjt

" #
bj 1 − bj
� �

,

ð16Þ
where β is the learning speed between the input and the hid-
den layers (0 < β < 1). The forward information transfer
between hidden layer 1 and hidden layer 2 is the same as that
between the input layer and hidden layer 1. For hidden layer
2, hidden layer 1 is the input layer, and the same applies to
formula (6), (7), and (8); the same is true for back propaga-
tion, and the calculation formula satisfies (15) and (16).

The prediction accuracy of the trained neural network
model reflects the generalization ability of the model. To rep-
resent the accuracy of the model accurately, evaluating the
error of the control model after training is necessary. The
error is expressed by the average relative error (δ). The calcu-
lation formula is as follows:

δ = 〠
n

i=1

RPi − RCij j
nRPi

× 100%, ð17Þ

where RCi is the predicted value of the neural network, RPi is
the measured value, and n is the number of input vectors.

5. Application and Discussing

5.1. Case Study. The Jinhua mountain extra-long and deep
buried tunnel construction project is located in Jinhua City,
Zhejiang Province, China. A vertical ventilation scheme with
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vertical shafts and complementary air ducts is adopted to
meet the smoke exhaust and ventilation requirements of
the tunnel. The right line of the tunnel uses a vertical shaft
for air supply and exhaust, the left line of the tunnel is
equipped with a smoke exhaust duct and a normal, natural
air duct, and a connecting air duct is set between the left
and right lines to achieve complementary ventilation. The
central coordinates of the shaft to be constructed is YK2467
+400, the cross-section is circular, the inner contour width

is 7.0m, the diameter of the mucking shaft is 1.5m, the eleva-
tion of the wellhead is 476.0, the elevation of the bottom of
the well is 222.5, and the length of the wall is 253.5m. It
belongs to the buried depth, ventilation shaft with large aper-
ture. The shaft spans multiple geological zones (Table 3), and
the geological conditions are more complicated. A total of 11
blasting tests were carried out at the construction site during
the shaft excavation to prevent the mucking shaft blockage
accident during the construction of the shaft. The

Table 3: Geological conditions of the shaft in Jinhua mountain tunnel.

Elevation Geological conditions
Surrounding rock

classification

476.0-467.5 It is a silty clay with gravel, which is loose with block stones distributed locally. V

467.5-456.0
It is tuff of Huangjian formation or crystal chip fusion, the rock is strongly weathered and
locally contains breccia, rock joints and cracks are developed, and the rock quality is hard.

IV

456.0-222.5
It is tuff and crystal debris fusion tuff, which are moderately weathered. The joints and crack are generally
developed, thereby showing the block structure mosaic fragmentation. It belongs to hard rock with good

integrity. It is locally mixed with tuff silty sandstone, and the rock quality is relatively hard.
III

Table 4: Training parameters of blasting maximum fragmentation model.

Serial number Elevation
Input parameters Output parameters

P Q (kg) H (m) N S (cm) τ (MPa) B (m) X100 (m)

1 472.9 0.80 1.20 2.5 98 0.85 84.3 0.40 0.17

2 471.4 0.87 1.35 2.5 96 0.85 95.3 0.40 0.18

3 467.8 1.14 1.35 3.0 98 0.75 89.3 0.45 0.31

4 465.7 1.05 1.50 3.0 110 0.80 83.0 0.45 0.20

5 464.6 1.00 1.20 2.5 110 0.80 84.2 0.40 0.26

6 462.4 1.20 1.00 2.5 108 0.80 85.5 0.40 0.64

7 451.2 1.31 1.50 3.0 110 0.85 124.4 0.50 0.54

8 449.1 1.50 1.80 3.5 110 0.85 118.0 0.45 0.48

9 446.8 1.50 1.80 3.5 109 0.85 84.2 0.50 0.47

10 444.8 1.65 1.80 3.5 110 0.85 80.7 0.50 0.53

11 442.7 1.70 2.10 3.2 105 0.85 51.3 0.50 0.38

X100
Blasting

parameters

Input layer
(7 neurons)

Hidden layer 1
(8 neurons)
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corresponding blasting parameters and rock fragmentation
data were collected for the training of the neural network
model through the blasting tests. Through the trained model,
the maximum blasting fragmentation is predicted, and the
maximum fragmentation is controlled to be less than 1/3 of
the slag sluice well (0.5m).

5.2. Data Collection. In the actual blasting operation of the
Jinhua mountain shaft, the explosive is fixed to select the
emulsion 2# rock explosive. Thus, the explosive parameters
are not considered in the input parameter collection. Accord-
ing to the aforementioned research results, the top 7 blasting
parameters in Table 2 are selected as the input parameters,
and X100 is used as the output parameter. The blasting test
selects the surrounding rock grades of grade V, grade IV,
and grade III because the training effect of the neural network
depends on the accuracy of the data to ensure that the fitted
blasting maximum fragmentation control model has better
generalization ability. This test is carried out under geological
conditions. The test data include all the geological conditions
of the shaft. The specific test parameters are outlined in
Table 4.
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Table 5: Performance indicators of the of two algorithms.

Algorithm Output
Performance indices

Max error
(m)

Min error
(m)

δ (%)

Single hidden layer
X100

0.06 0.009 7.91

Double hidden layer 0.06 0.0005 2.64
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Table 6: Value information of powder factor.

Serial
number

Input parameters
Output

parameters

P
Q
(kg)

H
(m)

N
S

(cm)
τ

(MPa)
B
(m)

X100 (m)

1 0.8 1.2 2.5 98 0.85 84.3 0.4 0.17

2 0.89 1.2 2.5 98 0.85 84.3 0.4 0.18

3 0.98 1.2 2.5 98 0.85 84.3 0.4 0.19

4 1.07 1.2 2.5 98 0.85 84.3 0.4 0.21

5 1.16 1.2 2.5 98 0.85 84.3 0.4 0.22

6 1.25 1.2 2.5 98 0.85 84.3 0.4 0.23

7 1.34 1.2 2.5 98 0.85 84.3 0.4 0.24

8 1.43 1.2 2.5 98 0.85 84.3 0.4 0.26

9 1.52 1.2 2.5 98 0.85 84.3 0.4 0.27

10 1.61 1.2 2.5 98 0.85 84.3 0.4 0.29

11 1.70 1.2 2.5 98 0.85 84.3 0.4 0.31

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

–0.05
2 4 6

Sample number

M
ax

im
um

 ro
ck

 fr
ag

m
en

ta
tio

n 
(X

10
0)

/m

8 10 12

P

N

Q

S

B

H

𝜏

Figure 8

7Geofluids



5.3. Modeling. According to the aforementioned calculation
and analysis processes of the maximum rock fragmentation
control model, MATLAB is used to write the corresponding
model code to build and train the model. The training data
are shown in Table 4. As shown in the maximum rock frag-
mentation control model in Figure 5, the number of nodes
in the first hidden layer of the established model is 8, and
the number of nodes in the second hidden layer is 5. The
training target is set to 0.001, the learning rate is set to
0.0002, and the training algorithm is the Levenberg–Mar-
quardt algorithm, which is stable and efficient. The training
needs to be debugged repeatedly because the BP neural net-
work easily falls into a local minimum, cross-validation is
used during training to prevent overfitting. The training set,
validation set, and test set are selected randomly, with a ratio
of 80%, 10%, and 10%. The accuracy setting value can be
added when the program is written to reduce the debugging
process; if the accuracy does not meet the set requirements,
then the program will return to training automatically until
it reaches the set error value; in order to obtain an accurate
model, the accuracy confidence interval is set to be 95%.
The initial training parameters should be selected carefully;
otherwise, the training of the model will easily fail to con-
verge. The 11 groups of blasting parameters in Table 4 are
inputted into the trained neural network to simulate the
block size prediction. Figure 6 shows that the predicted value
is relatively close to the measured value. In Table 5, the aver-
age relative error of the model prediction is 2.6%. The maxi-
mum error of the rock mass is 0.06m, and the prediction
result meets the engineering needs.

To illustrate the superiority of the double hidden layer
neural network model, the prediction effects of the double
hidden layer BP neural network model and the traditional
single hidden layer neural network are compared. The code
of the single hidden layer BP neural network is also written
in MATLAB. The training parameters are the same as the
two-layer BP neural network, and the same training and test
sets are used as the two-layer neural network for network
training and testing, respectively. The training results are
shown in Table 5 and the two network prediction effects
are shown in Figure 7. The fit of dispersion of the prediction
data of the double hidden layer BP neural network is signifi-
cantly higher than that of the single hidden layer BP neural
network, indicating that the double hidden layer BP neural
network algorithm fits the blasting fragmentation prediction

model effectively. The risk of prediction errors is relatively
low when this model is applied.

5.4. Application of the Model. Learning the characteristics of
existing blasting data, neural network establishes the correla-
tion model between data, the maximum fragmentation of the
next blasting can be predicted, and the optimization of the
blasting plan is realized by using the model. The rate of the
bulk rock block in blasting can be controlled, the occurrence
of mucking shaft blockage accidents can be prevented, and
the efficiency of shaft construction can be ensured. By using
the trained maximum fragmentation control model, the test
parameters of the first blasting test in Table 4 (P (0.8), Q
(1.2), H (2.5), N (98), S (0.85), τ (84.3), and B (0.4)) are used
as the benchmark parameters, and the 7 parameters of the 11
simulated blasting in Table 4 are arranged uniformly from
lowest to highest, the 6 remaining parameters remain
unchanged, and a group of 7 × 11 = 77 blasting parameters
can be obtained. The maximum blasting fragmentation that
corresponded to the prediction is inputted in the model. Tak-
ing powder factor as an example, in Table 4, the minimum
value, maximum value and progressive step distance of pow-
der factor are 0.8, 1.7, and 0.09; input the values in into the
trained model and obtain the corresponding output parame-
ters (X100). The new prediction groups and results are shown
in Table 6. Similarly, get the corresponding values of other
parameters.

The prediction result is shown in Figure 8. The compres-
sive strength, hole spacing, and quantity of blastholes gradu-
ally decrease with the increase in the parameter values and
show a trend of convergence. Powder factor and maximum
explosive per hole have great influence on the maximum
fragmentation, but the maximum fragmentation of blasting
presents an opposite trend with the increase in these two
parameters. This instance shows that each parameter has a
different degree of influence on the maximum blasting frag-
mentation. The formation of the maximum blasting frag-
mentation is the result of the comprehensive action of each
parameter. The desired blasting effect cannot be achieved
by adding a parameter alone.

In the blasting construction, the blasting parameters need
to be adjusted according to the existing conditions. To deter-
mine the parameters of the next blasting quickly, 7 sets of
blasting parameters fit with the corresponding maximum
fragmentation prediction data, and the fitting formulas in

Table 7: Parameter inversion data fitting.

Number Parameter Fitting R2

1 P y = 0:15401x + 0:04159 0.994

2 Q y = −0:1792x + 0:38823 0.943

3 H y = x/−4033:13 − 368:1x + 7777:82
ffiffiffi
x

p
0.935

4 N y = 0:19139 x − 93:9228ð Þ−0:10726 0.913

5 S y = 0:3102 x − 0:73591ð Þ0:25476 0.940

6 τ y = −2:65 × 10−3 + 5:8 × 10−5x
� �1/3:3748

0.972

7 B y = 1:99 × 10−3x−4:90822 0.971
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Table 7 are obtained. After certain parameters are deter-
mined by using these formulas, other parameters can be
deduced quickly according to the required lumpiness.

6. Conclusion

In this paper, the double hidden layer BP neural network
algorithm combined with specific engineering examples is
used to establish the maximum fragmentation control model
of shaft blasting. The conclusions are presented as follows:

(1) The analysis of the ore pass blockage mechanism
determined that the excessively large blasting block is the
main cause for the blockage of mucking shaft drilled by
RBM. Combined with the blockage model of the mucking
shaft, the rock fragmentation larger than 1/3 of the diameter
of the mucking shaft can be defined as an oversized block that
needs to be controlled strictly during on-site construction

(2) As the input parameters of the training maximum size
control the model, blasting parameters determine the accu-
racy of the model. The importance of the blasting parameters
of the vertical shaft is quantified by using the AHP. The
results show that the four parameters, namely, minimum
resistance line, maximum charge per hole, explosive con-
sumption, and hole depth are the main factors that affect
the formation of maximum fragmentation in shaft blasting

(3) The construction of the maximum fragmentation
control model of shaft blasting based on double hidden layer
BP neural network can control the oversized rock proportion
effectively. The function relation between each blasting
parameter and the maximum fragmentation can be obtained
by inverse fitting, and the reasonable blasting parameters can
be determined quickly by using the powerful predictive abil-
ity of the model, thereby providing an active blocking pre-
vention method to prevent the mucking shaft from
blocking. The function relation has practical application sig-
nificance in engineering
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